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Abstract

Based on the Choquet integral and the generalized Shapley function, two new induced -valued 
intuitionistic fuzzy hybrid aggregation operators are defined, which are named as the induced generalized Shapley 

-valued intuitionistic fuzzy hybrid Choquet arithmetical averaging (IGS-IVIFHCAA) operator and the 
induced generalized Shapley -valued intuitionistic fuzzy hybrid Choquet geometric mean (IGS-
IVIFHCGM) operator. These operators do not only globally consider the importance of elements and their ordered 
positions, but also overall reflect the correlations among them and their ordered positions. Meantime, some important 
cases are examined, and some desirable properties are studied. Furthermore, if the information about the weighting vectors 
is incompletely known, the models for the optimal fuzzy measures on attribute set and ordered set are established,
respectively. Moreover, an approach to multi-attribute decision making under -valued intuitionistic
fuzzy environment is developed. Finally, a numerical example is provided to illustrate the proposed procedure.

Keywords: Multi-attribute decision making; Atanassov s interval-valued intuitionistic fuzzy set; Choquet integral; 
Generalized Shapley function

1. Introduction  

A wide range of aggregation operators are found in the 
literature. One common aggregation method is the ordered
weighted averaging (OWA) operator [1]. It provides a 
parameterized family of aggregation operators that include 
as special cases the maximum, the minimum and the average. 
Its fundamental aspect is a reordering step in which the input 
arguments are rearranged in descending order and the
weighting vector is merely associated with its ordered 

position. Since it was proposed in 1988, the OWA operator 
has been widely used in decision making under uncertainty, 
including expert systems, neural networks, fuzzy systems 
and controls [1-14]. Based on the geometric mean, Xu and 
Yager [15] developed the ordered weighted geometric 
(OWG) operator to aggregate the arguments in a similar way 
as the OWA operator. Yager and Xu [16] developed the 
continuous OWG (COWG) operator. Wu et al. [17, 18] 
defined the induced continuous OWG (ICOWG) operator 
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and the induced linguistic ordered weighted geometric
(ILOWG) operator. Wei [19] developed the induced

intuitionistic fuzzy ordered weighted geometric 
(I-IFOWG) operator and the induced 
interval-valued intuitionistic fuzzy ordered weighted
geometric (I-IIFOWG) operator. Furthermore, Xu and Chen 
[20, 21] proposed some geometric aggregation operators and 
some arithmetic aggregation operators on 
interval-valued intuitionistic fuzzy sets (IVIFSs). Later, 
some authors found the ordered weighted operators only 

positions, 
but do not give the importance of their own [22]. In 2003, 
Xu and Da [22] proposed the hybrid weighted averaging 
(HWA) operator, which does not only consider the ordered 
positions of the arguments, but also give the importance of 
them. After the pioneering work of Xu and Da [22], many 
developed forms are proposed [23-27]. 

All above aggregation operators are based on the 
assumption that the discussed elements are independent, i.e., 
they only consider the addition of the importance of 
individual elements. However, in many practical situations, 
the elements in a set are usually correlative [28-40]. When 
there exist inter-dependent or correlative characteristics 
among elements, it is unreasonable to aggregate the values 
for elements by using additive measures. Based on the 
Choquet integral [41], many aggregation operators are 
proposed, such as the Choquet integral operator on fuzzy 
sets [30], the intuitionistic fuzzy correlated 
averaging (IFCA) operator [31, 32], the 
intuitionistic fuzzy correlated geometric (IFCG) operator 
[31], the -valued intuitionistic fuzzy 
correlated averaging (IVIFCA) operator [31, 33], the 

-valued intuitionistic fuzzy correlated 
geometric (IVIFCG) operator [31], the induced 
intuitionistic fuzzy Choquet ordered averaging (IIFCOA) 
operator [34], the combined continuous generalized Choquet 
integral aggregation (CC-GCIA) operator [35] and the 
induced generalized -valued 
intuitionistic fuzzy Choquet ordered averaging 
(I-GIVIFCOA) operator [36]. These operators do not only 
consider the importance of elements or their ordered 
positions, but also can reflect the correlations among them or
their ordered positions. But all existing Choquet integral 
aggregation operators neither globally consider the 
importance of elements or their ordered positions nor overall 
reflect the correlations among them or their ordered 

positions.  
The purpose of this paper is to develop two new induced 

erval-valued intuitionistic fuzzy hybrid 
aggregation operators, which do not only globally consider 
the importance of elements and their ordered positions, but 
also overall reflect the correlations among them and their 
ordered positions. It is worth pointing out that most of the 
existing intuitionistic fuzzy aggregation 
operators are special cases of our operators. Since the fuzzy 
measure is defined on the power set, it makes the problem 
exponentially complex. In order to globally reflect the 
interaction among elements and simplify the complexity of 
solving a fuzzy measure, we further introduce the induced 
generalized Shapley -valued 
intuitionistic fuzzy hybrid Choquet arithmetical averaging 
(IG S-IVIFHCAA) operator and the induced generalized 

Shapley - valued intuitionistic fuzzy 
hybrid Choquet geometric mean (IG S-IVIFHCGM) 
operator. Furthermore, the models for the optimal fuzzy 
measures on attribute set and ordered set are respectively
built. Moreover, an approach to -valued 
intuitionistic fuzzy multi-attribute decision making with
incomplete weighting information and correlative conditions
is developed.

The rest parts of this paper are organized as follows: In 
section 2, some conceptions and definitions are reviewed, 
such as the HWAA and HWGM operators, 
interval-valued intuitionistic fuzzy sets, fuzzy measure and 
Choquet integral. In section 3, the IGS-IVIFHCAA and 
IGS-IVIFHCGM operators are defined. Some important 
cases and desirable properties are studied. In section 4, the 
IG S-IVIFHCAA and IG S-IVIFHCGM operators are 
defined. The models for the optimal fuzzy measures are 
established, and an approach to multi-attribute decision 
making under interval-valued intuitionistic 
fuzzy environment is developed. In section 5, an example is 
provided to illustrate the developed procedure. The 
conclusions are made in the last section.
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2. Preliminaries 

2.1. The HWAA and HWGM operators

Based on the weighted arithmetical averaging (WAA) 
operator and the OWA operator, Xu and Da [22] proposed 
the hybrid weighted averaging (HWA) operator as follows: 

Definition 2.1 [22] A HWA operator of dimension n is a 
mapping HWA: R Rn which has an associated weighting
vector 1 2( , ,..., )T

nw w w w such that [0,1]jw and
1

1n

jj
w ,

denoted by  

, 1 2
1

HWA ( , ,..., )
n

w n j j
j

a a a w b , 

where bj is the jth largest of the weighted arguments j jn a

( 1,2,..., )j n , 1 2( , ,..., )T
n is the weighting vector of

ai (i=1,2 n) with 0i and
1

1n

ii
, and n is the 

balancing coefficient. 

Based on the weighted geometric mean (WGM) operator 
and the OWG operator, Xu and Da [42] further developed 
the hybrid weighted geometric mean (HWGM) operator to 
aggregate the arguments in a similar way as the HWA 
operator as follows: 

Definition 2.2 [42] A HWGM operator of dimension n is a 
mapping HWGM: R Rn which has an associated 
weighting vector 1 2( , ,..., )T

nw w w w such that [0,1]jw and

1
1,n

jj
w denoted by 

, 1 2 1
HWGM ( , ,..., ) j

n
w

w n jj
a a a b , 

where bj is the jth largest of the weighted arguments jn
ja

( 1,2,..., )j n , 1 2( , ,..., )T
n is the weighting vector of

ai (i=1,2 n) with 0i and
1

1n

ii
, and n is the 

balancing coefficient. 

As Lin and Jiang [23] pointed, the HWA and HWGM 
operators do not satisfy boundary and idempotent, which are 
desirable properties for aggregating a finite collection of 

arguments. Lin and Jiang [23] further proposed the 
following hybrid weighted arithmetical averaging (HWAA) 
operator. 

Definition 2.3 [23] A HWAA operator of dimension n is a 
mapping HWAA: R Rn which has an associated 
weighting vector 1 2( , ,..., )T

nw w w w on N n} such 

that [0,1]jw and
1

n

jj
w =1, denoted by  

( ) ( )
1

, 1 2

( )
1

HWAA ( , ,..., )

n

j j j
j

w n n

j j
j

w a

a a a
w

, 

where ( ) is a permutation on N such that ( )ja is the jth largest 

of ia , and 1 2( , ,..., )T
n is the weighting vector of ia

(i=1, 2 n) with 0i and
1

1n

ii
.

2.2. -valued intuitionistic fuzzy sets

Atanassov and Gargov [43] 
introduced the concept of -valued 
intuitionistic fuzzy sets (IVIFSs) as follows: 

Definition 2.4 [43] Let X be a no empty finite set. An IVIFS 
A in X is expressed as 

,[ ( ), ( )],[ ( ), ( )] |A A A AA x u x u x v x v x x X , 

where [ ( ), ( )] [0,1]A Au x u x and [ ( ), ( )] [0,1]A Av x v x

respectively denote the interval-valued degrees of 
membership and non-membership of element x X with the 
condition ( ) ( ) 1A Au x v x .

