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Abstract 

Risk assessment is a very important issue for an effective institution, since the lack of accurate risk assessment 
method or the improper risk management might cause problems to achieve institutions’ strategic objectives. There 
are a finite number of risks which have to be ranked considering many different and conflicting criteria. In this 
respect, assessing risks by relating to strategic objectives is a multi-attribute decision making problem. In this 
study, an integrated approach which employs analytic hierarchy process (AHP) and fuzzy logarithmic least squares 
method (LLSM) together is proposed for the strategic risk assessment problem. The AHP is used to analyze the 
structure of the risk assessment problem and to determine weights of the criteria, and fuzzy LLSM method is used 
to obtain final ranking. Proposed approach is applied to a problem of prioritizing risks in a public institution.  
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1. Introduction 

Risk assessment has a big role to achieve organizational 
effectiveness and it is one of the most important 
processes in public management literature as accurate 
risk management is critical for judging the success or 
failure of a public institution. For this reason, risks must 
be carefully identified, assessed and monitored.  

The risk assessment process can be complex because 
of the complexity of the modeling required and the 
often subjective nature of the data available to conduct 
the analysis. However, the complexity of the process is 
not overwhelming and the benefits of the outcome can 
be extremely valuable1.

On the other hand, there is not a specific “standard” 
set for risk management in public institutions. This is 
the primary problem with this issue. Institutions may 
choose to adopt particular standards. More important 
than compliance with any particular standard is ability 
to demonstrate that risk is managed in the particular 
organization, in its particular circumstances, in a way 
which effectively supports the delivery of its 
objectives2. Within this scope, this paper proposed to 
assess and prioritize risks by relating to strategic 
objectives and strategic steps (activities).  

In the literature there are many methods proposed or 
developed in order to assess or prioritize risks. These 
methods range from simple, empirical methods to 
computationally complex, statistically based methods1.
UK Treasury used most traditional risk assessment 
method which evaluates occurrence of the risk being 
realized and of the severity if the risk is realized2. This 
approach is preferred with different scales by many 
different organizations. A categorization of high / 
medium / low in respect of each may be sufficient, and 
should be the minimum level of categorization. A more 
detailed analytical scale may be appropriate, especially 
if clear quantitative evaluation can be applied to the 
particular risk2. Bonvicini et al.3 proposed Laboratory 
Assessment and Risk Analysis methodology, which 
relied on defining the adequate role player factors to 
assess risks in research environment and their 
mathematical combination to quantify and assess the 
risk. Frantzich4 demonstrated how two quantitative risk 
analysis methods may be used to evaluate the risk to 
which the occupants of a building may be subjected if a 
fire breaks out by using Monte Carlo simulations. 
McGill, Ayyub and Kaminskiy5, Han and Weng6

proposed quantitative risk analysis methods for different 
sectors. Bailer et al.7, Kelly and Smith8, Nordgard and 
Sand9 suggested the application of Bayesian analysis 
and networks for risk assessment. Sikder et al.10

proposed a novel approach to risk assessment by using a 
dominance-based rough set approach to account for 
preference order in the domains of attributes in the set 
of risk classes. Pan et al.11 improved a new risk 
estimation framework and applied on an aluminum 
extrusion industry's worksite. Wang et al.12 proposed an
integrated AHP-DEA (data envelopment analysis) 
methodology for bridge risk assessment. Schulz et al.13

suggested the use of geodata-based probabilistic method 
to assess risks. Aven and Heide14 focused on reliability 
and validity of risk analysis. Srivastava and Gupta15

improved a Security Risk Factor Table (SRFT) and a 
Stepped Matrix Procedure (SMP) to assess the security 
risk of oil and gas industry. Dash16 studied about risk 
assessment techniques for software development. 
Syachrani et al.17 proposed matrix method to risk 
management for culvert rehabilitation. Mousavi et al.18

suggested the use of jackknife technique to risk 
assessment for highway projects.  

A number of fuzzy methods, have been developed 
and proposed to assess and manage risks (Refs. 19-26). 
Also, there are many studies improved in order to 
analyze risks by using fuzzy numbers (Refs. 27-40).  

In the risk assessment problem, there are a finite 
number of risks which have to be ranked considering 
many different and conflicting criteria. Accordingly, 
this problem is considered as a multi attribute decision 
making problem. Multi attribute decision making 
methods such as analytic hierarchy process (AHP) 
(Refs. 41-46), analytic network process (ANP) (Refs. 
47-49), TOPSIS (Ref. 50) and PROMETHEE (Ref. 51)
used for risk assessment problems in the literature. 
Some of these methods are systematic approaches to the 
alternative selection and justification problem by using 
the concepts of fuzzy set theory and hierarchical 
structure analysis. Decision makers usually find that it is 
more confident to give interval judgements than fixed 
value judgements52.

In this paper, AHP-fuzzy logarithmic least squares 
method (LLSM) integrated approach for assessing risks 
will be introduced and the implementation process will 
be explained with a real world example. We used the 
AHP method to analyze the structure of the risk 
assessment problem and determine the weights of 
criteria. The normalization of interval and fuzzy weights 
is often necessary in multi attribute decision making 
under uncertainty, especially in AHP with interval or 
fuzzy judgements53. Therefore we used Wang’s fuzzy 
LLSM approach to normalize local fuzzy weights and 
obtain final ranking.  
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AHP could be a useful tool because of its ability to 
handle both qualitative and quantitative decision 
criteria. Unfortunately, this approach is inadequate at 
addressing the uncertainties common in real-life 
applications46. For this reason, this paper 
integrated fuzzy LLSM with AHP to form a risk 
assessment model. 

The main contribution of this study is to establish a 
risk assessment model by considering interactions 
among the strategic objectives, strategic steps 
(activities) and risks, in the strategic risk assessment 
process for public institutions.  

The other expected improvement and the main 
difference of this study from the other studies in the 
literature and its contribution to the related literature is 
related to the scoring in the risk assessment. Opinions of 
the experts over criteria and alternatives can be 
evaluated in the construction of the model.  

