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Construction of symmetric paired choice
experiments: minimising runs and maximising
efficiency
Abdulrahman S. Alamri1,2, Stelios D. Georgiou 1✉ & Stella Stylianou1

Discrete choice experiments (DCEs) are popular in various fields such as health resources,

marketing, transport, economics, and many others for identifying the factors that influence an

individual’s choice behaviour. Selecting the DCE design is crucial in determining the obser-

vable effects. In this paper, the optimal form of the information matrix is introduced for

attributes at two levels, main effect models, and equal choice probabilities for paired choice

experiments. Additionally, the construction of D-optimal designs is modified to obtain DCEs

when the number of attributes equals the number of runs, including designs with choice sets

of sizes that are not necessarily multiples of 4, i.e. N≢ 0mod4. The designs suggested in this

paper have the same or higher D-efficiencies than existing efficient designs for the same

number of choice sets. Moreover, the proposed design techniques can be extended to be

applied to situations where the attributes of DCEs have a higher number of levels (ℓ > 2),

resulting in designs with the same improved D-efficiencies and sufficiently small sample

sizes. The designs proposed in this paper offer a notable advantage by allowing a reduction of

33% in the number of choice pairs with only a marginal loss of 11% in D-efficiency when

compared to an optimal design. In comparison, the design suggested by other researchers

incurs a higher loss in D-efficiency.
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Introduction

Among the quantitative methods for eliciting stated pre-
ferences, choice experiments have been increasingly
advocated in recent years. Human resources, health,

marketing, economics, tourism, and policy-making are just a few
of the disciplines that utilise choice experiments in their appli-
cations. Choice experiments are a useful tool for understanding
the intricacies of decision-making by individuals. The process
entails the generation of a set of hypothetical scenarios, referred
to as choice sets, which describe a product or service in terms of
various features or attributes. Participants are then asked to make
decisions and trade-offs in these realistic yet hypothetical situa-
tions, revealing their preferences and priorities (Louviere et al.
2000). As a result, constructing an optimal and efficient design of
choice experiments has become a subject of significant interest in
recent years.

A choice experiment was first introduced by Thurstone (1927)
under the context of the “discrete choice experiment”. Since then,
scholars have suggested several various strategies from different
perspectives aiming at obtaining well-designed choice sets that
are either optimal or near-optimal. Of particular interest are the
designs with a small number of choice sets; see for example, the
review paper by Alamri et al. (2023) and the references therein in
the case of models with only the main effect. In the presence of
higher-order interactions, researchers have investigated optimal
designs as discussed in the works of Grasshoff et al. (2003),
Großmann et al. (2012), Chai et al. (2018) and Street and Viney
(2019). Others have suggested the use of full and/or partial pro-
files for DCE designs, the interested reader is referred to the work
of Großmann (2017), Nyarko and Schwabe (2019), Nyarko and
Doku-Amponsah (2022) and Nyarko (2023) for further insights
on this topic. These studies contribute valuable insights for
researchers interested in constructing optimal or near-optimal
choice experiments.

Although practitioners tend to use efficient designs with prior-
required parameters in choice experiment studies (Soekhai et al.
2019), the use of optimal designs that assume all alternatives in a
choice set have the same probability (referred to as the indiffer-
ence assumption) still continues to be used in choice experiment
studies. This is because the necessary priors for efficient designs
are often not easily obtainable (Bliemer and Rose, 2010). Several
algorithms, which are quite common in commercial use, have
been proposed for identifying efficient designs. These algorithms
include the Modified Fedorov algorithm (Cook and Nachtrheim,
1980), the Coordinate Exchange algorithm (Meyer and
Nachtsheim, 1995) or the Relabelling-Swapping-Cycling algo-
rithm (Huber and Zwerina, 1996; Sándor and Wedel, 2002).
Applying any of the above will usually result in the construction
of designs with high D-efficiencies. A common drawback of such
algorithms is that they can not ensure D-optimality over the
whole search space, leaving the possibility that a better design
may exist (Street et al. 2005). A further aspect that must be taken
into account in constructing efficient designs is the potential lack
of prior knowledge regarding the extent and direction of popu-
lation preference in certain situations (Norman et al. 2019).
Therefore, when no prior parameters are assumed (e.g., in pilot
studies), optimal designs are the most efficient designs known
(Norman et al. 2019; Rose and Bliemer, 2009). Moreover, optimal
designs are usually suitable to be applied in cases where the choice
experiments are unlabelled, i.e. all attributes have the same gen-
eric coefficient across all alternatives (Louviere et al. 2000).

Paired choice experiments are an important special case in
which participants have to select between alternatives that are
shown in pairs, based on their perceived utility. Optimal paired
choice designs based on D-optimality, which estimate only the
main effects, have been developed by scholars such Demirkale

et al. (2013); Graßhoff et al. (2004). These designs are also opti-
mal under other criteria such as A-, E- and MS-optimal (Singh
et al. 2015). Despite the fact that their findings are comprehen-
sive, their designs for binary attributes are limited to cases where
N is a multiple of 4 (that is, N≡ 0 mod 4), since orthogonal
designs are only possible for two-level attributes under such
conditions. Therefore, Singh et al. (2015) suggested several con-
structions in which practitioners can construct optimal paired
choice designs for any number of choice sets N. However, the
Singh et al. (2015) techniques do not provide the optimal design
when the number of attributes, k, is equal to the number of choice
sets, N. Thus, we will introduce here some new methods that can
be used to obtain optimal designs when the number of attributes
is equal to the number of runs. These will be designs with choice
sets of sizes that are not necessarily multiples of 4, i.e. N≢ 0mod4.