If ( ) ( )A Au x u x and ( ) ( )A Av x v x for each x X, then the  
IVIFS A degenerates to be an IFS, denoted by A

,[ ( ), ( ), ] |A Ax u x v x x X . Namely, IFS is a special case 

of IVIFS. Furthermore, if ( ) 1 ( )A Au x v x , then we get a 

fuzzy set, expressed by ,[ ( ),1 ( ), ] |A AA x u x u x x X .

In order to denote simply, any Atanasso - 
valued intuitionistic fuzzy value (IVIFV) is given as 
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[ , ],[ , ]a b c d (see [20]), where [ , ] [0,1]a b and 
[ , ] [0,1]c d  respectively denote the interval-valued 
degrees of membership and non-membership with the 
condition 1.b d By , we denote the set of all 
IVIFVs.  

For any IVIFV [ , ],[ , ] ,a b c d Xu [44] introduced the 

score function ( ) 0.5S a c b d to get the score of 

, and defined the accuracy degree ( ) 0.5H a c b d

to evaluate the accuracy degree of .  Xu [44] further gave 
the following order relationship between any two IVIFVs 1

and 2.
If 1 2( ) ( ),S S then 1 2.

If 1 2( ) ( ),S S then 1 2 1 2

1 2 1 2

( ) ( )
.

( ) ( )
H H

H H

Definition 2.5 [20, 21] Let [ , ],[ , ]a b c d and [ , ],[ , ]e f g h

be any two IVIFVs, then some operations of and are 
defined by

(1) ([ , ],[ , ])a e ae b f bf cg dh ,
(2) ([ , ],[ , ])ae bf c g cg d h dh ,
(3) 1([1 (1 ) ,1 (1 ) ],[ , ]) 0,r rr a b c d r

(4) [ , ],[1 (1 ) ,1 (1 ) ] 0.r r r r ra b c d r

Proposition 2.1 [46] Let [ , ],[ , ]a b c d and [ , ],[ , ]e f g h

be two IVIFVs, then
(1) ,
(2) ,
(3) ( ) 0r r r r ,
(4) ( ) 0r r r r ,
(5) 1 2 1 2 1 2( ) , 0r r r r r r .
(6) 1 2 1 2

1 2, 0r r r r r r .

2.3. Fuzzy measure and Choquet integral

As an effective tool to measure the importance of 
elements and the interaction among them, fuzzy measure 
(see [47]) has been deeply studied by many researchers 

[47-50], and successfully used in many different fields, 
especially in game theory and decision making [28-40].  

Let {1,2,..., }N n be a finite set, and ( )P N be the power 
set of N , i.e., the set of all subsets of N . We will often omit 
braces for singletons, e.g., by writing \ , , \N i T N S instead 
of \{ },N i { },T \{ }N S , respectively. Moreover, the 
cardinality of any subset ( )S P N will be denoted by the 
corresponding lower case s. 

Definition 2.6 [47] A fuzzy measure on N is a set function :
P(N)  [0, 1] satisfying  

(1)  ( ) = 0,  (N ) = 1, 
(2) If A, B P(N ) with A B, then  (A)  (B).

Fuzzy integrals, as important aggregation operators for 
uncertain information, have been studied by many 
researchers. One of the most important fuzzy integrals is the 
Choquet integral. In 1997, Grabisch [48] gave the following 
concept of the Choquet integral on discrete sets.  

Definition 2.7 [48] Let f be a positive real-valued function 
on X , and be a fuzzy measure on N. The discrete Choquet 
integral of f w.r.t. is defined by  

(1) (2) ( ) ( ) ( ) ( 1)
1

( ( ), ( ),..., ( )) ( )( ( ) ( )),
n

n i i i
i

C f x f x f x f x A A

  (1) 
where ( ) indicates a permutation on N such that (1)( )f x

(2) ( )( ) ( )nf x f x , and ( ) ( ) ( ){ ,..., }i i nA x x with 

( 1)nA . 

3. New -valued intuitionistic fuzzy 
aggregation operators

In this section, we shall define the generalized Shapley 
-valued intuitionistic fuzzy hybrid

Choquet arithmetical averaging (GS-IVIFHCAA) operator 
and the generalized Shapley -valued 
intuitionistic fuzzy hybrid Choquet geometric mean 
(GS-IVIFHCGM) operator. Some important cases and 
desirable properties are studied. 

First, we introduce the generalized Shapley function 
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proposed by Marichal [51] for game theory as follows: 

\

( )! !( , ) ( ( ) ( ))
( 1)!S

T N S

n s t t
N S T T

n s
,S N (2)

where is a fuzzy measure on N.
When s = 1, then Eq.(2) degenerates to be the Shapley 

function [52]

\

( 1)! !( , ) ( ( ) ( ))
!i

S N i

n s s
N S i S

n
,i N (3)   

From Eq.(2), we know the generalized Shapley function is 
an expect value of the globally marginal contributions 
between the coalition S and every coalition in N\S. While 
Eq.(3) gives an expect value of the overall marginal 
contributions between the element i and every coalition in 
N\i. From Eq.(2), it is not difficult to get the following 
theorem. 

Theorem 3.1 Let : ( ) [0,1]P N be a fuzzy measure on N,
then given as Eq.(2) is also a fuzzy measure.  

From Definition 2.6 and Eq.(3), one can easily get the 
following two properties. 

Property 3.1 Let : ( ) [0,1]P N be a fuzzy measure on the 
finite set N, then ( , ) 0i N for each element i N . 

Property 3.2 Let : ( ) [0,1]P N be a fuzzy measure on the 

finite set N, then
1

( , ) ( ) 1
n

i
i

N N . 

From Properties 3.1 and 3.2, it is not difficult to know that
{ ( , )}i i NN is a weighting vector. 

3.1 The IGS-IVIFHCAA and IGS-IVIFHCGM operators

Considering a set of two tuples 1 1 2 2, , , ,..., , ,n nu u u   
where ui (i=1,2, ,n) indicates the order-inducing variables.
Let and v be a fuzzy measure on ordered set N n}

and IVIFS { }i i N , respectively. ( , )
ia v is the Shapley 

function w.r.t. the fuzzy measure v on { }i i N for i (i=1,
n), and ( ) ( , )A j N is the generalized Shapley value 

w.r.t. the fuzzy measure on ordered set N ={1,2, n} for 
A(j) = {j, ,n} with A(n+1) = , where ( ) is a permutation 
on ui (i=1,2, ,n) such that u(j) being the jth largest of ui

(i= n).

Example 3.1 Consider the following collection of two
tuples:  

1 1, 0.5,([0.3,0.6],[0.2,0.4])u ,

2 2, 0.3,([0.2,0.5],[0.3,0.4])u ,

3 3, 0.6,([0.5,0.7],[0.1,0.3])u .
Since u3>u1>u2, we get (1) 3 , (2) 1 and (3) 2 .

Assume that the fuzzy measure on IVIFS { }i i N ( N

={1,2,3}) is defined by 
1 2 3 1 2( ) 0, ( ) 0.3, ( ) ( ) 0.2, ( , )

2 3( , ) 0.7, 1 3( , ) 0.6, 1 2 3( , , ) 1,

and the fuzzy measure on ordered set N ={1,2,3} is given 
as

( ) 0, (1) (2) 0.2, (3) 0.4, (1,2) 0.6,
(1,3) (2,3) 0.7, (1,2,3) 1.

Then, we get the Shapley values of IVIFVs{ }i i N as follows: 

1 2 3
( , )= ( , )=0.28 ( , )=0.43a a av v v ,

and the generalized Shapley values of the ordered positions 
are obtained by 

{1,2} 2( , )=1, ( , )=0.6, ( , )=0.28N N N N . 

In the following, we present two hybrid aggregation 
operators, which can deal with the situations as given in 
Example 3.1.  

Definition 3.1 An IGS-IVIFHCAA operator of dimension n
is a mapping IGS-IVIFHCAA: n defined on the set of 
second arguments of two tuples 1 1 2 2, , , ,...,u u

,n nu with a set of order-inducing variables ui (i=1,2, ,
denoted by

, 1 1 2 2IGS-IVIFHCAA , , , ,..., ,n nu u u
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( ) ( 1) ( )

( ) ( 1) ( )

( )1

1

( , ) ( , ) ( , )
,

( , ) ( , ) ( , )

j j j

j j j

n

A A a j
j

n

A A aj

N N v

N N v
      (4)

where the notations as given above.