Some types of risk lend themselves to a numerical 
diagnosis particularly financial risk.  For other risks, for 
example reputational risk, a much more subjective view 
is all that is possible2. In this regard, traditional risk 
assessment method is inadequate at dealing with 
uncertainty and subjectivity of risk assessment problem. 
Within this scope this paper points out inadequacy of 
traditional risk assessment methods in the evaluation of 
subjective risks and suggests a model tries to eliminate 
the vagueness and insufficiency via fuzzy LLSM 
approach in the AHP54.

The rest of the paper is organized as follows. In 
Section 2, we briefly review the fuzzy LLSM and 
modified fuzzy LLSM approach54. In Section 3, we 
determine the steps of the proposed model in detail. 
How to proposed model is used on a real world example 
is explained in Section 4. In Section 5, conclusions are 
discussed.  

2. Method 

2.1. Fuzzy AHP 

AHP was first introduced by Saaty55 and used in 
different decision-making process (Refs. 56-59). The 
multi-criteria decision making methods such as AHP 
require exact judgments. However, due to the 
complexity and uncertainty involved in real world 
decision problems, it is sometimes unrealistic or even 
impossible to require exact judgments. It is therefore 
more natural or realistic that a decision maker is 
allowed to provide fuzzy judgments instead of precise 

comparisons54.  A number of methods (Refs. 53, 54, 60-
73)  have been developed to deal with fuzzy comparison 
matrices. Wang et al.54, discussed the fuzzy LLSM 
proposed by Van Laarhoven and Pedrycz60 and 
modified by Boender et al.62. It is found that the fuzzy 
LLSM cannot always be solved as an unconstrained 
optimization model. In the situation that the lower 
bound value of a non-normalized fuzzy weight turns out 
to be greater than its upper bound value, there exists no 
appropriate normalization method that can make the 
normalized fuzzy weight make sense. It is also found 
that the local fuzzy weights of incomplete fuzzy 
comparison matrices are uncertain and the aggregation 
method of local fuzzy weights into global ones is 
problematic. As it can be seen from the reasons 
mentioned above, modifications need to be done to keep 
the fuzzy LLSM useful54. Therefore, we prefer Wang et 
al.’s 54 modified fuzzy LLSM approach in this study. 

2.2. Fuzzy LLSM 

Consider a group triangular fuzzy comparison 
matrix expressed by Ã where ãijk = (lijk, mijk, uijk) are 
triangular fuzzy judgements with ãijk =  ãjik

-1 =  (1/uijk, 
1/mijk, 1/lijk) for i, j=1,…,n, i≠j, k=1,….,δij and δij = δji. If 
δij= 0, then there is no judgement that has been made 
about ãij, which is denoted as ‘-‘.

For the above group triangular fuzzy comparison 
matrix Ã, there should exist a normalized triangular 
fuzzy weight vector, = ( , … . , ) =(( , , ), … , ( , , )) ,  which is close to Ã 
in the sense that = ( , , ) ≈  / ≈ ( / , / ,/ ),  i,j=1,…,n; i≠j, k=1,….,δij.                           (1) 

To determine the fuzzy weight vector , the 
following fuzzy logarithmic least squares model can be 
constructed54:

 =  (( − − )   ,+( − − ) + − −)                                                                        (2)
Let = 0, = 0 and = 0 for i=1,…,n. It 

follows that 
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= 2 ( −, − )           (3)
  

= 2 ( −, − )       (4)
  

= 2 ( −, − )          (5)
which can be equivalently rewritten as 

( ) =,, ,,         (6)
( ) =,, ,,     (7)

( ) =,, ,,         (8)
where i=1,…,n, =  , = and =  .
Due to the reciprocity of judgement elements, Eqs. (6) 
and (8) always sum up to zero and are therefore linear 
dependent. This is also true for Eq.(7). 

It is easy to find that if (li, mi, ui) (i=1,…,n) is a 
solution to Eqs. (6) and (8), then ( + ,  + , + ) (i=1,…,n) is also one of their solutions, where p1

and p2 are arbitrarily chosen constants. So, the fuzzy 
weights to be estimated can generally be expressed as ≈ ( ( + ), ( + ), exp ( +  )),
(i=1,…,n).     (9) 

After normalization, Eq. (9) becomes ≈ ( )∑ ( ) , ( )∑ ( ) , ( )∑ ( )
(i=1,…,n).                 (10)  

In the case of hierarchical structure, the local fuzzy 
weights are aggregated into global fuzzy weights by 
using fuzzy arithmetic. That is 

= ⊗ ≈ , ,

(i=1,…,n),                 (11)  

where = ( , , ) (j=1,…,m) are the fuzzy 

weights of m upper level criteria, = ( , , )
(i=1,…,n) are the fuzzy weights of n lower level 

alternatives with respect to jth upper level criterion, and  w (i = 1, … , n) are the global fuzzy weights of the n

lower level alternatives54.

2.3. Modified fuzzy LLSM 
A number of methods have been developed to deal with 
fuzzy comparison matrices, as mentioned above. In this 
study, we prefer Wang et al.’s 54 fuzzy LLSM approach 
because this method tackle the other methods’ 
incorrectness in the normalization of local fuzzy 
weights, infeasibility in deriving the local fuzzy weights 
of a fuzzy comparison matrix when the lower bound 
value of a non-normalized fuzzy weight turns out to be 
greater than its upper bound value, uncertainty of local 
fuzzy weights for incomplete fuzzy comparison 
matrices, and unreality of global fuzzy weights54.

The modified fuzzy LLSM is formulated as a 
constrained nonlinear optimization model and can 
directly derive normalized triangular fuzzy weights for 
both complete and incomplete triangular fuzzy 
comparison matrices. The examination of the numerical 
example showed the advantages of the modified fuzzy 
LLSM in the AHP and its applicability in solving 
complex multi-criteria decision making problems. 

First, the normalization constraints can be expressed 
as according to Wang et al.’s 54 fuzzy LLSM approach; + ∑ , ≥ 1, = 1, … , ,                            (12)  ∑ ≥ 1,                                                                    (13)  + ∑ , ≤ 1, = 1, … , .                            (14)  

Next, it is found that normalized fuzzy weights 
cannot uniquely be determined from a fuzzy comparison 
matrix.  

