Skip to main content
Log in

Intracellular colonization of roots of Arabidopsis and crop plants by Gluconacetobacter diazotrophicus

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

We have investigated the interaction of Gluconacetobacter diazotrophicus, a non-nodulating endophytic nitrogen-fixing bacterium isolated from the intercellular spaces of sugarcane, with Arabidopsis thaliana and the crop plants maize (Zea mays), rice (Oryza sativa), wheat (Triticum aestivum), oilseed rape (Brassica napus), tomato (Lycopersicon esculentum), and white clover (Trifolium repens). Using seedlings grown aseptically in sucrose-containing culture media, we have shown that inoculation with very low numbers of G. diazotrophicus results in extensive intracellular colonization of root meristems and progressive systemic intracellular root colonization. Light microscopic examination of thin sections of resin-embedded root tips of Arabidopsis and these crop plants inoculated with β-glucuronidase (GUS)-labeled and with NifH promoter-GUS-labeled G. diazotrophicus showed blue-stained G. diazotrophicus within the cytoplasm of root cells, indicating that intracellular conditions were suitable for nitrogenase gene expression. Electron microscopy confirmed that these bluestained intracellular G. diazotrophicus were within membrane-bounded vesicles. We discuss whether these novel inoculations with G. diazotrophicus are likely to enable non-nodular endosymbiotic nitrogen fixation and whether these inoculations can also provide a plant system to investigate the endosymbiotic theory of the origin of eukaryotic organelles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bergman, B.; Johansson, C.; Söderbäck, E. Tansley review no. 42: the Nostoc-Gunnera symbiosis. New Phytol. 122:379–400; 1992.

    Article  Google Scholar 

  • Boddey, R. M.; Urquiaga, S.; Alves, B. J. R.; Reis, V. Endophytic nitrogen fixation in sugarcane: present knowledge and future applications. Plant Soil 252:139–149; 2003.

    Article  CAS  Google Scholar 

  • Boddey, R. M.; Urquiaga, S.; Reis, V.; Döbereiner, J. Biological nitrogen fixation associated with sugar cane. Plant Soil 137:111–117; 1991.

    Article  Google Scholar 

  • Brewin, N. J. Tissue and cell invasion by Rhizobium: the structure and development of infection threads and symbiosomes. In: Spaink, H. P.; Kondorosi, A.; Hooykaas, P. J. J., eds. The Rhizobiaceae, molecular biology of model plant-associated bacteria. Drodrecht: Kluwer Academic Publishers; 1998:417–429.

    Google Scholar 

  • Burris, R. H. Comparative study of the response of Azotobacter vinelandii and Acetobacter diazotrophicus to changes in pH. Protoplasma 183:62–66; 1994.

    Article  Google Scholar 

  • Caissard, J.-C.; Guivarc'h, A.; Rembur, J.; Azmi, A.; Chriqui, D. Spurious localization of dix-indigo microcrystals generated by the histochemical GUS assay. Transgenic Res. 3:176–181; 1994.

    Article  CAS  Google Scholar 

  • Caissard, J.-C.; Rembur, J.; Chriqui, D. Electron microscopy and X-ray microanalysis as tools for fine localisation of β-glucuronidase activity in transgenic plants harbouring the GUS reporter gene. Protoplasma 170:68–76; 1992.

    Article  CAS  Google Scholar 

  • Cavalcante, V. A.; Döbereiner, J. A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane. Plant Soil 108:23–31; 1988.

    Article  Google Scholar 

  • Cojho, E. H.; Reis, M. V.; Schenberg, A. C. G.; Döbereiner, J. Interactions of Acetobacter diazotrophicus with an amylolytic yeast in nitrogen-free batch culture. Fed. Eur. Microbiol. Soc. Microbiol. Lett. 106:341–346; 1993.

    CAS  Google Scholar 

  • Craig, S. The GUS reporter gene—application to light and transmission electron microscopy. In: Gallagher, S. R., ed. GUS protocols. London: Academic Press; 1992:115–124.

    Google Scholar 

  • Davey, M. R.; Cocking, E. C. Uptake of bacteria by isolated higher plant protoplasts. Nature 239:455–456; 1972.

    Article  Google Scholar 

  • Davey, M. R.; Cocking, E. C. Tissue and cell cultures and bacterial nitrogen fixation. In: Subba Rao, N. S., ed. Recent advances in nitrogen fixation. London: Edward Arnold; 1980:281–343.

    Google Scholar 

  • Davey, M. R.; Power, J. B. Polyethylene glycol-induced uptake of microorganisms into higher plant protoplasts: an ultrastructural study. Plant Sci. Lett. 5:269–274; 1975.

    Article  Google Scholar 

  • De Matos Nogueira, E. Expression of sugarcane genes induced by inoculation with Gluconacetobacter diazotrophicus and Herbaspirillum rubrisubalbicans. Genet. Mol. Biol. 24:199–206; 2001.