Orthogonality is one of the desired structural properties in
designing D-optimal choice experiments (Huber and Zwerina,
1996). Several phenomenon approaches have been proposed to
construct small optimal orthogonal designs. However, as the
number of attributes or attribute levels moderately increases, the
number of choice sets in the design grows rapidly, particularly in
paired choice designs. An orthogonal design seeks to minimise
the correlation between attribute levels within the choice sets and
thereby ensures that the design is statistically independent (Street
and Burgess, 2007). However, for certain dimensions, an ortho-
gonal design may be unavailable or unknown. For example, two-
level orthogonal designs can only be constructed when the
number of experimental runs is a multiple of four. In certain
cases, furthermore, an orthogonal design may require a con-
siderably higher number of option scenarios than the theoretical
minimum number of rows, and may also fail to balance the
attribute levels (Rose and Bliemer, 2009). Controversies still exist
in the literature concerning problems with the use of orthogonal
designs in practice, and interested readers may consult the works
of (Rose and Bliemer, 2009).

When an orthogonal design is not available and a D-optimal
design is desired for a practitioner, there are only two options: (1)
go through the literature for construction that precisely matches
the desired sample size, number of attributes, and attribute levels,
or (2) use a computer-aided construction for an approximated D-
optimal design that relies on algorithms. These algorithms, which
are quite common in commercial use, can provide a design that is
highly D-efficient using many random starting designs but cannot
ensure D-optimality of the resulting design over the whole search
space (Cuervo et al. 2016). Since the 1950s, however, the literature
has presented direct construction methods for generating D-
optimal designs, often referred to as “weighing designs”. These
designs were initially developed to determine the unknown
weights of a given number of P objects using a specified number
of weighings N (P ≤N), using either a single spring balance or a
chemical balance with two pans (Graczyk, 2013). A “spring bal-
ance design” is a design in which a selection of the P objects
would be placed in a single pan together, hence the entries of the
incidence matrix would be 1 if an object is presented, otherwise 0.
However, a “chemical balance design” is a design where two
groups are selected from the P objects and placed in each of the
two pans, hence the entries of the incidence matrix are typi-
cally+ 1 if the object is put on the left pan, − 1 if the object is put
on the right pan, and 0 entry if the object is not selected.
Throughout this paper, we propose the construction of weighing
designs using “spring balance” to construct D-optimal symmetric
paired choice designs for main effects models. The term “Spring
balance” refers to a type of design where two-level factors are
used and each factor always has one level selected (i.e., no zero
entries). This can be seen as a special case of weighing designs.
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The formulations of the weighing design matrices included in this
article are original contributions from King et al. (2020).

The subsequent sections of this paper will be organised as
follows; In Section Preliminary Definitions and Notation, defi-
nitions and notations pertinent to the study will be presented. In
Construction of D-optimal choice design, we present four dif-
ferent methods for constructing D-optimal paired choice designs
for attributes at two levels, main effect models, and equal choice
probabilities. These methods rely on the assumption that the
number of attributes, k, is equal to the number of choice sets, N,
as this is the minimum number of runs for which we can obtain a
D-optimal design. While (Singh et al. 2015) constructed D-opti-
mal two-level choice designs for all existing possible combina-
tions of attributes and runs, their constructions cannot provide
the D-optimal when the number of attributes, k, is equal to the
number of choice sets, N. Therefore, the methods we develop here
improve the designs for all practical cases that have equal or fewer
than 12 attributes. In DCEs with more than two-levels symmetric
attributes, we extend these methods to be applied for attributes
with more than two levels. Notably, this extension yields a pro-
nounced reduction in the number of runs for the designs gen-
erated in this paper compared to the existing designs found in the
literature. This has practical applications and implementations as
one would like the respondents to maintain their interest in the
survey. In Case Study, a simulation study is conducted to verify
the advantages of the methodology proposed in this paper.
Ultimately, Section Discussion concludes this paper by providing
a concise analysis of the construction methods presented earlier,
comparing them to the designs proposed by Graßhoff et al.
(2004), and highlighting potential avenues for improvement and
future research.

Preliminary definitions and notation
In this article, we consider choice experiments with N choice sets,
where each choice set is composed of two alternatives, resulting in
a total of m= 2 options per choice scenario. It is noteworthy that
in the context of choice experiments, designs where each choice
set only includes two alternatives are sometimes referred to as “a
paired comparison design” (Graßhoff et al. 2004). In each choice
set n, the model should not have the same two alternatives,
n1 ≠ n2, where ni is the ith alternative in the nth choice set,
n= 1, 2, . . . ,N and i= 1 and 2. In this context, each alternative is
defined by a set of symmetric attributes k (the same number of
levels in all attributes), where these attributes may have two or
more levels, denoted by ℓ. Thus, there are L= ℓk possible options
in total. It is assumed that all attributes appear in the utility
function of each alternative, each attribute takes one of the ℓ

levels, and these levels are represented numerically by x, where
x∈ {0, 1, . . . , ℓ− 1}. Note that the attribute levels of the alter-
natives are chosen to be as different as possible to maximise the
information (utility) obtained from the choice experiment.