All triangular fuzzy weights meet the constraints of 
(12)–(14) and therefore are all normalized triangular 
fuzzy weights. In fact, if  = ( , … . , ) =(( , , ), … , ( , , ))  is an optimal and 
normalized fuzzy weight estimate for some triangular 
fuzzy comparison matrix, then ′ = ( ′ , … . , ′ ) =(( ,  , ),
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normalized fuzzy weight estimate for this triangular 
fuzzy comparison matrix when the parameter k meets 
the following constraints: ≤ ≤ , = 1, … , ,                                  (15)  

− max( − ) ≥ 1,                             (16)
− max( − ) ≤ 1.                            (17)

The non-uniqueness of normalized fuzzy weights 
brings difficulty and inconvenience for the comparison 
and ranking of fuzzy weights as well as the synthesis of 
local fuzzy weights. Therefore, it is essential that a 
common benchmark of comparison should be set up so 
that local and global fuzzy weights can be derived with 
respect to the same reference point, i.e. benchmark. To 
set up such a benchmark for each fuzzy comparison, we 
use the following auxiliary equality constraint, which 
was first adopted by Jiménez et al.74 for normalizing a 
set of interval weights:  

( + ) = 2.                                                         (18)
Theoretically, there is no evidence to support such 

an auxiliary equality constraint. However, due to the 
fact that ∑ − ( − ) ≥ 1 and ∑ − ( − ) ≤ 1, it is feasible to impose 
such an equality constraint ∑ ( + ) = 2. In 
particular, if normalized fuzzy weights are symmetrical, 
(18) will hold precisely. More importantly, by imposing 
such an equality constraint we can uniquely determine a 
set of normalized fuzzy weights for each fuzzy 
comparison matrix. Moreover, such a linear equality 
constraint makes our modified fuzzy least squares 
model (19) much easier to compute than any other 
nonlinear equality constraints such as (∑ ) (∑ )=1, which has been proven to be 
incorrect in50. Finally, based on the above analyses, the 
proposed modified fuzzy LLSM is formulated as 
follows:  = ∑ ∑ ∑ (( −, − ) +( − − ) + ( − − )   

s.t. + ∑ , ≥ 1,  + ∑ , ≥ 1,  ∑ = 1,   = 1, … ,                                              (19)  ∑ ( + ) = 2,  ≥  ≥ > 0, 
which is a constrained nonlinear optimization model, 
whose constraints are all linear, and can be solved 
without difficulty by Microsoft Excel Solver or 
professional optimization software packages such as 
LINGO, GAMS or MATLAB. The optimum solution to 
the above model directly forms normalized fuzzy 
weights.  

The global fuzzy weights can be obtained by solving 
the following two linear programming (LP) models and 
an equation for each alternative Ai (i = 1, . . . , n):

= Min∈ ,    = 1, … ,                           (20)
= Max∈ ,    = 1, … ,                           (21)
= ,    = 1, … ,                                     (22)

where Ω = = ( , . . , ) ≤ ≤ ,∑ = 1, = 1, … ,  is a set (or space) of weights. 
Note that the global fuzzy weights are only approximate 
triangular fuzzy numbers, whose precise membership 
functions can be obtained by using α-level sets and the 
extension principle75 but this requires more 
computational effort54. 

Wang et al.’s54 theorem shows that the global 
weights obtained by (20)–(22) are always normalized if 
the local weights are normalized triangular fuzzy 
weights. 

3. Proposed Model 
The suggested model for the prioritization of risks 
includes the steps as following: 
Step 1: Identify the criteria and alternatives to be used 
in the model. 
Step 2: Structure the AHP model hierarchically (goal, 
1st level criteria, 2nd level criteria, alternatives)  

Co-published by Atlantis Press and Taylor & Francis 
                       Copyright: the authors 
                                    491



R.Arikan et al.  

Table 1. Linguistic scales for difficulty and importance

Linguistic Scale for Difficulty Linguistic Scale for Importance Triangular Fuzzy 
Scale

Triangular Fuzzy 
Reciprocal Scale

Just Equal Just Equal (1,1,1) (1,1,1)
Equally difficult (ED) Equally important (EI) (1/2,1,3/2) (2/3,1,2)

Weakly more difficult (WMD) Weakly more important (WMI) (1,3/2,2) (1/2,2/3,1)
Strongly more difficult (SMD) Strongly more important (SMI) (3/2,2,5/2) (2/5,1/2,2/3)

Very strongly more difficult (VSMD) Very strongly more important (VSMI) (2,5/2,3) (1/3,2/5,1/2)
Absolutely more difficult (AMD) Absolutely more important (AMI) (5/2,3,7/2) (2/7,1/3,2/5)

Step 3: Determine the relative importance of the criteria 
by using triangular fuzzy comparison matrix. The fuzzy 
scale regarding relative importance to measure the 
relative weights is given in Table 1. This scale is 
proposed by Kahraman et al.58 and used for solving 
fuzzy decision-making problems (Refs. 58, 59, 76) in 
the literature. This scale will be used in Wang et al.’s 54

fuzzy prioritization approach.  
Step 4: Compare 2nd level criteria under each of the 1st 
level criteria separately.
Step 5: Determine the local weights of the 1st level 
criteria by solving model (19) for each of the 
comparison matrices.  
Step 6: Calculate the global fuzzy weights of the 2nd 
level criteria by Eqs. (20)–(22) .
Step 7: Compare alternatives (risks) under each of the 
2nd level criteria separately.  
Step 8: Calculate the global fuzzy weights of the 
alternatives (risks). The global fuzzy weights of the 2nd 
level criteria, determined in Step 6, are used as relative 
importance values. 
Step 9: Defuzzify global fuzzy weights using Converting 
the Fuzzy data into Crisp Scores (CFCS) Method. The 
method for defuzzification used in this paper is CFCS 
method introduced by Opricovic and Tzeng77. The 
CFCS method can clearly express fuzzy perception, 
which is based on the procedure of determining the 
lower and upper scores by fuzzy min and fuzzy max, 
and the total score is determined as a weighted average 
according to the membership functions78. The steps of 
CFCS method are as follow77: 

(i) Normalization = max ,    =∆ = −
compute for all alternatives aj, j=1,…,J= ( − )/∆                                        (23)

= ( − )/∆                                    (24)= ( − )/∆                                      (25)
(ii) Compute left (ls) and right (rs) normalized values, 

for j=1,…,J= /(1 + − )                               (26) = /(1 + − )                              (27) 

(iii) Compute total normalized crisp value, for j=1,…,J= [ 1 − + . / 1 − + (28)
             

(iv) Compute crisp values, for j=1,…,J= + . ∆                                             (29)
This four step CFCS procedure is performed for all 

criteria , ∈ , where  denotes the set of criteria 
evaluated with fuzzy numbers. All values =,  ,  j=1,…,J, of the i-th (one) criterion are 
included in the computation, even if not all alternatives 
are evaluated with fuzzy numbers (some of these values 
could be crisp, l=m=u) 77.  