    Article  Google Scholar 

  • Dolan, L.; Janmaat, K.; Willmsen, V.; Linstead, P.; Poethig, S.; Roberts, K.; Scheres, B. Cellular organisation of the Arabidopsis thaliana root. Development 119:71–84; 1993.

    PubMed  CAS  Google Scholar 

  • Dong, Z.; Canny, M. J.; McCully, M. E.; Roboredo, M. R.; Cabadilla, C. F.; Ortega, E.; Rodes, R. A nitrogen-fixing endophyte of sugar cane stems. A role for the apoplast. Plant Physiol. 105:1139–1147; 1994.

    PubMed  CAS  Google Scholar 

  • Dong, Z.; Zelmer, C. D.; Canny, M. J.; McCully, M. E.; Luit, B.; Pan, B.; Faustino, R. S.; Pierce, G. N.; Vessey, J. K. Evidence for protection of nitrogenase from O2 by colony structure in the aerobic diazotroph Gluconacetobacter diazotrophicus. Microbiology 148:2293–2298; 2002.

    PubMed  CAS  Google Scholar 

  • Dyall, S. D.; Brown, M. T.; Johnson, P. J. Ancient invasions: from endosymbionts to organelles. Science 304:253–257; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Egener, T.; Hurek, T.; Reinhold-Hurek, B. Endophytic expression of nif genes of Azoarcus sp. Strain BH72 in rice roots. Mol. Plant Microbe Interact. 12:813–819; 1999.

    CAS  Google Scholar 

  • Endre, G.; Kereszt, A.; Kevei, Z.; Mihacea, S.; Kaló, P.; Kiss, G. B. A receptor kinase gene regulating symbiotic nodule development. Nature 417:962–966; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Etxeberria, E.; Baroja-Fernandez, E.; Muñoz, F.; Pozueta-Romero, J. Sucrose-inducible endocytosis as a mechanism for nutrient uptake in heterotrophic plant cells. Plant Cell Physiol. 46:474–481; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Fuentes-Ramirez, L. E.; Caballero-Mellado, J.; Sepulveda, J.; Martinez-Romero, E. Colonization of sugarcane by Acetobacter diazotrophicus is inhibited by high N-fertilization. Fed. Eur. Microbiol. Soc. Microbiol. Ecol. 29:117–128; 1999.

    CAS  Google Scholar 

  • Fuentes-Ramirez, L. E.; Jimenez-Salgado, T.; Abarca-Ocampo, I. R.; Caballero-Mellado, J. Acetobacter diazotrophicus, an indoleacetic acid producing bacterium isolated from sugarcane cultivars of Mexico. Plant Soil 154:145–150; 1993.

    Article  CAS  Google Scholar 

  • Gillis, M.; Kersters, K.; Hoste, B.; Janssens, D.; Kroppenstedt, R. M.; Stephan, M. P.; Teixeira, K. R. S.; Döbereiner, J.; De Ley, J. Acetobacter diazotrophicus sp. nov., a nitrogen-fixing acetic acid bacterium associated with sugarcane. Int. J. Syst. Bacteriol. 39:361–364; 1989.

    Article  Google Scholar 

  • Hernández, L.; Sotolongo, M.; Rosabal, Y.; Menéndez, R. R.; Ramírez, R.; Caballero-Mellado, J.; Arrieta, J. Structural levansucrase gene (LSDA) constitutes a functional locus conserved in the species Gluconacetobacter diazotrophicus. Arch. Microbiol. 174:120–124; 2000.

    Article  PubMed  Google Scholar 

  • Hochholdinger, F.; Park, W. J.; Sauer, M.; Woll, K. From weeds to crops: genetic analysis of root development in cereals. Trends Plant Sci. 9:42–48; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Iniguez, A. L.; Dong, Y.; Triplett, E. W. Nitrogen fixation in wheat provided with Klebsiella pneumoniae 344. Mol. Plant Microbe Interact. 17:1078–1085; 2004.

    PubMed  CAS  Google Scholar 

  • James, E. K. Nitrogen fixation in endophytic and associative symbiosis. Field Crops Res. 65:197–209; 2000.

    Article  Google Scholar 

  • James, E. K.; Gyaneshwar, P.; Mathan, N.; Barraquio, W. L.; Reddy, P. M.; Iannetta, P. P. M.; Olivares, F. L.; Ladha, J. K. Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol. Plant Microbe Interact. 15:894–906; 2002.

    PubMed  CAS  Google Scholar 

  • James, E. K.; Olivares, F. L.; de Oliveira, A. L. M.; dos Reis, F. B. Jr; da Silva, L. G.; Reis, V. M. Further observations on the interaction between sugar cane and Gluconacetobacter diazotrophicus under laboratory and greenhouse conditions. J. Exp. Bot. 52:747–760; 2001.

    PubMed  CAS  Google Scholar 

  • Johansson, C.; Bergman, B. Reconstitution of the symbiosis of Gunnera manicata Linden: cyanobacterial specificity. New Phytol. 126:643–652; 1994.