The multinomial logit (MNL) model is a statistical model that is
often used for analysing DCEs (choice experiments). Throughout
this paper, the DCE designs are considered under the MNL model
for estimating the main effects. The probability Prnj that a particular
alternative j is chosen from the paired alternatives by the respon-
dent r in the set of choices n is expressed as the relationship
between the parameter for the chosen alternative and the sum of the
parameters corresponding to all the options in the set of options,

Prnj ¼
expðVrnjÞ

∑
2

i¼1
expðVrniÞ

ð1Þ

where Vrnj ¼ ∑K
k¼1 βkxrnjk; x represents the observed attribute levels

of each alternative and β represents the effect of the attribute levels

on the utility using maximum likelihood estimation to be estimated.
Thus, the utility of alternative j preferred by the respondent r in the
set of choices n is Urnj=Vrnj+ ϵrnj, which consists of an observed
component Vrnj and an unobserved component ϵrnj. Typically, these
parameters β are unknown and are estimated from the data col-
lected during the experiment. In our case, we assume that the
parameter of each βk is treated as a generic attribute across all
alternatives. Note that the matrix x is associated with a generated
choice design. However, It is commonly assumed that the unob-
served component ϵrnj follows a type 1 extreme value (EV1) dis-
tribution that is independently and identically distributed (IID),
which results in the MNL model (see McFadden, 1974).

The purpose here is to generate optimal paired choice
experiments that provide the optimal k-tuple of attribute levels
per task, which meet a specified criterion for a given total number
of choice sets. This criteria is generally related to the information
matrix of the design, also called C-matrix, which is computed as
C ¼ BΛB0 for estimating the main effects with no interactions
under the orthonormal coding. Recently, Das and Singh (2020)
proved that deriving the information matrix of choice experi-
ments using linear effects coding, as mentioned in (Huber and
Zwerina, 1996), or orthonormal coding, as mentioned in (Street
and Burgess, 2007), is equivalent when seeking optimal designs.
Thus, the matrix Λ= [Λ(r, s)] is a square matrix of order L with
rows and columns indexed by 0, 1, . . . , L− 1. The elements of this
matrix, Λ(r, s), is given by

Λðr; sÞ ¼
1
4N ηr; if r ¼ s so-called diagonal entries

� 1
4N ηr;s; if r ≠ s so-called off-diagonal entries

(
;

ð2Þ

where ηr represents the frequency of option r appearing in the
design, while ηr,s represents the frequency of options r and s
appearing together in the same choice set of the design. Equation
(2) is a simplified form of the Lambda matrix, that was given in
Burgess and Street (2005), since in this paper we only consider
pairs of choices, i.e. m= 2. The matrix B is a normalised contrast
matrix of order k(ℓ− 1) × L in which the rows of B represent a set
of orthogonal contrasts that correspond to the main effects and
satisfies BB0 ¼ Ikð‘�1Þ. To know more about how to define the
contrast matrix B, see the review paper by Alamri et al. (2023)
and the example explained there.

In this paper, we focus on comparing designs using D-
optimality since the D-optimal criterion is invariant to repar-
ameterization. Let Cℓ,opt denote the D-optimal form of the
information matrix for any given choice design with ℓ levels.
Burgess and Street (2005) identified the D-optimal choice design
with a fixed choice set size m. Only paired choice designs (m= 2)
with symmetric attributes (the same number of levels in all
attributes) will be covered in this paper. Therefore, the result of
Burgess and Street (2005) is simplified and we have that number
of levels will be equal to or greater than the size of the choice set
(ℓ ≥m). In this case, the number of possible pairs for m= 2 is
always one, S=m(m− 1)/2= 1, ∀ ℓ ≥ 2. Thus, the largest corre-
sponding determinant, det(Cℓ,opt), for paired choice designs, is
given in Theorem 2.1. The interested reader may consult the
works of Demirkale et al. (2013) for information on general-
isations of this theorem.

Theorem 2.1. Under the assumption of equal choice probabilities
and for only testing the main effects, the information matrix of a
D-optimal paired choice design is a block-diagonal matrix with
the qth block equal to [ℓ/(2L(ℓ− 1))]Iℓ−1, ∀ 1 ≤ q ≤ k; that is, the
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corresponding determinant is

detðC‘;optÞ ¼
‘

2Lð‘� 1Þ

� �kð‘�1Þ
: ð3Þ

As a practical matter, D-efficiency in which measuring the
quality of any exact design, for only testing the main effects
model, is calculated as,

eff D ¼ detðCÞ
detðC‘;optÞ

" # 1
kð‘�1Þ

; ð4Þ

It is worth noting that other researchers, such as Graßhoff
et al. (2004) and Dey et al. (2017), also identified the D-
optimal designs under a different model called the linear
paired comparison model. Others have suggested the use of
A-optimality in linearised models for DCE designs, see for
example Singh et al. (2021). However, Großmann and
Schwabe (2015) showed that when assuming equal choice
probabilities and only estimating main effects, “the informa-
tion matrix under the linear paired comparison model is
identical to the one under the MNL model for designs with
only paired choice sets”. Consequently, any optimal design
under the MNL model is also optimal under the linear paired
comparison model and vice versa.