For all risks, Equations (23-29) should be 
implemented separately.  

4. An Application of the Proposed Model 

The case study for the application of proposed model is 
performed in a public institution which applies strategic 
management model. For the application, a team is 
established from four experts of institution and one of 
the authors of this paper. Institutional experts assigned 
from risk assessment and strategic planning 
departments. The public institution has a strategic plan 
and also has strategic goals and objectives. First level 
criteria (strategic goals) and second level criteria 
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(strategic objectives) to be used in the model were 
selected from this strategic plan and the risks were 
identified by the team. Comparison matrices used to 
calculate local and global weights were also formed by 
the same team. The application performed based on the 
steps provided in previous section and explained step by 
step together with the results.  

Step 1: The first and second level criteria used to 
prioritize the risks are determined in this step is shown 
in Table 2.
Step 2: The AHP model formed by the criteria and 
alternatives determined in the first step is shown in 
Figure 1. 

Table 2. Criteria and alternatives used in the model

1st level criteria
(Strategic 

Objectives)  

SO1 Ensure effective alignment with EU acquis communautaire and effective utilization of EU funds 

SO2  Make R&D and innovation an integral part of the organizational culture 

SO3  Improve human resources management 

SO4  Develop a culture of continuous performance improvement 

SO5 Upgrade information technology governance to the level of international best practices

2nd level criteria
(Activities)  

A1 Complete activities for which the Treasury is responsible in alignment with the EU acquis

A2 Improve Human Resources Management (Transform existing procedures and principles related to 
appointments, orientation, posting, awards, promotion, internships, performance evaluation and rotation 
into internal regulation. )
A3 Increase arrangements for internships, seminars, conferences and courses in order to ensure aggregate 
expansion in professional expertise 
A4 Upgrade the internal control system and standards to the level of international best practice, including 
such standards as those promoted by COSO (Committee of Sponsoring Organizations of the Treadway 
Commission) and INTOSAI (International Organization of Supreme Audit Institutions) 
A5 Integrate decision support mechanisms, occupational intelligence and internet technologies solutions 
into information systems 

A6 Prepare audit guides and create internal quality assurance and development programs

Alternatives
(Risks)

R1 Internal control system 

R2 Human resources management

R3 Organizational, institutional, managerial or corporate cultural

R4 Task distribution and delegation of authority

R5 Integration of business objectives and information technologies 

R6 Risk management system (identifying, analyzing, addressing and monitoring risks)

R7 EU membership process

AHP model is composed of four levels. The first 
step includes the objective of  the model, determined as 
“prioritization of risks”. The second step includes the 
strategic objectives as first level criteria to be used in 
the prioritization of risks. Activities related to the 
strategic objectives are in the third level and risks 
(alternatives) are in the last level of the model.  

Step 3: The first task of the work team is to decide 
on the relative importance of the five strategic 
objectives. Through pairwise comparison, a triangular 
fuzzy comparison matrix is constructed and shown in 
Table 3. Non-linear model which provided from this 
matrix and its solution are annexed (Appendix A). 
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Prioritization of Risks

SO1 SO2 SO3 SO4 SO51st level
criteria

A1 A2 A3 A4 A5 A62nd level
criteria

R1 R2 R3 R4 R5 R6 R7Risks

Table 3: Fuzzy comparison matrix of the five strategic objectives with respect to the objective 

Step 4: Team members compare the activities under 
each of the five strategic objectives separately. Table 4 
shows their comparisons under each strategic objective, 
which form five triangular fuzzy comparison matrices, 
respectively. 
Step 5-6 : The local fuzzy weights for the fuzzy 
comparison matrices can be obtained by solving model 
(19) for each of the comparison matrices. Table 5 shows 
the results. GAMS optimization software package used 
as solver and a sample model and its solution are 
annexed (Appendix A). The results obtained from this 

sample solution of Table 3 used as first row of Table 5. 
Other values in column based provided by same method 
from fuzzy comparison matrices of activities with 
respect to the each strategic objective (Table 4).  
Similarly, the global fuzzy weights of the six activities 
are determined by Eqs. (20)–(22) and used in Table 7 as 
global weights of activities.  
Values of Table 7 in column based provided by GAMS 
from fuzzy comparison matrices of risks with respect to 
each activity (Table 6).  Additionally the results 
obtained from Table 5 used as first row of Table 7.  

SOs SO1 SO2 SO3 SO4 SO5

SO1 (1,1,1) (1,1,1) (2/3,1,2) (2/3,1,2) (1/2,2/3,1)

SO2 (1,1,1) (1,1,1) (2/3,1,2) (1/2,2/3,1) (1/2,2/3,1)

SO3 (1/2,1,3/2) (1/2,1,3/2) (1,1,1) (1/2,1,3/2) (2/3,1,2)

SO4 (1/2,1,3/2) (1,3/2,2) (2/3,1,2) (1,1,1) (1,3/2,2)

SO5 (1,3/2,2) (1,3/2,2) (1/2,1,3/2) (1/2,2/3,1) (1,1,1)

Fig. 1. Hierarchical structure for the prioritization of risks
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Table 4. Fuzzy comparison of activities with respect to the each strategic objective 