Theorem 3.2 Let [ , ],[ , ]i i i i ia b c d (i n) be a 
collection of IVIFVs in , then their aggregated value by 
using the IGS-IVIFHCAA operator is also an IVIFV, 
denoted by 

, 1 1 2 2IGS-IVIFHCAA , , , ,..., ,n nu u u

( ) ( 1) ( )

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( )1
1 (1 ) ,

A A aj j j

n
A A aj j jj

N N v

n N N v

jj
a

( ) ( 1) ( )

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( )1
1 (1 )

A A aj j j

n
A A aj j jj

N N v

n N N v

jj
b , 

( ) ( 1) ( )

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( )1
,

A A aj j j

n
A A aj j jj

N N v

n N N v

jj
c

( ) ( 1) ( )

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( )1

A A aj j j

n
A A aj j jj

N N v

n N N v

jj
d .         (5) 

Proof. The first result follows quickly from Definition 2.4. 
Below we prove Eq.(5) by using mathematical induction on 
n. 
(i) When 2n , from Theorem 3.1 and Properties 3.1 and 
3.2, we get 

( ) ( 1) ( )

( ) ( 1) ( )1

( , ) ( , ) ( , )
0

( , ) ( , ) ( , )
j j j

j j j

A A a

n

A A aj

N N v

N N v
. 

By Definition 2.5, we have 

( ) ( 1) ( )

( ) ( 1) ( )

( )2

1

( , ) ( , ) ( , )

( , ) ( , ) ( , )
j j j

j j j

A A a

j

A A aj

N N v

N N v

( ) ( 1) ( )
2

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( )1 (1 ) ,

A A aj j j

A A aj j jj

N N v

N N v

ja

( ) ( 1) ( )
2

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( )1 (1 ) ,

A A aj j j

A A aj j jj

N N v

N N v

jb

( ) ( 1) ( )
2

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( ) ,

A A aj j j

A A aj j jj

N N v

N N v

jc

( ) ( 1) ( )
2

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( )

A A aj j j

A A aj j jj

N N v

N N v

jd

for j=1,2. 
Thus,  

, 1 1 2 2IGS-IVIFHCAA , , ,u u

(1) (2) (1)

( ) ( 1) ( )

(1)

2

1

( , ) ( , ) ( , )

( , ) ( , ) ( , )
j j j

A A a

A A aj

N N v

N N v

(2) (3) (2)

( ) ( 1) ( )

(2)

2

1

( , ) ( , ) ( , )

( , ) ( , ) ( , )
j j j

A A a

A A aj

N N v

N N v

(1) (2) (1)
2

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

(1)1 (1 )

A A a

A A aj j jj

N N v

N N v
a

(2) (3) (2)
2

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

(2)(1 ) ,

A A a

A A aj j jj

N N v

N N v
a

(1) (2) (1)
2

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

(1)1 (1 )

A A a

A A aj j jj

N N v

N N v
b

(2) (3) (2)
2

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

(2)(1 ) ,

A A a

A A aj j jj

N N v

N N v
b
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(1) (2) (1) (2) (3) (2)
2 2

( ) ( 1) ( ) ( ) ( 1) ( )1 1

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

(1) (2) ,

A A a A A a

A A a A A aj j j j j jj j

N N v N N v

N N v N N v
c c

(1) (2) (1) (2) (3) (2)
2 2

( ) ( 1) ( ) ( ) ( 1) ( )1 1

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

(1) (2)

A A a A A a

A A a A A aj j j j j jj j

N N v N N v

N N v N N v
d d

( ) ( 1) ( )
2

( ) ( 1) ( )1

( , ) ( , ) ( , )

2 ( , ) ( , ) ( , )

( )1
1 (1 ) ,

A A aj j j

A A aj j jj

N N v

N N v

jj
a

( ) ( 1) ( )
2

( ) ( 1) ( )1

( , ) ( , ) ( , )

2 ( , ) ( , ) ( , )

( )1
1 (1 ) ,

A A aj j j

A A aj j jj

N N v

N N v

jj
b

( ) ( 1) ( )
2

( ) ( 1) ( )1

( , ) ( , ) ( , )

2 ( , ) ( , ) ( , )

( )1
,

A A aj j j

A A aj j jj

N N v

N N v

jj
c

( ) ( 1) ( )
2

( ) ( 1) ( )1

( , ) ( , ) ( , )

2 ( , ) ( , ) ( , )

( )1

A A aj j j

A A aj j jj

N N v

N N v

jj
d .

(ii) Hypothesis, Eq.(5) holds for n = k ( 2k ), namely,

, 1 1 2 2IGS-IVIFHCAA , , , ,..., ,k ku u u

( ) ( 1) ( )

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( )1
1 (1 ) ,

A A aj j j

k
A A aj j jj

N N v

k N N v

jj
a

( ) ( 1) ( )

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( )1
1 (1 ) ,

A A aj j j

k
A A aj j jj

N N v

k N N v

jj
b

( ) ( 1) ( )

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( )1
,

A A aj j j

k
A A aj j jj

N N v

k N N v

jj
c

( ) ( 1) ( )

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( )1

A A aj j j

k
A A aj j jj

N N v

k N N v

jj
d .

When n = k + 1, from Proposition 3.1, we get 
, 1 1 2 2 1 1IGS-IVIFHCAA , , , ,..., ,k ku u u

( ) ( 1) ( )
1

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( )1
1 (1 ) ,

A A aj j j

k
A A aj j jj

N N v

k N N v

jj
a

( ) ( 1) ( )
1

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( )1
1 (1 )

A A aj j j

k
A A aj j jj

N N v

k N N v

jj
b , 

( ) ( 1) ( )
1

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( )1
,

A A aj j j

k
A A aj j jj

N N v

k N N v

jj
c

( ) ( 1) ( )
1

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( )1

A A aj j j

k
A A aj j jj

N N v

k N N v

jj
d

( 1) ( 2) ( 1)
1

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( 1)1 (1 ) ,

A A ak k k

k
A A aj j jj

N N v

N N v

ka

( 1) ( 2) ( 1)
1

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( 1)1 (1 ) ,

A A ak k k

k
A A aj j jj

N N v

N N v

kb
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( 1) ( 2) ( 1)
1

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( 1) ,

A A ak k k

k
A A aj j jj

N N v

N N v

kc

( 1) ( 2) ( 1)
1

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( 1)

A A ak k k

k
A A aj j jj

N N v

N N v

kd

( ) ( 1) ( )
1

( ) ( 1) ( )1

( , ) ( , ) ( , )

1 ( , ) ( , ) ( , )

( )1
1 (1 ) ,

A A aj j j

k
A A aj j jj

N N v

k N N v

jj
a   

( ) ( 1) ( )
1

( ) ( 1) ( )1

( , ) ( , ) ( , )

1 ( , ) ( , ) ( , )

( )1
1 (1 ) ,

A A aj j j

k
A A aj j jj

N N v

k N N v

jj
b

( ) ( 1) ( )
1

( ) ( 1) ( )1

( , ) ( , ) ( , )

1 ( , ) ( , ) ( , )

( )1
,

A A aj j j

k
A A aj j jj

N N v

k N N v

jj
c

( ) ( 1) ( )
1

( ) ( 1) ( )1

( , ) ( , ) ( , )

1 ( , ) ( , ) ( , )

( )1

A A aj j j

k
A A aj j jj

N N v

k N N v

jj
d . 

That is, for n=k+1, Eq.(5) still holds, and the result is 
obtained.   

Remark 3.1 If and v are both additive, then the 
IGS-IVIFHCAA operator reduces to be the induced 

 interval-valued intuitionistic fuzzy hybrid 
weighted arithmetical averaging (I- IVIFHWAA) operator 

, 1 1 2 2I-IVIFHWAA , , , ,..., ,w n nu u u

( ) ( )1

( )1

n

j j j
j

n

j jj

w

w
, 

where ( ) ii w and ( )i iv (i n). 
Furthermore, when ui = i and each IVIFV i (i n)

degenerates to be a real number, then IGS-IVIFHCAA

operator reduces to be the HWAA operator defined by Lin 
and Jiang [23].

Remark 3.2 When ui = ( , )
ia iv (i n), the IGS-

IVIFHCAA operator reduces to be the generalized Shapley 
-valued intuitionistic fuzzy hybrid

Choquet arithmetical averaging (GS-IVIFHCAA) operator 
, 1 2GS-IVIFHCAA , ,..., n

( ) ( 1) ( )

( ) ( 1) ( )

( )1

1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

j j j

j j j

n

A A a j
j

n

A A aj

N N v

N N v
, 

where
( ) ( )( , )

ja jv is the jth largest of ( , )
ia iv (i=1,2, , 

n).  

Remark 3.3 If each IVIFV [ , ],[ , ]i i i i ia b c d (i n)
degenerates to be an  intuitionistic fuzzy value, 
namely, ( , )i i ia c (i n), then the IGS-IVIFHCAA
operator reduces to be the induced generalized Shapley 

intuitionistic fuzzy hybrid Choquet arithmetical 
averaging (IGS-IFHCAA) operator, denoted by

, 1 1 2 2IGS-IFHCAA , , , ,..., ,n nu u u

( ) ( 1) ( )

( ) ( 1) ( )

( )1

1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

j j j

j j j

n

A A a j
j

n

A A aj

N N v

N N v

( ) ( 1) ( )

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( )1
1 (1 ) ,

A A aj j j

n
A A aj j jj

N N v

n N N v

jj
a

( ) ( 1) ( )

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( )1

A A aj j j

n
A A aj j jj

N N v

n N N v

jj
c . 