Let Dζ,ℓ represent the set of all connected choice sets of size two
that involve k attributes, each with ℓ levels. To construct optimal
pair-choice sets, it is desirable to start with the Wr,k matrix; that
is, an D-optimal design derived directly from the theory of
weighing designs. Throughout this article, we consider only
saturated weighing designs, that is, a design has as many runs as
there are parameters r= k, with two-level attributes coded as− 1
and 1 for each attribute. Thus, we have an optimal paired choice
design with parameters N= r(ℓ− 1)ℓ/2 and k, for a particular
level ℓ. Note that for two-level designs (ℓ= 2), we have N= r.

Lemma 2.1. None of the symmetric choice designs in pairs is D-
optimal unless each of the levels for each attribute q, 1 ≤ q ≤ k,
appears exactly r(ℓ− 1) times, which is known as a level balance.

Construction of D-optimal choice design
This section showcases the use of D-optimal designs in building
DCEs with two-level symmetric attributes for the sole purpose of
identifying the main effects. It includes the construction of
designs with smaller run sizes and increased efficiency for cases
where the number of choice sets, denoted as N, is not divisible by
four. Additionally, it outlines the potential extension of this
methodology for DCEs with symmetric attributes that have more
than two levels.

DCEs with two-level symmetric attributes. Here, we will pre-
sent some direct constructions of D-optimal designs for main-
effect models, two-level pairwise choice sets and equal choice
probabilities. These methods can be grouped into four cases,
each case corresponding to one of the four possible remain-
ders when N is divided by 4 (N mod 4). Here, the modular
notation, N ≡ c mod 4, will be used, that is, c is the remaining
of dividing N by 4 (i.e., N= c+ 4), where c= 0, 1, 2,
3 separately. We base our approach on Theorem 1 of Singh
et al. (2015), which established that the search for an
optimal paired choice design Dζ,2 is equivalent to locating an
optimal design matrix, here denoted as Wr, with
elements ± 1 and 0.

We base our approach on Theorem 1 of Singh et al. (2015),
which established that the search for an optimal paired choice

design Dζ,2 is equivalent to locating an optimal design matrix
Wr with elements ± 1 and 0, we present the optimal form of C-
matrix for binary-attributes (2k) in paired choice designs,
in which each choice set consists of a pair of alternatives
and each attribute has two levels ℓ= 2. Specifically, we provide
the optimal format of paired choice experiments for each
case and show how to construct an optimal choice set. As
many of these approaches are rooted in the field of discrete
mathematics, we provide additional concepts as needed.

Let C�
c;k denote the optimal form of the C-matrix for the paired

choice design, where k indicates the size of C, and c∈ {0, 1, 2, 3} is
an identifier for the case. In some cases, it is possible to have a
design that is D-optimal, even though the corresponding C-
matrix does not match the optimal form C�

c;k for the given run
size of choice sets. This occurs when the number of attributes for
these designs does not satisfy the specific criteria required to
attain the ideal C�

c;k. Through suitable modifications to the
constructions in the weighing designs, new D-optimal paired
choice designs in Dζ,2 are constructed, as demonstrated in
construction 3.1.

Construction 3.1: Suppose that there is a Wr weighing design of
two levels and r rows (and columns). The first alternative in the
paired choice sets is P1= (Wr+ 1)/2, and the second alternative
in the choice sets will be P2= (1−Wr)/2. This gives the D
optimal pair choice design Dζ,2= [P1, P2] with N= r choice sets
for each of the k= r attributes.

Case 0. This is the case, N is a multiple of 4 (N≡ 0 mod 4), where
the designs are D-optimal with 100% efficiency for which
orthogonal designs exist “the most notable being the family
designs of Plackett and Burman (1946)”. The optimal form of the
C-matrix for this case was proved by Street and Burgess (2007)
and is given by

C�
0;k ¼

1
2k

0 0 � � � 0

0 1
2k

0 � � � 0

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � 1
2k
:

0
BBBBB@

1
CCCCCA ð5Þ

Its determinant is

detðC�
0;kÞ ¼

1

2k

� �k
: ð6Þ

In this case, the matrix Wr is simply referred to as a Hadamard
matrix of order r, hereafter denoted as Hr, which is an r × r square
matrix with all elements equal to ± 1 and satisfies
HrH

0
r ¼ H0

rHr ¼ rIr . Typically, these matrices are standardised
to have the form with all 1’s in the first row and column. Note
that this class of matrix has the largest determinant among all
matrices created from binary matrices of size r(Hadamard, 1893).
Sylvester (1867) is credited with inventing the earliest construc-
tion method, which is a recursive construction with run sizes that
are powers of 2:

Sylvester construction for Hadamard matrices

H1 ¼ 1
� �

; H2k ¼
H2k�1 H2k�1

H2k�1 �H2k�1

� �
fork ¼ 1; 2; � � � :
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Example 3.1.