A1 A2 A3 A4 A5 A6
Fuzzy comparison matrix of the activities with respect to the strategic objective 1
A1 (1,1,1) (2,5/2,3) (2,5/2,3) (1,3/2,2) (3/2,2,5/2) (1,3/2,2)
A2 (1/3,2/5,1/2) (1,1,1) (2/3,1,2) (2/5,1/2,2/3) (1/2,2/3,1) (2/5,1/2,2/3)
A3 (1/3,2/5,1/2) (1/2,1,3/2) (1,1,1) (2/5,1/2,2/3) (2/3,1,2) (2/5,1/2,2/3)
A4 (1/2,2/3,1) (3/2,2,5/2) (3/2,2,5/2) (1,1,1) (1,3/2,2) (1/2,1,3/2)
A5 (2/5,1/2,2/3) (1,3/2,2) (1/2,1,3/2) (1/2,2/3,1) (1,1,1) (1/2,2/3,1)
A6 (1/2,2/3,1) (3/2,2,5/2) (3/2,2,5/2) (2/3,1,2) (1,3/2,2) (1,1,1)
Fuzzy comparison matrix of the activities with respect to the strategic objective 2

A1 (1,1,1) (2/5,1/2,2/3) (2/5,1/2,2/3) (1/2,2/3,1) (1/2,2/3,1) (1/2,2/3,1)
A2 (3/2,2,5/2) (1,1,1) (1/2,1,3/2) (1,3/2,2) (1/2,1,3/2) (1,3/2,2)
A3 (3/2,2,5/2) (2/3,1,2) (1,1,1) (1,3/2,2) (1/2,1,3/2) (1,3/2,2)
A4 (1,3/2,2) (1/2,2/3,1) (1/2,2/3,1) (1,1,1) (2/3,1,2) (1/2,1,3/2)
A5 (1,3/2,2) (2/3,1,2) (2/3,1,2) (1/2,1,3/2) (1,1,1) (1/2,1,3/2)
A6 (1,3/2,2) (1/2,2/3,1) (1/2,2/3,1) (2/3,1,2) (2/3,1,2) (1,1,1)
Fuzzy comparison matrix of the activities with respect to the strategic objective 3

A1 (1,1,1) (2/7,1/3,2/5) (1/3,2/5,1/2) (1/2,2/3,1) (1/2,1,3/2) (1,3/2,2)
A2 (5/2,3,7/2) (1,1,1) (1,3/2,2) (3/2,2,5/2) (2,5/2,3) (5/2,3,7/2)
A3 (2,5/2,3) (1/2,2/3,1) (1,1,1) (1,3/2,2) (3/2,2,5/2) (2,5/2,3)
A4 (1,3/2,2) (2/5,1/2,2/3) (1/2,2/3,1) (1,1,1) (1,3/2,2) (3/2,2,5/2)
A5 (2/3,1,2) (1/3,2/5,1/2) (2/5,1/2,2/3) (1/2,2/3,1) (1,1,1) (1,3/2,2)
A6 (1/2,2/3,1) (2/7,1/3,2/5) (1/3,2/5,1/2) (2/5,1/2,2/3) (1/2,2/3,1) (1,1,1)
Fuzzy comparison matrix of the activities with respect to the strategic objective 4
A1 (1,1,1) (1/2,2/3,1) (2/5,1/2,2/3) (1/3,2/5,1/2) (1/3,2/5,1/2) (1/2,2/3,1)
A2 (1,3/2,2) (1,1,1) (1/2,2/3,1) (2/5,1/2,2/3) (2/5,1/2,2/3) (1/2,1,3/2)
A3 (3/2,2,5/2) (1,3/2,2) (1,1,1) (1/2,2/3,1) (1/2,2/3,1) (1,3/2,2)
A4 (2,5/2,3) (3/2,2,5/2) (1,3/2,2) (1,1,1) (1/2,1,3/2) (3/2,2,5/2)
A5 (2,5/2,3) (3/2,2,5/2) (1,3/2,2) (2/3,1,2) (1,1,1) (3/2,2,5/2)
A6 (1,3/2,2) (2/3,1,2) (1/2,2/3,1) (2/5,1/2,2/3) (2/5,1/2,2/3) (1,1,1)
Fuzzy comparison matrix of the activities with respect to the strategic objective 5
A1 (1,1,1) (1/2,2/3,1) (1/2,2/3,1) (2/5,1/2,2/3) (1/3,2/5,1/2) (2/3,1,2)
A2 (1,3/2,2) (1,1,1) (1/2,1,3/2) (1/2,2/3,1) (1/2,2/3,1) (1,3/2,2)
A3 (1,3/2,2) (2/3,1,2) (1,1,1) (2/3,1,2) (2/5,1/2,2/3) (1/2,1,3/2)
A4 (3/2,2,5/2) (1,3/2,2) (1/2,1,3/2) (1,1,1) (2/3,1,2) (3/2,2,5/2)
A5 (2,5/2,3) (1,3/2,2) (3/2,2,5/2) (1/2,1,3/2) (1,1,1) (2,5/2,3)
A6 (1/2,1,3/2) (1/2,2/3,1) (2/3,1,2) (2/5,1/2,2/3) (1/3,2/5,1/2) (1,1,1)

Table 5. Local and global fuzzy weights of the activities obtained by the modified fuzzy LLSM

A
ct

iv
it

ie
s SO1 SO2 SO3 SO4 SO5 Global Fuzzy

Weights(0.193,0.193,0.213) (0.163,0.168,0.186) (0.123,0.197,0.245) (0.154,0.213,0.268) (0.161,0.230,0.294)

A1 (0.240,0.272,0.286) (0.100,0.105,0.116) (0.087,0.107,0.127) (0.083,0.089,0.101) (0.096,0.106,0.127) (0.102,0.135,0.178)

A2 (0.089,0.099,0.120) (0.156,0.209,0.233) (0.276,0.304,0.316) (0.100,0.124,0.147) (0.125,0.159,0.187) (0.112,0.177,0.241)

A3 (0.088,0.106,0.131) (0.164,0.209,0.244) (0.200,0.229,0.255) (0.146,0.175,0.204) (0.115,0.151,0.202) (0.109,0.173,0.249)