Remark 3.4 If ( , )=1
ia v n (i=1,2 n), then the IGS-

IVIFHCAA operator degenerates to be the induced 
generalized Shapley -valued 
intuitionistic fuzzy Choquet arithmetical averaging (IGS-
IVIFCAA) operator
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1 1 2 2IGS-IVIFCAA , , , ,..., ,n nu u u

( ) ( 1) ( )1
( , ) ( , )

j j

n

A A j
j

N N . 

Remark 3.5 If
( ) ( 1)

( , ) ( , )=1
i iA AN N n (i=1,2 n),

then the IGS-IVIFHCAA operator degenerates to be the 
induced -valued intuitionistic fuzzy 
Shapley averaging (I-IVIFSA) operator 

1 1 2 2I-IVIFSA , , , ,..., ,n nu u u

( ) ( )1
( , )

j

n

a j
j

v . 

Furthermore, if ui = i , then we get the 
interval-valued intuitionistic fuzzy Shapley averaging 
(IVIFSA) operator

1 2 1
IVIFSA , ,..., ( , )

i

n

n a i
i

v , 

which can be seen as an extension of the Shapley 
value-based intuitionistic fuzzy aggregation 

(SIFA) operator given by Zhang et al. [40].

Definition 3.2 An IGS-IVIFHCGM operator of dimension n
is a mapping IGS-IVIFHCGM: n defined on the set 
of second arguments of two tuples 1 1 2 2, , , ,...,u u

,n nu with a set of order-inducing variables ui (i=1,2, ,
n), denoted by

, 1 1 2 2IGS-IVIFHCGM , , , ,..., ,n nu u u

( ) ( 1) ( )

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( )1

A A aj j j

n
A A aj j jj

N N v

n N N v

j
j

,             (6) 

where the notations as given in Definition 3.1.

Theorem 3.3 Let [ , ],[ , ]i i i i ia b c d (i n) be a 
collection of IVIFVs in , then their aggregated value by 
using the IGS-IVIFHCGM operator is also an IVIFV, 
denoted by 

, 1 1 2 2IGS-IVIFHCGM , , , ,..., ,n nu u u

( ) ( 1) ( )

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( )1
,

A A aj j j

n
A A aj j jj

N N v

n N N v

jj
a

( ) ( 1) ( )

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( )1

A A aj j j

n
A A aj j jj

N N v

n N N v

jj
b , 

( ) ( 1) ( )

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( )1
1 (1 ) ,

A A aj j j

n
A A aj j jj

N N v

n N N v

jj
c

( ) ( 1) ( )

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( )1
1 (1 )

A A aj j j

n
A A aj j jj

N N v

n N N v

jj
d . 

Proof. The proof of Theorem 3.3 is similar to that of 
Theorem 3.2.

Remark 3.6 If and v are both additive, then the IGS-
IVIFHCGM operator reduces to be the induced 
interval-valued intuitionistic fuzzy hybrid weighted 
geometric mean (I-IVIFHWGM) operator 

, 1 1 2 2I-IVIFHWGM , , , ,..., ,v n nu u u
( )

( )1
( )1

j j

n
j jj

w

n w

j
j

, 

where ( ) ii w and ( )i iv (i n). 

Remark 3.7 If ui=
( , )ai
v

i (i n), the IGS-IVIFHCGM
operator reduces to be the generalized Shapley 
interval-valued intuitionistic fuzzy hybrid Choquet
geometric mean (GS-IVIFHCGM) operator 

, 1 2GS-IVIFHCGM , ,..., n

( ) ( 1) ( )

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( )1

A A aj j j

n
A A aj j jj

N N v

n N N v

j
j

, 

where ( ) ( , )
( )

a j
v

j is the jth largest of ( , )ai
v

i (i n).

Remark 3.8 If each IVIFV [ , ],[ , ]i i i i ia b c d (i n)
degenerates to be an intuitionistic fuzzy value, 
namely, ( , )i i ia c (i n), then the IGS-IVIFHCGM
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operator reduces to be the induced generalized Shapley 
intuitionistic fuzzy hybrid Choquet geometric 

mean (IGS-IFHCGM) operator, denoted by
, 1 1 2 2IGS-IFHCGM , , , ,..., ,n nu u u

( ) ( 1) ( )

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( )1

A A aj j j

n
A A aj j jj

N N v

n N N v

j
j

( ) ( 1) ( )

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( )1
,

A A aj j j

n
A A aj j jj

N N v

n N N v

jj
a

( ) ( 1) ( )

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( )1
1 (1 )

A A aj j j

n
A A aj j jj

N N v

n N N v

jj
c . 

Remark 3.9 If ( , )=1
ia v n (i=1,2 n), then the IGS-

IVIFHCGM operator degenerates to be the induced 
generalized Shapley -valued 
intuitionistic fuzzy Choquet geometric mean (IGS-
IVIFCGM) operator

1 1 2 2IGS-IVIFCGM , , , ,..., ,n nu u u

( ) ( 1)( , ) ( , )

( )1

A Aj j
n N N

j
j

. 

Remark 3.10 If
( ) ( 1)

( , ) ( , )=1
i iA AN N n (i=1,2 n), 

then the IGS-IVIFHCGM operator degenerates to be the 
induced Shapley -valued intuitionistic 
fuzzy geometric mean (IS-IVIFGM) operator 

( ) ( , )
, 1 1 2 2 ( )1

IS-IVIFGM , , , ,..., , .a j
n v

n n j
j

u u u

Furthermore, if ui = i , then we get the Shapley 
interval-valued intuitionistic fuzzy geometric (S-IVIFG) 
operator

( , )
, 1 2 1

S-IVIFG , ,..., ai

n
v

n i
i

.

3.2 Some desirable properties 

Proposition 3.3 (Commutativity) Let ([ , ],[ , ])i i i i ia b c d

(i n) be a collection of IVIFVs in , and 'i
([ ' , ' ],[ ' , ' ])i i i ia b c d (i n) be a permutation of i . Then,  

, 1 1IGS-IVIFHCAA , ,..., ,n nu u

, 1 1IGS-IVIFHCAA , ' ,..., , 'n nu u , 

, 1 1IGS-IVIFHCGM , ,..., ,n nu u

, 1 1IGS-IVIFHCGM , ' ,..., , 'n nu u . 

Proof. From Definitions 3.1 and 3.2, it is not difficult to get 
the conclusion.  

Proposition 3.4 (Monotonicity) Let ([ , ],[ , ])i i i i ia b c d and

([ , ],[ , ])i i i i ie f g h (i n) be two collections of 

IVIFVs in . If i i for each i n, and v( S ) = v(T )

for all S andT with {j| j S , j n}={j| j

T , j n}, where v is a fuzzy measure on 1,...,{ }j j n

and 1,...,{ }j j n .  Then,  

, 1 1IGS-IVIFHCAA , ,..., ,n nu u

, 1 1IGS-IVIFHCAA , ,..., ,n nu u , (7)

, 1 1IGS-IVIFHCGM , ,..., ,n nu u

, 1 1IGS-IVIFHCGM , ,..., ,n nu u .  (8) 

Proof. For Eq.(7): Let
, 1 1IGS-IVIFHCAA , ,..., ,n nu u

( ) ( 1) ( )

( ) ( 1) ( )

( )1

1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

j j j

j j j

n

A A a j
j

n

A A aj

N N v

N N v

and  

, 1 1IGS-IVIFHCAA , ,..., ,n nu u

( ) ( 1) ( )

( ) ( 1) ( )

( )1

1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

j j j

j j j

n

A A j
j

n

A Aj

N N v

N N v
.

From v( S ) = v(T ) for all S andT with {j| j S ,

j n}={j| j T , j n}, we get ( , )=
i

v
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( , ) 0
i

v for all i n. Since i i for all i n,

we obtain 

( ) ( 1) ( )

( ) ( 1) ( )

( )

1

( , ) ( , ) ( , )

( , ) ( , ) ( , )
j j j

j j j

A A a j

n

A A aj

N N v

N N v

( ) ( 1) ( )

( ) ( 1) ( )

( )

1

( , ) ( , ) ( , )

( , ) ( , ) ( , )
j j j

j j j

A A j

n

A Aj

N N v

N N v

for all j n. 
Thus,  

, 1 1IGS-IVIFHCAA , ,..., ,n nu u

, 1 1IGS-IVIFHCAA , ,..., ,n nu u .