H1 ¼ 1
� �

; H2 ¼
1 1

1 �1

� �
; H4 ¼

1 1 1 1

1 �1 1 �1

1 1 �1 �1

1 �1 �1 1

2
6664

3
7775;

H8 ¼

1 1 1 1 1 1 1 1

1 �1 1 �1 1 �1 1 �1

1 1 �1 �1 1 1 �1 �1

1 �1 �1 1 1 �1 �1 1

1 1 1 1 �1 �1 �1 �1

1 �1 1 �1 �1 1 �1 1

1 1 �1 �1 �1 �1 1 1

1 �1 �1 1 �1 1 1 �1

2
66666666666664

3
77777777777775

Goethals and Seidel (1967) extended the work of Williamson
(1944) in the construction of a Hadamard matrix of order 4r
using cyclic (or “circular”) convolution. Details on how to
construct the Goethals-Seidel construction for Hadamard
matrices can be found in King et al. (2020).

It is worth noting that each sub-design of a Hadamard matrix
is an orthogonal main-effect plan since a Hadamard matrix has
orthogonal rows and columns. Therefore, optimal designs with
less number of attributes than runs (k < r) can be constructed
from a Hadamard matrix, donated as Hr,k, for which the runs r
were 2 or a multiple of 4 (King et al. 2020). However, choice
design usually requires that all rows need to be distinct; therefore,
no two rows in the Wr,k matrix should have the same entries
of ± 1. Note that one can randomly delete from a Hadamard
matrix as a maximum of r/2− 1 columns, but more than that, the
columns need to be carefully deleted to ensure that all rows are
distinct (Singh et al. 2015). As established in Graßhoff et al.
(2004), for k ≤ r, the choice design C�

0;k in which a Hadamard
matrix (Hr,k) used to construct a paired choice design is a D-
optimal design, for which a Hadamard matrix of order r is
known. However, for which a Hadamard matrix of order r is
unknown, still in some cases a D-optimal paired choice design
can be constructed even for k≤r. Singh et al. (2015) identified,
under the main effects model, optimal two-level choice designs
for any number of choice pairs. However, in the saturated case
where k= r and orthogonal designs do not exist, we propose
alternative types of matrices that yield higher D-efficiencies
compared to those reported by Singh et al. (2015). Details are
proposed in the following sections.

Case 1. This is the case in which N is odd and one more than a
multiple of 4 (N≡ 1 mod 4), where it is not possible to construct
orthogonal designs. After modifying the optimal form of the
information matrices for the D-optimal design matrix, which was
first determined by Barba (1933), we present the optimal form of
the C-matrix for this case, up to the absolute value of the off-
diagonal terms, as shown in matrix (7). The formulation of C�

1;k

for this case is an original contribution from the authors of this
paper.

C�
1;k ¼

1

2kk

k 1 1 � � � 1

1 k 1 � � � 1

..

. ..
. ..

. . .
. ..

.

1 1 1 � � � k:

0
BBBB@

1
CCCCA ð7Þ

The matrixWr can be generated from the incidence matrix of a
Balanced Incomplete Block Design (BIBD) with r treatments in r
blocks and ðr þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

2r � 1
p Þ=2 treatments per block. However, such

a Wr matrix exists only if
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2r � 1

p
is an integer (Raghavarao,

1959). To generate the Wr design matrix, the 0’s in the incidence
matrix are replaced with− 1’s. This technique gives a D-efficiency
of 94.09% for choice pairs when only testing the main effects.
However, all practical cases that we cover here involve equal or
less than a 12 number of attributes, so only a BIBD design with
r= 5 can be used to construct the matrix Wr sinceffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2 ´ 5Þ � 1
p

¼ ffiffiffi
9

p ¼ 3 is an integer. It should be noted that
this design achieves the optimal form of C�

1;k.
Although D-optimal saturated designs do exist for r values that

do not satisfy the condition earlier. To date, a widely general
technique for generating D-optimal designs in such scenarios has
not yet been established. King et al. (2020) highlighted some of
the procedures that have been the most successful general
methods for constructing highly D-efficient saturated designs,
such as Farmakis and Kounias (1987); Orrick and Solomon
(2007). However, for certain small run sizes, r= 9, 17, 21, and37,
a D-optimal saturated design has been confirmed using more
specialised procedures. Only one design will be presented here for
run sizes r= 9, while other run sizes can be found in the
supplementary files of King et al. (2020). Thus, the Wr matrix can
be expressed as

Wr ¼
1 1 107
1 1 �107
107 �107 B7;7;3

2
64

3
75;where

B7;7;3 ¼

1 1 �1 1 �1 �1 �1

�1 1 1 �1 1 �1 �1

�1 �1 1 1 �1 1 �1

�1 �1 �1 1 1 �1 1

1 �1 �1 �1 1 1 �1

�1 1 �1 �1 �1 1 1

1 �1 1 �1 �1 �1 1

2
666666666664

3
777777777775

B7,7,3 is the incidence matrix of a BIBD with 7 treatments in 7
blocks and 3 treatments per block, with the 0 entries replaced
with− 1’s. This design was first constructed by Ehlich (1964b).
Using the W9 design, constructed from B7,7,3 as shown above, in
construction 3.1, gives a D-efficiency of 93.20% for choice pairs
when only testing the main effects. This design is the highest
efficiency in the literature for a DCE design with this parameter
(9 attributes and 9 choice sets), and also achieves the optimal
form of C�

1;k.