A4 (0.157,0.196,0.227) (0.120,0.152,0.188) (0.134,0.161,0.189) (0.197,0.244,0.271) (0.169,0.214,0.255) (0.124,0.196,0.277)

A5 (0.104,0.130,0.157) (0.122,0.174,0.233) (0.096,0.115,0.146) (0.207,0.244,0.285) (0.219,0.254,0.272) (0.119,0.187,0.269)

A6 (0.164,0.197,0.238) (0.126,0.152,0.197) (0.077,0.084,0.096) (0.105,0.124,0.155) (0.094,0.116,0.139) (0.093,0.133,0.193)
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Table 6. Fuzzy comparison of risks with respect to each activity 

R1 R2 R3 R4 R5 R6 R7
Fuzzy comparison matrix of the risks with respect to the activity 1
R1 (1,1,1) (1,3/2,2) (3/2,2,5/2) (3/2,2,5/2) (1,3/2,2) (1/2,1,3/2) (1/2,2/3,1)
R2 (1/2,2/3,1) (1,1,1) (1,3/2,2) (1,3/2,2) (1,1,1) (1/2,2/3,1) (2/5,1/2,2/3)
R3 (2/5,1/2,2/3) (1/2,2/3,1) (1,1,1) (2/3,1,2) (1/2,2/3,1) (2/5,1/2,2/3) (1/3,2/5,1/2)
R4 (2/5,1/2,2/3) (1/2,2/3,1) (1/2,1,3/2) (1,1,1) (1/2,2/3,1) (2/5,1/2,2/3) (1/3,2/5,1/2)
R5 (1/2,2/3,1) (1,1,1) (1,3/2,2) (1,3/2,2) (1,1,1) (1/2,2/3,1) (2/5,1/2,2/3)
R6 (2/3,1,2) (1,3/2,2) (3/2,2,5/2) (3/2,2,5/2) (1,3/2,2) (1,1,1) (1/2,2/3,1)
R7 (1,3/2,2) (3/2,2,5/2) (2,5/2,3) (2,5/2,3) (3/2,2,5/2) (1,3/2,2) (1,1,1)
Fuzzy comparison matrix of the risks with respect to the activity 2
R1 (1,1,1) (1,3/2,2) (1/2,2/3,1) (1,3/2,2) (2/3,1,2) (1/2,1,3/2) (1,3/2,2)
R2 (1/2,2/3,1) (1,1,1) (2/5,1/2,2/3) (1,3/2,2) (1/2,2/3,1) (2/3,1,2) (1/2,1,3/2)
R3 (1,3/2,2) (3/2,2,5/2) (1,1,1) (3/2,2,5/2) (1/2,1,3/2) (1,3/2,2) (3/2,2,5/2)
R4 (1/2,2/3,1) (1/2,2/3,1) (2/5,1/2,2/3) (1,1,1) (2/5,1/2,2/3) (1/2,2/3,1) (2/3,1,2)
R5 (1/2,1,3/2) (1,3/2,2) (2/3,1,2) (3/2,2,5/2) (1,1,1) (1/2,1,3/2) (3/2,2,5/2)
R6 (2/3,1,2) (1/2,1,3/2) (1/2,2/3,1) (1,3/2,2) (2/3,1,2) (1,1,1) (1/2,1,3/2)
R7 (1/2,2/3,1) (2/3,1,2) (2/5,1/2,2/3) (1/2,1,3/2) (2/5,1/2,2/3) (2/3,1,2) (1,1,1)
Fuzzy comparison matrix of the risks with respect to the activity 3
R1 (1,1,1) (1/3,2/5,1/2) (1/2,2/3,1) (2/5,1/2,2/3) (2/3,1,2) (2/5,1/2,2/3) (1/2,2/3,1)
R2 (2,5/2,3) (1,1,1) (3/2,2,5/2) (1,3/2,2) (2,5/2,3) (1,3/2,2) (3/2,2,5/2)
R3 (1,3/2,2) (2/5,1/2,2/3) (1,1,1) (1/2,2/3,1) (1,3/2,2) (1/2,2/3,1) (2/3,1,2)
R4 (3/2,2,5/2) (1/2,2/3,1) (1,3/2,2) (1,1,1) (3/2,2,5/2) (1/2,1,3/2) (1,3/2,2)
R5 (1/2,1,3/2) (1/3,2/5,1/2) (1/2,2/3,1) (2/5,1/2,2/3) (1,1,1) (2/5,1/2,2/3) (1/2,2/3,1)
R6 (3/2,2,5/2) (1/2,2/3,1) (1,3/2,2) (2/3,1,2) (3/2,2,5/2) (1,1,1) (1,3/2,2)
R7 (1,3/2,2) (2/5,1/2,2/3) (1/2,1,3/2) (1/2,2/3,1) (1,3/2,2) (1/2,2/3,1) (1,1,1)
Fuzzy comparison matrix of the risks with respect to the activity 4
R1 (1,1,1) (2/3,1,2) (1,3/2,2) (1/2,2/3,1) (1/2,2/3,1) (1,3/2,2) (2,5/2,3)
R2 (1/2,1,3/2) (1,1,1) (1,3/2,2) (1/2,2/3,1) (1/2,2/3,1) (1,3/2,2) (2,5/2,3)
R3 (1/2,2/3,1) (1/2,2/3,1) (1,1,1) (2/5,1/2,2/3) (2/5,1/2,2/3) (1/2,1,3/2) (3/2,2,5/2)
R4 (1,3/2,2) (1,3/2,2) (3/2,2,5/2) (1,1,1) (1/2,1,3/2) (3/2,2,5/2) (5/2,3,7/2)
R5 (1,3/2,2) (1,3/2,2) (3/2,2,5/2) (2/3,1,2) (1,1,1) (3/2,2,5/2) (5/2,3,7/2)
R6 (1/2,2/3,1) (1/2,2/3,1) (2/3,1,2) (2/5,1/2,2/3) (2/5,1/2,2/3) (1,1,1) (3/2,2,5/2)
R7 (1/3,2/5,1/2) (1/3,2/5,1/2) (2/5,1/2,2/3) (2/7,1/3,2/5) (2/7,1/3,2/5) (2/5,1/2,2/3) (1,1,1)
Fuzzy comparison matrix of the risks with respect to the activity 5
R1 (1,1,1) (3/2,2,5/2) (1/2,1,3/2) (3/2,2,5/2) (2/3,1,2) (1,3/2,2) (1,3/2,2)
R2 (2/5,1/2,2/3) (1,1,1) (2/5,1/2,2/3) (2/3,1,2) (1/3,2/5,1/2) (1/2,2/3,1) (1/2,2/3,1)
R3 (2/3,1,2) (3/2,2,5/2) (1,1,1) (3/2,2,5/2) (1/2,2/3,1) (1/2,1,3/2) (1,3/2,2)
R4 (2/5,1/2,2/3) (1/2,1,3/2) (2/5,1/2,2/3) (1,1,1) (1/3,2/5,1/2) (1/2,2/3,1) (1/2,2/3,1)
R5 (1/2,1,3/2) (2,5/2,3) (1,3/2,2) (2,5/2,3) (1,1,1) (3/2,2,5/2) (3/2,2,5/2)
R6 (1/2,2/3,1) (1,3/2,2) (2/3,1,2) (1,3/2,2) (2/5,1/2,2/3) (1,1,1) (1/2,1,3/2)
R7 (1/2,2/3,1) (1,3/2,2) (1/2,2/3,1) (1,3/2,2) (2/5,1/2,2/3) (2/3,1,2) (1,1,1)
Fuzzy comparison matrix of the risks with respect to the activity 6
R1 (1,1,1) (5/2,3,7/2) (2,5/2,3) (2,5/2,3) (3/2,2,5/2) (1,3/2,2) (1/2,1,3/2)
R2 (2/7,1/3,2/5) (1,1,1) (1/2,2/3,1) (1/2,2/3,1) (2/5,1/2,2/3) (1/3,2/5,1/2) (2/5,1/2,2/3)
R3 (1/3,2/5,1/2) (1,3/2,2) (1,1,1) (2/3,1,2) (1/2,2/3,1) (2/5,1/2,2/3) (1/2,2/3,1)
R4 (1/3,2/5,1/2) (1,3/2,2) (1/2,1,3/2) (1,1,1) (1/2,2/3,1) (2/5,1/2,2/3) (1/2,2/3,1)
R5 (2/5,1/2,2/3) (3/2,2,5/2) (1,3/2,2) (1,3/2,2) (1,1,1) (1/2,2/3,1) (2/3,1,2)
R6 (1/2,2/3,1) (2,5/2,3) (3/2,2,5/2) (3/2,2,5/2) (1,3/2,2) (1,1,1) (1/2,1,3/2)
R7 (2/3,1,2) (3/2,2,5/2) (1,3/2,2) (1,3/2,2) (1/2,1,3/2) (2/3,1,2) (1,1,1)
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Step 7: Team members compare the risks under each of 
the six alternatives separately. Table 6 shows their 
comparisons under each alternative, which form six 
triangular fuzzy comparison matrices, respectively. 
Step 8: The local fuzzy weights for the six fuzzy 
comparison matrices can be obtained by solving model 