Similarly, one

Proposition 3.5 (Idempotency) Let ([ , ],[ , ])i i i i ia b c d

(i n) be a collection of IVIFVs in . If i

([ , ],[ , ])e f g h for all i n, then  

, 1 1IGS-IVIFHCAA , ,..., ,n nu u , (9)
                

, 1 1IGS-IVIFHCGM , ,..., ,n nu u . (10)                 

Proof. For Eq.(9): From Theorem 3.2, we have 
, 1 1IGS-IVIFHCAA , ,..., ,n nu u

( ) ( 1) ( )

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( )1
1 (1 ) ,

A A aj j j

n
A A aj j jj

N N v

n N N v

jj
a

( ) ( 1) ( )

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( )1
1 (1 ) ,

A A aj j j

n
A A aj j jj

N N v

n N N v

jj
b

( ) ( 1) ( )

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( )1
,

A A aj j j

n
A A aj j jj

N N v

n N N v

jj
c

( ) ( 1) ( )

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( )1

A A aj j j

n
A A aj j jj

N N v

n N N v

jj
d

( ) ( 1) ( )

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

1
1 (1 ) ,

A A aj j j

n
A A aj j jj

N N v

n N N v

j
a

( ) ( 1) ( )

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

1
1 (1 ) ,

A A aj j j

n
A A aj j jj

N N v

n N N v

j
b

( ) ( 1) ( )

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

1
,

A A aj j j

n
A A aj j jj

N N v

n N N v

j
c

( ) ( 1) ( )

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

1

A A aj j j

n
A A aj j jj

N N v

n N N v

j
d

( ) ( 1) ( )
1

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )
1 (1 ) ,

A A an j j j

nj
A A aj j jj

N N v

N N v
a

( ) ( 1) ( )
1

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )
1 (1 )

A A an j j j

nj
A A aj j jj

N N v

N N v
b , 

( ) ( 1) ( )
1

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )
,

A A an j j j

nj
A A aj j jj

N N v

N N v
c

( ) ( 1) ( )
1

( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

A A an j j j

nj
A A aj j jj

N N v

N N v
d

, , ,a b c d
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.
From Theorem 3.3 and the proof of Eq.(9), it is not difficult 
to get Eq.(10).         

Proposition 3.6 (Boundary) Let ([ , ],[ , ])i i i i ia b c d (i=1,2,
n) be a collection of IVIFVs in , then  

, 1 1IGS-IVIFHCAA , ,..., ,n nu u ,(11) 
             

, 1 1IGS-IVIFHCGM , ,..., ,n nu u ,(12)               
where 

[min ,min ],[max ,max ]j j j jj j j j
a b c d

and

[max ,max ],[min ,min ]j j j jj jj j
a b c d . 

Proof. From Proposition 3.4, we have

, 1IGS-IVIFHCAA , ,..., ,nu u

, 1 1IGS-IVIFHCAA , ,..., ,n nu u

, 1IGS-IVIFHCAA , ,..., ,nu u

and

, 1IGS-IVIFHCGM , ,..., ,nu u

, 1 1IGS-IVIFHCGM , ,..., ,n nu u

, 1IGS-IVIFHCGM , ,..., ,nu u .
By Proposition 3.5, we get

, 1IGS-IVIFHCAA , ,..., ,nu u

, 1=IGS-IVIFHCGM , ,..., ,nu u

and

, 1IGS-IVIFHCAA , ,..., ,nu u

, 1IGS-IVIFHCGM , ,..., ,nu u

.
From above, the conclusion is obtained.      

Example 3.2 In Example 3.1, if the IGS-IVIFHCAA 
operator is applied to calculate the comprehensive interval- 
valued intuitionistic fuzzy value, then it has 

, 1 1 2 2 3 3IGS-IVIFHCAA , , , , ,u u u

0.43 0.4 0.28 0.32
0.43 0.4 0.28 0.32 0.28 0.28 0.43 0.4 0.28 0.32 0.28 0.281 (1 0.5) (1 0.3)

0.28 0.28
0.43 0.4 0.28 0.32 0.28 0.28(1 0.2) ,

0.43 0.4
0.43 0.4 0.28 0.32 0.28 0.281 (1 0.7)

0.28 0.32 0.28 0.28
0.43 0.4 0.28 0.32 0.28 0.28 0.43 0.4 0.28 0.32 0.28 0.28(1 0.6) (1 0.5) , 

0.43 0.4 0.28 0.32
0.43 0.4 0.28 0.32 0.28 0.28 0.43 0.4 0.28 0.32 0.28 0.280.1 0.2

0.28 0.28
0.43 0.4 0.28 0.32 0.28 0.280.3 ,

0.43 0.4
0.43 0.4 0.28 0.32 0.28 0.280.3

0.28 0.32 0.28 0.28
0.43 0.4 0.28 0.32 0.28 0.28 0.43 0.4 0.28 0.32 0.28 0.280.4 0.4

[0.39,0.64],[0.16,0.35] . 
If the IGS-IVIFHCGM operator is applied to calculate the 
comprehensive interval-valued intuitionistic fuzzy value, 
then it has 

, 1 1 2 2 3 3IGS-IVIFHCGM , , , , ,u u u
0.43 0.4 0.28 0.32

0.43 0.4 0.28 0.32 0.28 0.28 0.43 0.4 0.28 0.32 0.28 0.280.5 0.3

0.28 0.28
0.43 0.4 0.28 0.32 0.28 0.280.2 ,

0.43 0.4
0.43 0.4 0.28 0.32 0.28 0.280.7

0.28 0.32 0.28 0.28
0.43 0.4 0.28 0.32 0.28 0.28 0.43 0.4 0.28 0.32 0.28 0.280.6 0.5 ,

0.43 0.4 0.28 0.32
0.43 0.4 0.28 0.32 0.28 0.28 0.43 0.4 0.28 0.32 0.28 0.281 (1 0.1) 1 (1 0.2)

0.28 0.28
0.43 0.4 0.28 0.32 0.28 0.28(1 0.3) ,

0.43 0.4
0.43 0.4 0.28 0.32 0.28 0.281 (1 0.3)

0.28 0.32 0.28 0.28
0.43 0.4 0.28 0.32 0.28 0.28 0.43 0.4 0.28 0.32 0.28 0.28(1 0.4) (1 0.4)

[0.35,0.62],[0.18,0.35] . 
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4. An approach to -valued 
intuitionistic fuzzy multi-attribute decision making 

4.1 A special case of the IGS-IVIFHCAA and IGS-
IVIFHCGM operators

From Definition 2.6, we know the fuzzy measure is defined 
on the power set, which makes the problem exponentially 
complex. Thus, it is not easy to get the fuzzy measure of 
each combination in a set when it is large. The fuzzy 
measure proposed by Seguno [47] seems to well deal with 
this issue, which is expressed by

( ) ( ) ( ) ( ) ( )g A B g A g B g A g B ,
where 1, and ,A B N with A B .

It is apparent that when 0 , then g is an additive 
measure, which means there is no interaction between 
coalitions A and B. If 0 , then g is called a superadditive 
measure, which reflects there exists complementary 
interaction between coalitions A and B. If 1 0 ,
then g is said to be a subadditive measure, which shows 
there exists redundancy interaction between coalitions A and 
B.

For finite set N, the fuzzy measure g can be 
equivalently expressed by

1 [1 ( )] 1 if 0
( )

( ) if 0
i A

i A

g i
g A

g i
.     (14)                 

From ( ) 1N , we know is determined by
[1 ( )] 1

i N
g i . So when each ( )g i is given, we can 

get the value of . From Eq.(14), for the set N with n
elements we only need n values to get the fuzzy measure of
each subset in N. Furthermore, if

1
( ) 1n

i
g i , then 0 .

Based on the fuzzy measure, we further define the 
induced generalized Shapley -valued 
intuitionistic fuzzy hybrid Choquet arithmetical averaging 
(IG S- IVIFHCAA) operator and the induced generalized 

Shapley -valued intuitionistic fuzzy 
hybrid Choquet geometric mean (IG S-IVIFHCGM) 
operator as follows:
The IG S-IVIFHCAA operator 

, 1 1IG S-IVIFHCAA , ,..., ,n nu u

( ) ( 1) ( )

( ) ( 1) ( )

' ( )1

'1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

j j j

j j j

n

A A a j
j

n

A A aj

g N g N g

g N g N g
, 

and the IG S-IVIFHCGM operator 
, 1 1IG S-IVIFHCGM , ,..., ,n nu u

'( ) ( 1) ( )

'( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( )1

A A aj j j

n
A A aj j jj

g N g N g

n g N g N g

j
j

, 

where ( ) ( , )A j g N is the generalized Shapley value w.r.t. the
fuzzy measure g on ordered set N n} for A(j) =

{j, ,n} with A(n+1) = , and '( , )
ia g is the Shapley value 

w.r.t. the fuzzy measure 'g on { }i i N for i (i=
n).  

4.2 The models for the optimal fuzzy measures 

Now, consider a multi-attribute decision making problem 
under -valued intuitionistic fuzzy 
environment. Let A = {a1,a2, ,am} be the set of alternatives, 
and C={c1,c2, cn} be the set of attributes. Assume 
that [ , ]ij ija b and [ , ]ij ijc d are the interval degrees of 
membership and non-membership of the alternative ai w.r.t. 
the criterion cj, respectively, where [ , ] [0,1]ij ija b and 
[ , ] [0,1]ij ijc d with 1ij ijb d . In other words, the 
evaluation of the alternative ai w.r.t. the attribute cj is an 
IVIFV [ , ],[ , ]ij ij ij ij ija b c d (i m; j n). By 

ij m n
A , we denote the -valued 

intuitionistic fuzzy decision matrix. If all criteria cj

(j=1,2, ,n) are benefits (i.e., the larger, the greater 
preference), then the criteria values do not need 
normalization. Otherwise, we normalize the IVIFV decision
matrix ij m n

A into ij m n
R r , where  

for benefit attribute 
( ) for cost attribute 

ij j
Cij

ij j

c
r

c
with ([ , ],[ , ])ij ij ij ij ijr e f g h

(i=1,2, ,m; j=1, 2, ,n) (see [15]). 
Let 1 2, ,..., nR r r r and 1 2, ,..., nR r r r respectively
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denote the positive and negative ideal vectors, where 
[max ,max ],[min ,min ]j ij ij ij iji ii i

r e f g h , 

[min ,min ],[max ,max ]j ij ij ij iji i i i
r e f g h

for all j n.
Let

,ij
ij

ij ij

d
d

d d
              (15)

where

1 11 1
| max | | max | | min | | min |

,
4

ij ij ij ij ij ij ij iji m i mi m i m
ij

e e f f g g h h
d

1 1 1 1
| min | | min | | max | | max |

.
4

ij ij ij ij ij ij ij iji m i m i m i m
ij

e e f f g g h h
d

Since all alternatives are non inferior, we build the 
following model for the optimal fuzzy measure on 
attribute set C.