Case 2. This is the case in which N is even but not a multiple of 4
(N≡ 2 mod 4), where it is not possible to construct orthogonal
designs. After modifying the optimal form of the information
matrices for the D-optimal design matrix, which had been
determined independently by Barba (1933); Ehlich (1964b), we
present the optimal form of the C-matrix for this case as shown in
matrix (8). The formulation of C�

2;k for this case is an original
contribution from the authors of this paper.

C�
2;k ¼

1

2kk

A 0

0 A

� �
; ð8Þ

where

A ¼

k 2 2 � � � 2

2 k 2 � � � 2

..

. ..
. ..

. . .
. ..

.

2 2 2 � � � k

0
BBBB@

1
CCCCA

Ehlich (1964b) identified the D-optimal saturated designs, how-
ever, such a Wr matrix exists only if r− 2 is a sum of two squares.
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Thus, the Wr matrix can be expressed as:

Wr ¼
P Q

�Q0 P0

� �

where P and Q are both circulant matrices. A circulant matrix is a
type of square matrix in linear algebra, characterised by the
property that each of its row vectors consists of the same elements
as the others, but shifted cyclically by one position relative to its
predecessor. This circular nature means that circulant matrices
can be uniquely identified by specifying only their first row. An
example for practical use includes the cases with k= 6, 10. If
k= 6, then P= circ(1, 1,− 1) and Q= circ(1, 1, 1), while if
k= 10, then P=Q= circ(1, 1, 1, 1,− 1). The D-efficiencies of
k= 6 and 10 are 90.48% and 94.09%, respectively. It is important
to note that this design achieves the optimal form of C�

2;k, which
improves the D-efficiencies of the DCE designs known in the
literature. For example, k= 6 and 10 the DCE designs from Singh
et al. (2015) have D-efficiency that is approximately 84%.

Case 3. This is the case, in which N is odd and three more than a
multiple of 4 (N≡ 3mod4), where it is not possible to construct
orthogonal designs. After modifying the optimal form of the
information matrices for the D-optimal design matrix, which had
been determined independently by Ehlich (1964a), we present the
optimal form of the C-matrix for this case as shown in matrix (9).
The formulation of C�

3;k for this case is an original contribution
from the authors of this paper.

C�
3;k ¼

1

2kk

Au �1

�1 Av

� �
; ð9Þ

where

Aj ¼

Ar1
�1 �1 � � � �1

�1 Ar2
�1 � � � �1

..

. ..
. ..

. . .
. ..

.

�1 �1 �1 � � � Arj

0
BBBBB@

1
CCCCCA

and

Ark
¼

k 3 3 � � � 3

3 k 3 � � � 3

..

. ..
. ..

. . .
. ..

.

3 3 3 � � � k

0
BBBB@

1
CCCCA;

where rk is the size of Ark
; j ¼ u; v is the size of Aj, and s= u+ v is

the total number of Ark
blocks.

As is commonly understood, the construction methods for
this particular case are considered to be the most challenging to
obtain among the four. Therefore, they are more fragmented
than the previous three cases. So far, no other than
K= N= 3 saturated designs have been found that can achieve

the optimal form. Note that, for some of these combinations,
there may be two optimal values of s for a given scenario, and
constructs that can yield designs for these values have been
developed. While there are many highly D-efficient saturated
designs, only for certain small run sizes, r= 7, 11, 15, and19, D-
optimal saturated designs have been confirmed using more
specialised procedures. Only two designs are presented here, for
run sizes r= 7and11, where other run sizes can be found in the
supplementary files of King et al. (2020). Thus, the Wr matrix
for r= 7 can be expressed as:

Wr ¼
PB6;6;3;3;2;1 �16

�106 1

" #
;where

PB6;6;3;3;2;1 ¼

�1 �1 1 �1 1 1

1 �1 �1 1 �1 1

1 1 �1 �1 1 �1

�1 1 1 �1 �1 1

1 �1 1 1 �1 �1

�1 1 �1 1 1 �1

2
666666666664

3
777777777775

PB6,6,3,3;2,1 is the incidence matrix of a Partially Balanced
Incomplete Block Design PBIBD with 6 treatments in 6 blocks
and 3 treatments per block with each treatment occurring in 3
blocks with λ1 = 2 for the 1st association and λ2 = 1 for the
2nd association, with the 0 entries replaced with− 1’s. Details
on how to construct the necessary PBIBD matrices can be
found in Street and Street (2006); Toutenburg et al. (2009).
This design was first constructed by Williamson (1946), and it
gives a D-efficiency of 87.82% for choice pairs when only
testing the main effects. This is the highest efficiency in the
literature for a DCE design with this parameter (7 attributes
and 7 choice sets). While the C-matrix is not in the optimal
form of C�

3;k, it still exhibits a block form similar to the
optimal form.