    Article  Google Scholar 

  • Lambrecht, M.; Okon, Y.; Broek, A. V.; Vanderleyden, J. Indole-3-acetic acid: a reciprocal signalling molecule in bacteria-plant interactions. Trends Microbiol. 8:298–300; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Larkin, P. J. Purification and viability determination of plant protoplasts. Planta 128:213–216; 1976.

    Article  Google Scholar 

  • Margulis, L. Symbiosis in cell evolution. San Francisco: Freeman; 1993.

    Google Scholar 

  • Mateos, P. F.; Baker, D. L.; Perten, M.; Velàzquez, E.; Jiménez, J. I.; Martinez-Molina, E.; Squartini, A.; Orgambide, G.; Hubbell, D. H.; Dazzo, F. B. Erosion of root epidermal cell walls by Rhizobium polysaccharide-degrading enzymes as related to primary host infection in the Rhizobium-legume symbiosis. Can. J. Microbiol. 47:475–487; 2001.

    Article  PubMed  CAS  Google Scholar 

  • McCully, M. E. Niches for bacterial endophytes in crop plants: a plant biologist's view. Aust. J. Plant Physiol. 28:983–990; 2001.

    Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  • Muthukumarasamy, R.; Revathi, G.; Lakshminarasimhan, C. Gluconacetobacter diazotrophicus (syn. Acetobacter diazotrophicus), a promising diazotrophic endophyte in tropics. Curr. Sci. 83:137–145; 2002a.

    CAS  Google Scholar 

  • Muthukumarasamy, R.; Revathi, G.; Loganathan, P. Effect of inorganic N on the population, in vitro colonization and morphology of Acetobacter diazotrophicus (syn. Gluconacetobacter diazotrophicus). Plant Soil 243:91–102; 2002b.

    Article  CAS  Google Scholar 

  • Pan, B.; Vessey, J. K. Response of the endophytic diazotroph Gluconacetobacter diazotrophicus on solid media to changes in atmospheric partial O2 pressure. Appl. Environ. Microbiol. 67:4694–4700; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Parniske, M. Intracellular accommodation of microbes by plants: a common developmental program for symbiosis and disease? Curr. Opin. Plant Biol. 3:320–328; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Pueppke, S. G.; Broughton, W. J. Rhizobium sp. NGR234 and R. fredii USDA257 share exceptionally broad nested host-ranges. Mol. Plant Microbe Interact. 12:293–318; 1999.

    PubMed  CAS  Google Scholar 

  • Reis, V. M.; Döbereiner, J. Effect of high sugar concentration on nitrogenase activity of Acetobacter diazotrophicus. Arch. Microbiol. 171:13–18; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds, E. S. The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J. Cell Biol. 17:208–212; 1963.

    Article  PubMed  CAS  Google Scholar 

  • Šamaj, J.; Baluška, F.; Voigt, B.; Schlicht, M.; Volkmann, D.; Menzel, D. Endocytosis, actin cytoskeleton and signaling. Plant Physiol. 135:1150–1161; 2004.

    Article  PubMed  Google Scholar 

  • Sevilla, M.; Burris, R. H.; Gunapala, N.; Kennedy, C. Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and Nif mutant strains. Mol. Plant Microbe Interact. 14:358–366; 2001.

    PubMed  CAS  Google Scholar 

  • Sevilla, M.; Kennedy, C. Genetic analysis of nitrogen fixation and plant-growth stimulating properties of Acetobacter diazotrophicus, an endophyte of sugarcane. In: Triplett, E. W., ed. Prokaryotic nitrogen fixation: a model system for analysis of a biological process. Wymondham, UK: Horizon Scientific Press; 2000:737–760.

    Google Scholar 

  • Stephan, M. P.; Oliveira, M.; Teixeira, K. R. S.; Martinez-Drets, G.; Döbereiner, J. Physiology and dinitrogen fixation of Acetobacter diazotrophicus. Fed. Eur. Microbiol. Soc. Microbiol. Lett. 77:67–72; 1991.

    Article  CAS  Google Scholar 

  • Stone, P. J.; O'Callaghan, K. J.; Davey, M. R.; Cocking, E. C. Azorhizobium caulinodans ORS571 colonizes the xylem of Arabidopsis thaliana. Mol. Plant Microbe Interact. 14:93–97; 2001.

    PubMed  CAS  Google Scholar 

  • Stracke, S.; Kistner, C.; Yoshida, S.; Mulder, L.; Sato, S.; Kaneko, T.; Tabata, S.; Sandal, N.; Stougaard, J.; Szczyglowski, K.; Parniske, M. A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417:959–962; 2002.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward C. Cocking.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cocking, E.C., Stone, P.J. & Davey, M.R. Intracellular colonization of roots of Arabidopsis and crop plants by Gluconacetobacter diazotrophicus . In Vitro Cell.Dev.Biol.-Plant 42, 74–82 (2006). https://doi.org/10.1079/IVP2005716

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2005716

Key words

Navigation