'
1 1

min ( )
m n

ij j
i j

d g c

        
'

' '

' '

( ) 1
. . ( ) ( ) , . . ,

( ) , ( ) 0,
jj c j j

g C

s t g S g T S T C s t S T

g c W g c c C

                   

which is equivalent to the following model

'
1 1

min ( )
m n

ij j
i j

d g c

' '. . ( ) , ( ) 0, 1,2,..., ,
jj c js t g c W g c j n (16)                

where ' ( )jg c is the fuzzy measure of the attribute cj, and

jcW is the range of the attribute cj.  

Solve the model (16), we get the optimal fuzzy
measure of each element in C. By Eq.(14), we get the 

fuzzy measure of each subset in C. 
For each j n, calculate 

1 1
( , ) | | | |m m

ij j ij ij ij iji i
d r z e e m f f m

            
1 1

| | | |m m

ij ij ij iji i
g g m h h m (17)

for all i m, where

1 1 1 1, , ,
m m m m

ij ij ij iji i i i
j

e f g h
z

m m m m
.

Reorder ( , )ij jd r z in ascending order for each i m,
we get (1) (2) ( )( , ) ( , ) ... ( , )i i i i i n id r z d r z d r z , where ( ) is a 
permutation on N. 

Based on the mean deviation method, we give the 
following model for the optimal fuzzy measure on 
ordered set N={ n}.

( )
1 1

max ( , ) ( )
m n

i j i
i j

d r z g j

( ) 1
. . ( ) ( ) , . .

( ) , ( ) 0 ,j

g N

s t g S g T S T N s t S T

g j W g j j N

                

which is equivalent to the following model

( )
1 1

max ( , ) ( )
m n

i j i
i j

d r z g j

. . ( ) , ( ) 0, 1,2,..., ,js t g j W g j j n (18)         
where ( )g j is the fuzzy measure of the jth index, and jW is
the range of the jth position.  

Solve the model (18), we get the optimal fuzzy
measure of each element in N. By Eq.(14), we get the 

fuzzy measure of each subset in N. 

4.3 A new method to multi-attribute decision making

Based on above analysis, we develop an approach to 
multi-attribute decision making under - 
valued intuitionistic fuzzy environment. The main decision 
procedure can be described as follows:  

Step 1: If all attributes cj (j=1,2, ,n) are benefits (i.e., the 
larger, the greater preference), then the attribute
values do not need normalization. Otherwise, we 
normalize the -valued
intuitionistic fuzzy decision matrix ij m n

A into

ij m n
R r , where

for benefit attribute 
( ) for cost attribute 

ij j
Cij

ij j

c
r

c

with [ , ],[ , ]ij ij ij ij ijc d a b (i=1,2, ,m;j=1,2, ,n) 
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     (see [53, 54]).
Step 2: Solve the model (16), we get the optimal fuzzy 

measure on attribute set C, and calculate the
attribute Shapley values.

Step 3: Solve the model (18), we obtain the optimal fuzzy 
measure on ordered set N.

Step 4: According to order-inducing variables ui (i= n),
calculate the generalized Shapley values.

Step 5: Apply the IG S-IVIFHCAA operator 
, 1 1 2 2=IG S-IVIFHCAA , , , ,..., ,i i i n inr u r u r u r        

( ) ( 1) ( )

( ) ( 1) ( )

' ( )1

'1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

j j j

j j j

n

A A c i j
j

n

A A cj

g N g N g C r

g N g N g C
, 

       or the IG S-IVIFHCGM operator 
, 1 1 2 2=IG S-IVIFHCGM , , , ,..., ,i i i n inr u r u r u r

'( ) ( 1) ( )

'( ) ( 1) ( )1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( )1

A A cj j j

n
A A cj j jj

g N g N g C

n g N g N g C

i j
j

r

to get the comprehensive attribute values
([ , ],[ , ])i i i i ir u v x y    i m.

Step 6: According to the comprehensive attribute value
([ , ],[ , ])i i i i ir u v x y of the alternative ai, calculate 

the score  

S( ir )=
2

i i i iu v x y

and the accuracy degree  

H( ir )=
2

i i i iu v x y

to rank the alternative ai (i=1,2, ,m), then to 
select the best one. 

Step 7: End. 

5. A practical numerical example

Suppose there is an investment company, which wants to 
invest a sum of money in the best option (adapted from Ref. 
[55]). There is a panel with four possible alternatives to 
invest the money: (1) a1 is a car company; (2) a2 is a food 
company; (3) a3 is a computer company; (4) a4 is an arms 
company. The investment company must take a decision 
according to the following three attributes: (1) c1 is the risk 
analysis; (2) c2 is the growth analysis; (3) c3 is the 

environmental impact analysis. The four possible 
alternatives are to be evaluated using the 
interval-valued intuitionistic fuzzy information by the expert 
under the above three criteria, as listed in the following 
decision matrix 

([0.4,0.5],[0.3,0.4]) ([0.4,0.6],[0.2,0.4]) ([0.1,0.3],[0.5,0.6])
([0.6,0.7],[0.2,0.3]) ([0.6,0.7],[0.2,0.3]) ([0.4,0.7],[0.1,0.2])
([0.3,0.6],[0.3,0.4]) ([0.5,0.6],[0.3,0.4]) ([0.5,0.6],[0.1,0.3])
([0.7,0.

A

8],[0.1,0.2]) ([0.6,0.7],[0.1,0.3]) ([0.3,0.4],[0.1,0.2])

Each element of this matrix is an IVIFS, representing the 

not an excellent investment as per an attribute. For instance, 
the top-left cell, ([0.4, 0.5], [0.3, 0.4]), reflects the exp
belief that alternative a1 is an excellent investment from a 
risk perspective (c1) with a margin of 40 50% and a1 is not 
an excellent choice given its risk profile (c1) with a chance 
between 30% and 40%. Assume that the importance of each 
attribute is defined by

1
[0.25,0.4]cW ,

2
[0.35,0.45]cW and 

3
[0.3,0.5]cW , and the importance of each ordered position 

is given as 1 [0.2,0.3]W , 2 [0.4,0.6]W and 3 [0.2,0.3]W .
In the following, we can utilize the proposed procedure to 
get the most desirable investment company(s). 
Step 1: Since c2 (the growth analysis) is benefit attribute, 
and c1 (the risk analysis) and c3 (the environmental impact 
analysis) are cost attributes, we need to normalize the given 
matrix, as listed in the following.

([0.3,0.4],[0.4,0.5]) ([0.4,0.6],[0.2,0.4]) ([0.5,0.6],[0.1,0.3])
([0.2,0.3],[0.6,0.7]) ([0.6,0.7],[0.2,0.3]) ([0.1,0.2],[0.4,0.7])
([0.3,0.4],[0.3,0.6]) ([0.5,0.6],[0.3,0.4]) ([0.1,0.3],[0.5,0.6])
([0.1,0.

R .

2],[0.7,0.8]) ([0.6,0.7],[0.1,0.3]) ([0.1,0.2],[0.3,0.4])

Step 2: From R , we get  
([0.3,0.4],[0.3,0.5]),([0.6,0.7],[0.1,0.3]),R

([0.5,0.6],[0.1,0.3]) , 

([0.1,0.2],[0.7,0.8]),([0.4,0.6],[0.3,0.4]),R

([0.1,0.2],[0.5,0.7]) , 

and the distance matrices 4 3( )ijD d and 4 3( )ijD d as
follows: 
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0.025 0.125 0
0.175 0.025 0.375
0.025 0.125 0.35
0.375 0 0.275

D ,

0.35 0.025 0.4
0.1 0.125 0.025

0.25 0.025 0.05
0 0.15 0.125

D . 

From the distance matrices D and D , we obtain the 
following relative distance matrix 

0.067 0.833 0
0.636 0.167 0.938
0.091 0.833 0.875

1 0 0.688

D . 