For the case of r= 11, three different constructions exist in
which D-optimal saturated designs have been confirmed all with
the same determinant. The design given here achieves the optimal
form of C�

3;k with the smallest sum of squares of off-diagonal terms
(King et al. 2020), while the other two designs can be found at this
website http://www.indiana.edu/~maxdet/fullPage.shtmltableTop.
Thus, the Wr matrix for r= 11 can be expressed as:

where H2 is the Hadamard matrix of order 2, I2 is the 2 × 2
identity matrix, J2 is the 2 × 2 matrix of all 1’s, and 12 is the 2 × 1
vector of all 1’s. This design was first constructed by Ehlich
(1964a), and it gives a D-efficiency of 91.20% for choice pairs
when only testing the main effects. This is the highest efficiency in
the literature for a DCE design with this parameter (11 attributes
and 11 choice sets).
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DCEs with more than two-levels symmetric attributes. In the
previous section, we discussed four direct constructions of D-
optimal two-level paired choice designs for main effects
models. This section aims to extend those constructions to be
able to generate paired choice designs with more than two-level
symmetric attributes and main effects models. One significant
issue with the current optimal paired choice designs is the
rapid increase in the number of choice sets as the number of
attributes k or levels ℓ increases. Such large designs are not
really appealing to a practitioner. Alternatively, researchers
such as Street and Burgess (2007) and Dey et al. (2017) sug-
gested several optimal design construction methods with
manageable numbers of pairs with reasonably high D-effi-
ciencies for the estimation of the main effects. For instance, an
orthogonal array of strength two plus a collection of sets of
generators given by Burgess and Street (2005), denoted as
OA+ g, can be used in this case to construct D-optimal sym-
metric paired choice designs. In particular, it is not always easy
to find appropriate generators, especially for practitioners
(Großmann and Schwabe, 2015).

Graßhoff et al. (2004) also used a Hr matrix to construct D-
optimal symmetric paired choice designs by replacing the
coded levels ± 1 in each row with a group of combinations,
which leads to a matrix of pairs where each row represents one
pair of the choice set in the optimal design. However, their
approach, for N ≢ 0 mod 4, generates a matrix with an
excessive number of columns to the optimal design. In this
paper, those proposed construction methods, mentioned in
Section 3 for N ≢ 0 mod 4, are used instead of only Hr matrix.
Those methods yield highly D-efficient paired choice designs
with fewer choice pairs than those of Graßhoff et al. (2004).
Next, we present a straightforward technique for extending
those methods to generate paired choice designs with
symmetric attributes, as shown in Construction 3.2.

Construction 3.2: For ℓ levels, there are (ℓ− 1)ℓ/2 combinations
in pairs (i, j). First, construct a D-optimal paired choice design
Dζ,2= [P1, P2] with N= r choice sets each of k attributes as shown
in Construction 3.1. Then, for each pair (i, j), i < j, i,
j= 0, 1,…, ℓ− 1, the first choice is T= jP1+ iP2 and the second
choice set is F= iP1+ jP2. This gives highly D-efficient paired
choice design Dζ,ℓ= [T, F] with N= r(ℓ− 1)ℓ/2 choice sets each
of k attributes.

Example 3.2. Assume there are five attributes (k= 5), each with
four levels (ℓq= 4), and the levels are represented by 0, 1, 2, and 3.
We will demonstrate how our suggested construction metho-
dology can generate a D-optimal paired choice design Dζ,3 for five
attributes (k= 5), each with four levels (ℓq= 4) and run size equal
to 30. Note that this is a new design and is presented here for the
first time.

Following the Construction 3.2, for ℓ= 4 levels, there are
(ℓ− 1)ℓ/2= (4− 1)4/2= 6 combinations in pairs
{(0, 1), (0, 2), (0, 3), (1, 2), (1, 3)and(2, 3)}. From case 3.1.2, the
size of runs for two-level is five r= 5 with five columns.
Therefore, the total number N of choice designs in pairs that
form the optimal design is equal to the size of weighing design
r times the number of combinations in pairs (i, j), calculate as
follows:

N ¼ rð‘� 1Þ‘=2 ¼ 5ð4� 1Þ4=2 ¼ 30:

Table 1, displayed below, represents the D-optimal paired
choice design Dζ,3 for five attributes (k= 5), each with four levels
(ℓq= 4).

This new design has produced a DCE with fewer distinct
choice sets than in a DCE constructed using Graßhoff et al.
(2004), Street and Burgess (2007), or Demirkale et al. (2013) with
48 choice sets. Our proposed design results in a reduction of
37.5% in the number of choice pairs, while experiencing a 10%
decrease in D-efficiency compared to the optimal design.

Case study
We conduct a simulation study and build two DCE designs using
two different techniques under the same circumstance to illustrate
the advantage of our designs in identifying the main effects with
smaller standard errors. The first design, noted as DCE I, corre-
sponds to the methods discussed in Construction of D-optimal
choice design, and the other one, noted as DCE II, corresponds to
the methods discussed in Singh et al. (2015). To ensure con-
sistency in our case study, we restrict our analysis to designs that
involve only two alternatives and consist of six attributes, each of
which has only two levels. We report for each design D-effi-
ciencies (denoted by effD), Dz-error (assumed zero priors for all
parameters), and Dp-error (assumed non-zero priors for all
parameters). Also, we analyse the results of each DCE using the
MNL model to compare their parameter estimates. Two models

Table 1 Construction of optimal design Dζ for main effects only.