(19) for each of them. Table 7 shows the results. The 
global fuzzy weights of the seven risks are determined 
by Eqs. (20)–(22) and shown in Fig. 2. It is clear that 
Risk 1 is the most prior risk according to proposed 
model and Risk 5 has the nearest value to it. 

Table 7. Local and global fuzzy weights of the risks obtained by the modified fuzzy LLSM 

Figure 2. Global fuzzy weights of the risks obtained by the modified fuzzy LLSM 

Step 9: After calculating global fuzzy weights, this 
study adopted the CSCF method77 to undertake 
defuzzification. Eqs. (23)-(29) are adopted to obtain 
crisp judgement for the risks. The crisp risk values are 
shown in Table 8. 

For the sake of comparison, Table 8 also shows the 
traditional risk assessment results.  

Occurrence and severity are the two primary 
characteristics used to assess risks in traditional method. 
And the final risk values are obtained with 

R
is

ks

A1 A2 A3 A4 A5 A6
Global Fuzzy

Weights
(0.102,0.135,0.178) (0.112,0.177,0.241) (0.109,0.173,0.249) (0.124,0.196,0.277) (0.119,0.187,0.269) (0.093,0.133,0.193)

R1 (0.139,0.183,0.215) (0.117,0.155,0.215) (0.077,0.077,0.102) (0.124,0.151,0.187) (0.137,0.193,0.280) (0.204,0.237,0.261) (0.086,0.163,0.293)

R2 (0.111,0.127,0.142) (0.097,0.118,0.141) (0.188,0.188,0.188) (0.119,0.151,0.179) (0.078,0.089,0.102) (0.069,0.073,0.083) (0.073,0.126,0.199)

R3 (0.077,0.089,0.111) (0.172,0.208,0.215) (0.102,0.130,0.147) (0.089,0.107,0.127) (0.130,0.171,0.200) (0.086,0.100,0.125) (0.073,0.138,0.221)

R4 (0.073,0.089,0.106) (0.086,0.095,0.112) (0.128,0.192,0.313) (0.170,0.212,0.235) (0.075,0.089,0.098) (0.083,0.100,.0120) (0.069,0.134,0.239)

R5 (0.111,0.127,0.142) (0.135,0.178,0.206) (0.074,0.091,0.098) (0.177,0.212,0.245) (0.195,0.199,0.199) (0.118,0.141,0.176) (0.091,0.162,0.255)

R6 (0.145,0.183,0.224) (0.102,0.138,0.180) (0.144,0.192,0.201) (0.092,0.107,0.132) (0.099,0.134,0.158) (0.153,0.185,0.215) (0.079,0.153,0.254)

R7 (0.202,0.202,0.202) (0.088,0.107,0.134) (0.097,0.130,0.141) (0.060,0.061,0.063) (0.102,0.126,0.147) (0.128,0.165,0.181) (0.072,0.126,0.195)

Fuzzy weights

Membership 
degree 
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multiplication of these characteristics. The risk order in 
traditional risk assessment method is as R1 = R2 = R3 > 
R6 = R7 > R5> R4 whereas in proposed model risk 
order is follows: R1 > R5 > R6 > R3 > R4 > R2 > R7. 