According to the model (16), we get the following model 
' 1 ' 2 ' 3min1.8 ( ) 1.83 ( ) 2.5 ( )g c g c g c

' 1 ' 2 ' 3. . ( ) [0.25,0.4], ( ) [0.35,0.45], ( ) [0.3,0.5].s t g c g c g c

Solve the above linear programming, we obtain 
' 1 ' 2 ' 3( ) 0.25, ( ) 0.35, ( ) 0.3.g c g c g c

By '[1 ' ( )] 1 '
i

ic C
g c , we get 

we obtain
' 1 2 ' 1 3 ' 2 3( , ) 0.63, ( , ) 0.58, ( , ) 0.69,g c c g c c g c c

' 1 2 3( , , ) 1.g c c c

From Eq.(3), we get the attribute Shapley values  
1 2 3' ' '( , )=0.28, ( , )=0.385, ( , )=0.335.c c cg C g C g C

Step 3: By Eq.(17), we get the distance matrix 
4 3' ( ( , ))ij jD d r z as follows: 

0.4 0.225 1
0.2 0.175 0.5

'
0.4 0.225 0.4
0.6 0.275 0.35

D

According to the model (18), we obtain the following model 
max0.9 (1) 1.35 (2) 2.5 (3)g g g

. . (1) [0.2,0.3], (2) [0.4,0.6], (3) [0.2,0.3].s t g g g

Solve the above linear programming, we have 
(1) 0.3, (2) 0.6, (3) 0.3.g g g

By [1 ( )] 1
i N

g i , we get = 0.471. From Eq.(14), 

we obtain
(1,2) 0.815, (1,3) 0.558, (2,3) 0.815, (1,2,3) 1.g g g g

Step 4: When uj = ( , )ij jd r z (j=1,2,3) for each i=1,2,3,4, from 

Eq.(2), we get
( , )=1N g N , {1,2} {2,3}( , )= ( , ) 0.758g N g N ,

1 3( , )= ( , )=0.241g N g N , 2 ( , )=0.519g N .
Step 5: By the IG S-IVIFHCAA operator, calculate the 
comprehensive attribute values ir (i=1,2,3,4), e.g., i=1,

1 , 1 11 2 12 3 13=IG S-IVIFHCAA , , , , ,r u r u r u r

3

3

{1,2} ' 13

{1,2} '

( , ) ( , ) ( , )

( , ) ( , ) ( , )
N c

N c

g N g N g C r

g N g N g C

2

2

{1,2} 1 ' 12

{1,2} 1 '

( , ) ( , ) ( , )

+ ( , ) ( , ) ( , )
c

c

g N g N g C r

g N g N g C

1

1

1 ' 11

1 '

( , ) ( , ) ( , )
+ ( , ) ( , ) ( , )

c

c

g N g N g C r

g N g N g C

([0.41,0.57],[0.19,0.39]) . 
Similar to the calculation of 1r , we get the comprehensive
attribute values ir (i =2,3,4) as follows: 

2 3=([0.45,0.56],[0.29,0.43]), =([0.39,0.51],[0.34,0.48]),r r

4 =([0.44,0.54],[0.19,0.39]).r

If the IG S-IVIFHCGM operator is used in this example,
then the comprehensive attribute values 'ir (i =1,2,3,4) are 
obtained as follows: 

1 2

3 4

' =([0.4,0.55],[0.22,0.4]), ' =([0.32,0.44],[0.35,0.51]),
' =([0.31,0.47],[0.35,0.5]), ' =([0.28,0.41],[0.31,0.47]).

r r

r r

Step 5: According to the comprehensive attribute values ir

(i=1,2,3,4), we get the following scores 
S( 1r )=0.2, S( 2r )=0.145, S( 3r )=0.04, S( 4r )=0.2, 

and the following accuracy degrees  
H( 1r )=0.78, H( 2r )=0.865, H( 3r )=0.86, H( 4r )=0.78. 

From the comprehensive attribute values 'ir (i=1,2,3,4), we 
obtain the following scores 

S( 1 'r )=0.165, S( 2 'r )= 0.05, 
 S( 3 'r )= 0.035, S( 4 'r )= 0.045. 

Step 6: From S( ir ) and H( ir ) (i=1,2,3,4), we get  

1 4 2 3r r r r . 
By S( 'ir )(i=1,2,3,4), we obtain 1 2 3 4r r r r .
Thus, the car company a1 is the best choice. 
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Based on the Choquet integral, Xu [31] defined the 
following interval-valued intuitionistic fuzzy correlated 
averaging (IVIFCA) operator

1 2 ( ) ( ) ( 1)1
IVIFCA( , ,..., ) ( ) ( )

n

n i i i
i

A A ,  (19)         

and Xu [31] and Tan [33] respectively presented the 
following interval-valued intuitionistic fuzzy geometric 
mean (IVIFGM) operator

1 2IVIFGA( , ,..., )n
( ) ( 1)( ) ( )

( )1

i i
n

A A
i

i
,  (20)

where ( ) indicates a permutation on X such that (1) (2) , 

( ).... n and ( )iA ( ) ( ){ ,..., }i n with ( 1)nA ,  is the 
fuzzy measure on { }i i NA .

Based on the Shapley function, Zhang et al. [40] defined 
the following Shapely value-based intuitionistic fuzzy 
aggregation (SIFA) operator

1 2 1
SIFA( , ,..., ) ( , )

i

n

n i
i

A ,         (21) 

where ( , )
i

A is the Shapley value with respect to the 

fuzzy measure on { }i i NA for IFV i (i=1,2 n). 
Although the IVIFCA and IVIFGM operators can 

reflect the interactions among elements, they only 
consider the correlative characteristics between the
combinations ( )iA and ( 1)iA (i n). As we know, 
when there exist interactions among elements, it is 
obviously unsuitable to only consider these two 
combinations. Furthermore, the SIFA operator neither
considers the importance of their ordered positions, nor does 
it reflect the interactions among them. 

For the comparative convenience, the ranking results w.r.t. 
the different aggregation operators are obtained in Table 1. 

Table 1 Ranking orders w.r.t. the different aggregation operators  

Operator                 Ranking order
The IVIFCA operator
The IVIFGM operator

The SIFA operator
The IG S-IVIFHCAA operator
The IG S-IVIFHCGM operator

1 4 2 3r r r r

1 3 4 2r r r r

1 4 2 3r r r r

1 4 2 3r r r r

1 2 3 4r r r r

From this example, it can be observed that different 
ranking results are yielded by using different aggregation 
operators, and the optimal alternatives maybe also different.
Thus, decision makers can properly select the aggregation 
operators according to the underlying interest and demands 
to each practical problem. 

6. Conclusion  

We have developed two induced hybrid aggregation 
operators under -valued intuitionistic 
fuzzy environment based on the Choquet integral and the 
generalized Shapley function, which do not only globally 
consider the importance of elements and their ordered 
positions, but also overall reflect the correlations among 
them and their ordered positions. Since the fuzzy measure is 
defined on the power set, it makes the problem exponentially 
complex. Thus, it is not easy to get the fuzzy measure of 
each combination in a set when it is large. For this reason,
we further define the IG S-IVIFHCAA and IG S-
IVIFHCGM operators, which greatly simplify the 
complexity of solving a fuzzy measure. If the information 
about the weighting vectors is incompletely known, the 
models for the optimal fuzzy measures on attribute set 
and ordered set are built, respectively. Moreover, an 
approach to -valued intuitionistic fuzzy 
multi- attribute decision making is developed, and a 
financial decision making problem under 
interval-valued intuitionistic fuzzy environment has been 
provided to illustrate our approach. The numerical results 
showed that different optimal alternatives may be yielded by 
using different aggregation operators, and thus, the decision 
maker can properly select the desirable alternative according 
to his interest and the actual needs. 

Acknowledgment 

The authors first gratefully thank the Area Editor Prof. 
Humberto Bustince and two anonymous referees for their 
valuable comments, which have much improved the paper.
This work was supported by the National Natural Science 
Foundation Youth Project of China (No. 71201089), the 
National Natural Science Foundation of China (Nos. 
71071018 and 71271217), the Natural Science Foundation 
Youth Project of Shandong Province, China 
(ZR2012GQ005), and the Specialized Research Fund for the 

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

540



Fanyong Meng et al. 

Doctoral Program of Higher Education (No. 
20111101110036). 

References 

[1] R. R. Yager, On ordered weighted averaging aggregation 
operators in multicriteria decision making, IEEE Tran. 
System, Man Cybernet., 18(1) (1988) 183 190. 

[2] R. R. Yager, On a semantics for neural networks based on 
fuzzy quantifiers, Int. J. Intell. Syst., 7(8) (1992) 765 786. 

[3] D. P. Filev and R. R. Yager, On the issue of obtaining OWA 
operator weightings, Fuzzy Sets Syst., 94(2) (1998) 157 169. 

[4] R. Fullér and P. Majlender, On obtaining minimal variability 
OWA operator weightings, Fuzzy Sets Syst., 124(1) (2001) 
53  57. 

[5] T. Calvo, G. Mayor and R. Mesiar, Aggregation operators: 
New trends and applications (New York, Physica-Verlag, 
2002). 

[6] G. Beliakov, Learning weightings in the generalized OWA 
operators, Fuzzy Optim. Decis. Ma., 4(2) (2005) 119 130. 

[7] B. S. Ahn, The uncertain OWA aggregation with weighting 
functions having a constant level of orness, Int. J. Intell. Syst., 
21(5) (2006) 469 483. 

[8] Z. S. Xu, Induced uncertain linguistic OWA operators 
applied to group decision making, Inform. Fusion, 7(2) (2006)  
231  238. 

[9] Z. S. Xu, Dependent uncertain ordered weighted aggregation 
operators, Inform. Fusion, 9(2) (2008) 310 316. 

[10] Y. M. Wang, Y. Luo and X. W. Liu, Two new models for 
determining OWA operator weightings, Comput. Ind. Eng.,
52(2) (2007) 203 209. 

[11] Y. M. Wang and C. Parkan, A preemptive goal programming 
method for aggregating OWA operator weightings in group 
decision making, Inform. Sci., 177(8) (2007) 1867 1877. 

[12] A. Emrouznejad and G. R Amin, Improving minimax 
disparity model to determine the OWA operator weightings,
Inform. Sci., 180(8) (2010) 1477 1485. 

[13] J. M. Merigo and A. M. Gil-Lafuente, The induced 
generalized OWA operator, Inform. Sci., 179(6) (2009) 729
741. 

[14] Y. J. Xu and H. M. Wang, The induced generalized 
aggregation operators for intuitionistic fuzzy sets and their 
application in group decision making, Appl. Soft Comput.,
12(3) (2012) 1168 1179. 

[15] Z. S. Xu and R. R. Yager, Some geometric aggregation 
operators based on intuitionistic fuzzy sets, Int. J. Gen. Syst ,
35(4) (2006) 417 433. 

[16] R. R. Yager and Z. S. Xu, The continuous ordered weighted 
geometric operator and its application to decision making, 
Fuzzy Sets Syst., 157(10) (2006) 1393 1402. 

[17] J. Wu, J. C. Li, H. Li and W. Q. Duan, The induced 

continuous ordered weighted geometric operators and their 
application in  group decision making, Comput. Ind. Eng.,
56(4) (2009) 1545 1552. 

[18] J. Wu, Q. W. Cao and J. L. Zhang, An ILOWG operator 
based group decision making method and its application to 
evaluate the supplier criteria, Math. Comput. Model., 54(1-2) 
(2011) 19 34. 

[19] G. W. Wei, Some induced geometric aggregation operators 
with intuitionistic fuzzy information and their application to 
group decision making, Appl. Soft Comput., 10(2) (2010) 
423 431. 

[20] Z. S. Xu and J. Chen, On geometric aggregation over 
interval-valued intuitionistic fuzzy information, Proc. Int. 
Conf. Fuzzy Sys. Knowl. Discov. FSKD, Haikou, China, 2007, 
pp. 466 471.  

[21] Z. S. Xu and J. Chen, Approach to group decision making 
based on interval valued-intuitionistic judgment matrices, 
Systems Engineering Theory and Practice, 27(1) (2007) 
126 133. 

[22] Z. S. Xu and Q. L. Da, An overview of operators for 
aggregating information, Int. J. Intell. Syst., 18(9) (2003) 
953 969. 

[23] J. Lin and Y. Jiang, Some hybrid weighted averaging 
operators and their application to decision making, Inform.
Fusion http://dx.doi.org/10.1016/j.inffus.2011.06.001. 

[24] J. M. Merigo and M. Casanovas, The induced generalized 
hybrid averaging operator and its application in financial 
decision making, Int. J. Bus. Econ. Finance Manag. Sci., 2(1) 
(2009) 95  101. 

[25] Z. S. Xu, A method based on linguistic aggregation operators 
for group decision making with linguistic preference 
relations, Inform. Sci., 166(1) (2004) 19 30. 

[26] Z. S. Xu, Uncertain linguistic aggregation operators based 
approach to multiple attribute group decision making under 
uncertain linguistic environment, Inform. Sci., 168(1-4)
(2004) 171 184. 

[27] H. Zhao, Z. S. Xu, M. F. Ni and S. H. Liu, Generalized 
aggregation operators for intuitionistic fuzzy sets, Int. J. 
Intell. Syst., 25(1) (2010) 1 30. 

[28] M. Grabisch, Fuzzy integral in multicriteria decision making, 
Fuzzy Sets Syst., 69(3) (1995) 279 298. 

[29] M. Grabisch, The application of fuzzy integrals in 
multicriteria decision making, Eur. J. Oper. Res. 89(3) (1996) 
445 456.  

[30] R. R. Yager, Induced aggregation operators, Fuzzy Sets Syst.,
137(1) (2003) 59 69. 

[31] Z. S. Xu, Choquet integrals of weighted intuitionistic fuzzy 
information, Inform. Sci.,180(5) (2010) 726 736. 

[32] C. Q. Tan and X. H. Chen, Intuitionistic fuzzy Choquet 
integral operator for multi-criteria decision making, Expert
Syst. Appl., 37(1) (2010) 149 157.  

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

541



Interval-valued intuitionistic fuzzy operators 

[33] C. Q. Tan, A multi-criteria interval-valued intuitionistic 
fuzzy group decision making with Choquet integral-based 
TOPSIS, Expert Syst. Appl., 38(4) (2011) 3023 3033. 

[34] C. Q. Tan and X. H. Chen, Induced intuitionistic fuzzy 
Choquet integral operator for multi-criteria decision making, 
Int. J. Intell. Syst., 26(7) (2011) 659 686. 

[35] L. G. Zhou and H. Y. Chen, Continuous generalized OWA 
operator and its application to decision making, Fuzzy Sets 
Syst., 168(1) (2011) 18 34. 

[36] Z. S. Xu and M. M. Xia, Induced generalized intuitionistic 
fuzzy operators, Knowl-Based Syst., 24(2) (2011) 197 209. 

[37] C. Q. Tan and X. H. Chen, Induced Choquet ordered 
averaging operator and its application to group decision 
making, Int. J. Intell. Syst., 25(1) (2010) 59 82.  

[38] C. Q. Tan, D. S. D. Wu and B. J. Ma, Group decision making 
with linguistic preference relations with application to 
supplier selection, Expert Syst. Appl., 38(12) (2011) 14382
14389.  

[39] C. Q. Tan, Generalized intuitionistic fuzzy geometric 
aggregation operator and its application to multi-criteria 
group decision making, Soft Comput. 15(5) (2011) 867 876.  

[40] X. M. Zhang, Z. S. Xu and X. H. Yu, Shapley value and 
Choquet integral-based operators for aggregating correlated 
intuitionistic fuzzy information, Information-TOKYO., 14 (6)
(2011) 1847 1858. 

[41] G. Choquet, Theory of capacities, Ann. l. Fourier, 5 (1953) 
131 295. 

[42] Z. S. Xu and Q. L. Da, Combined weighted geometric 
averaging operator and its application, Journal of Southeast 
Universit., 32(3) (2002) 506 509. 

[43] K. Atanassov and G. Gargov, Interval-valued intuitionistic 
fuzzy sets, Fuzzy Sets Syst., 31(3) (1989) 343  349. 

[44] Z.S. Xu, Intuitionistic preference relations and their 

application in group decision making, Inform. Sci.,177(11)
(2007) 2363 2379. 

[45] K. Atanassov, Operators over interval-valued intuitionistic 
fuzzy sets, Fuzzy Sets Syst., 64(1) (1994) 159 174.  

[46] Z. S. Xu, Intuitionistic fuzzy information: aggregation theory 
and applications, Beijing: Science Press, 2008. 

[47] M. Sugeno, Theory of fuzzy integral and its application, 
Doctorial Dissertation, Tokyo Institute of Technology, 1974. 

[48] M. Grabisch, k-order additive discrete fuzzy measures and 
their representation, Fuzzy Sets Syst., 92(2) (1997) 167 189. 

[49] P. Miranda, M. Grabisch and P. Gil, p-Symmetric fuzzy 
measures. Int. J. Uncertain. Fuzz., 10(Suppl.)(1) (2002) 105
123. 

[50] D. Dubois and H. Prade, Possibility Theory: An Approach to 
Computerized Processing of Uncertainty, Plenum Press, 
New York, 1988. 

[51] J. L. Marichal, The influence of variables on pseudo-Boolean 
functions with applications to game theory and multicriteria 
decision making, Discrete Appl. Math. 107(1-3) (2000) 139
164. 

[52] L. S. Shapley, A value for n-person game, in: H. Kuhn, A. 
Tucker (Eds.), Contributions to the theory of games,
Princeton University Press, Princeton, 1953. 

[53] Z. S. Xu and X. Q. Cai, Nonlinear optimization models for 
multiple attribute group decision making with intuitionistic 
fuzzy information, Int. J. Intell. Syst. 25(6) (2010) 489  513.  

[54] Z. S. Xu and H. Hu, Projection models for intuitionistic fuzzy 
multiple attribute decision making, Int. J. Inf. Tech. Decis., 9
(2) (2010) 267  280. 

[55] J. Ye, Multicriteria fuzzy decision-making method based on a 
novel accuracy function under interval-valued intuitionistic 
fuzzy environment, Expert Syst. Appl., 36(3) (2009) 6899
6902. 

  

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

542