When these results compared each other, it can be 
seen that the risks which influenced by more important 

activities and strategic objectives were evaluated as 
“more important/risky” with proposed method. 

Additionally, there is equality between five risk 
values among seven figures in traditional method. 
Proposed model has eliminated this problem and 
provided convenience to decision makers about 
prioritizing. 

Table 8. Risk values obtained by the traditional method and proposed method 

The above results show that, the proposed 
methodology offers a more precise risk prioritization in 
terms of the institutional strategic management 
approach. Hence, the control activities to be used 
against the risks would be providing a more accurate 
and cost-effective planning.  

5. Conclusions 

In this paper we proposed the use of fuzzy logarithmic 
least squares method (LLSM) in the analytic hierarchy 
process (AHP), which was modified by Wang et al.54, to 
assess strategic risks in public sector. At a time when 
risk assessment has an increasing importance for public 
institutions, this paper provides insight into the various 
factors related with the problem. 

Proposed method tackles the problems about other 
LLSM approaches’ incorrectness in the normalization 
of local fuzzy weights, infeasibility in deriving the 
local fuzzy weights of a fuzzy comparison matrix when 
the lower bound value of a non-normalized fuzzy 
weight turns out to be greater than its upper bound 
value, uncertainty of local fuzzy weights for 
incomplete fuzzy comparison matrices, and unreality of 

global fuzzy weights. The modified fuzzy LLSM is 
formulated as a constrained nonlinear optimization 
model and can directly derive normalized triangular 
fuzzy weights for both complete and incomplete 
triangular fuzzy comparison matrices54.

The main contribution of this study is to establish a 
risk assessment model by considering interactions 
among the strategic objectives, strategic steps 
(activities) and risks. The examination of the numerical 
example showed the advantages of the modified fuzzy 
LLSM in terms of considering interactions among the 
criteria according to traditional method and its 
applicability in solving complex multi attribute 
decision making problems. The other expected 
improvement is related to the scoring in the risk 
assessment of decision makers. Opinions of the experts 
over criteria and alternatives have been evaluated in the 
construction of the model. Implementation of a fuzzy 
AHP structure to a real life model is a time consuming 
process. But the fuzzy AHP model covers and gives the 
best solution to the vagueness of the pairwise 
comparison process considerably. The proposed model 
provides a user friendly implementation of fuzzy AHP 
for a fuzzy decision support system by using GAMS 

R
is

ks Traditional Method Modified fuzzy LLSM (+CFCS Defuzzification Method)

Severity Occurrence Total Risk 
Value Global Fuzzy Weights

Crisp
Weights

Normalized
Weights

R1 7 8 56 (0.086 0.1734 0.293) 0.1734 15.8210

R2 8 7 56 (0.073 0.1335 0.199) 0.1335 12.1805

R3 8 7 56 (0.073 0.1451 0.221) 0.1451 13.2389

R4 6 5 30 (0.069 0.1455 0.239) 0.1455 13.2754

R5 8 6 48 (0.091 0.1677 0.255) 0.1677 15.3009

R6 7 7 49 (0.079 0.1982 0.254) 0.1982 18.0838

R7 7 7 49 (0.072 0.1326 0.195) 0.1326 12.0984
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and Microsoft Excel. Using these software applications 
both in the model construction and data processing 
phase gives a great flexibility for experts and decision
makers. An advantage of the study is to be able to 
adopt the model for a different fuzzy AHP model in a 
short time. The proposed methodology also serves as a 
guideline to the risk analysts. Although fuzzy AHP 
technique used in the proposed model is 
computationally intensive, the benefits of risk reduction 
will outweigh the required cost and time.  

In this study, only the interactions among level of 
criteria were considered and the risk priority was 
determined on this basis. Future studies may expand the 
model by analyzing the inter-dependence of criteria and 
risks. 
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Appendix A.  
Model (Table 3):
sets
i /1*5/ 
alias (i,j); 
table l(i,j) 
table m(i,j) 
table u(i,j) 
amac.. z=e= sum((i,j)$(ord(j)<>ord(i)), sqr(log(wl(i))-
log(wu(j))-log(l(i,j)))+sqr(log(wm(i))-log(wm(j))-
log(m(i,j)))+sqr(log(wu(i))-log(wl(j))-log(u(i,j)))); 
kisit1(i)..     wl(i)+sum(j$(ord(j)<>ord(i)), wu(j))=g=1; 
kisit2(i)..     wu(i)+sum(j$(ord(j)<>ord(i)), wl(j))=l=1; 
kisit3..          sum(i,wm(i))=e=1; 
kisit4..          sum(i,wl(i)+wu(i))=e=2; 
kisit5(i)..     wu(i)=g=wm(i); 
kisit6(i)..     wm(i)=g=wl(i); 
model rabiamodel /all/; 
solve rabiamodel using nlp minimizing z; 

Solution (Table 3):
---- VAR z              -INF      3.904     +INF       .         

---- VAR wl   
LOWER     LEVEL     UPPER    MARGINAL 

1 1.0000E-6     0.193     1.000      .      
2 1.0000E-6     0.163     1.000      .          
3 1.0000E-6     0.123     1.000      .          
4 1.0000E-6     0.154     1.000      .          
5 1.0000E-6     0.161     1.000      .          

---- VAR wm   
LOWER     LEVEL     UPPER    MARGINAL 

1 1.0000E-6     0.193     1.000      .          
2 1.0000E-6     0.168     1.000      .          
3 1.0000E-6     0.197     1.000      .          
4 1.0000E-6     0.213     1.000      .          
5 1.0000E-6     0.230     1.000      .          

---- VAR wu   
LOWER     LEVEL     UPPER    MARGINAL 

1 1.0000E-6     0.213     1.000      .          
2 1.0000E-6     0.186     1.000      .          
3 1.0000E-6     0.245     1.000      .          
4 1.0000E-6     0.268     1.000      .          
5 1.0000E-6     0.294     1.000      .          

---- VAR z              -INF      3.904     +INF       .   
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