Combinations (0, 1) (1, 2)
1 ((0 1 1 1 1), (1 0 0 0 0)) 16 ((1 2 2 2 2), (2 1 1 1 1))
2 ((1 0 1 1 1), (0 1 0 0 0)) 17 ((2 1 2 2 2), (1 2 1 1 1))
3 ((1 1 0 1 1), (0 0 1 0 0)) 18 ((2 2 1 2 2), (1 1 2 1 1))
4 ((1 1 1 0 1), (0 0 0 1 0)) 19 ((2 2 2 1 2), (1 1 1 2 1))
5 ((1 1 1 1 0), (0 0 0 0 1)) 20 ((2 2 2 2 1), (1 1 1 1 2))
Combinations (0, 2) (1, 3)
6 ((0 2 2 2 2), (2 0 0 0 0)) 21 ((1 3 3 3 3), (3 1 1 1 1))
7 ((2 0 2 2 2), (0 2 0 0 0)) 22 ((3 1 3 3 3), (1 3 1 1 1))
8 ((2 2 0 2 2), (0 0 2 0 0)) 23 ((3 3 1 3 3), (1 1 3 1 1))
9 ((2 2 2 0 2), (0 0 0 2 0)) 24 ((3 3 3 1 3), (1 1 1 3 1))
10 ((2 2 2 2 0), (0 0 0 0 2)) 25 ((3 3 3 3 1), (1 1 1 1 3))
Combinations (0, 3) (2, 3)
11 ((0 3 3 3 3), (3 0 0 0 0)) 26 ((2 3 3 3 3), (3 2 2 2 2))
12 ((3 0 3 3 3), (0 3 0 0 0)) 27 ((3 2 3 3 3), (2 3 2 2 2))
13 ((3 3 0 3 3), (0 0 3 0 0)) 28 ((3 3 2 3 3), (2 2 3 2 2))
14 ((3 3 3 0 3), (0 0 0 3 0)) 29 ((3 3 3 2 3), (2 2 2 3 2))
15 ((3 3 3 3 0), (0 0 0 0 3)) 30 ((3 3 3 3 2), (2 2 2 2 3))
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were considered as the true models, with six main effects, as
follows:

μ1 ¼ �0:3x1 � 0:2x2 þ 0:3x3 þ 0:2x4 þ 0:2x5 � 0:3x6: ð10Þ

μ2 ¼ �0:5x1 þ 0:5x2 � 0:5x3 þ 0:5x4 � 0:5x5 þ 0:5x6: ð11Þ
The MNL probability (1) for each choice within each choice set

was then calculated. After that, we duplicated each DCE design
250 times to represent 250 respondents. For each of the two
DCEs, we then simulated a response choice based on the multi-
nomial distribution using these probabilities.

As an example, Table 2 illustrates a single duplicated simula-
tion for DCE I using the first true model (10). The first column of
Table 2 displays the identification number of the choice set, and is
referred to as the “choice set" column. The second column dis-
plays the identification number of the alternative within each
choice set, and each choice set contains two alternatives. The
following six columns correspond to the six main effects of DCE
I. The probability (1) of each alternative is shown in the second to
last column. The last column displays the choice selected, that is,
1 identifies the preferred alternative. The six main effects were
incorporated into the model for each of the two DCEs utilising
the simulated responses, that is, the choice column in Table 2. We
used the ‘mlogit’ package in R (Croissant et al. 2012) to estimate
the parameter values. The estimated parameter values along with
the corresponding standard errors of the estimates were tabulated
in Table 3, based on the actual models.

The findings in Table 3 indicate that both DCE designs can
effectively identify all the parameters present in both true models,
namely (10) and (11). However, the DCE I outperformed all tests,

as it gave better results in terms of effD,Dz-error, and Dp-error.
The DCE I produces effD of 0.9048, Dz-error of 0.7368 and Dp-
error of 0.7883, while DCE II produces effD of 0.8399, Dz-error of
1 and Dp-error of 1.0937. In addition, DCE I gives closer esti-
mates of the true model with smaller standard errors than DCE II
for all the parameters. It is worth noting that with an increase in
sample size, the parameter estimates are expected to be more
accurate, and this is demonstrated in Figure 1, where the standard
errors for DCE I and DCE II converge as the sample size
increases.

This simulation study shows that DCE I improve the D-effi-
cient, Dz-error and Dp-error over DCE II, that is, we can have
better results in terms of the parameter estimates. As is com-
monly understood, DCE designs that possess higher D-efficiency
aim to maximise differences between attribute levels, whereas
DCE designs that exhibit higher Dz-error or Dp-error strive to
minimise elements that are likely to appear within the AVC
matrices of models that are estimated from data obtained using
DCE design.

Discussion
The paper proposes a new method for constructing efficient
paired choice designs for main effects models using a “spring
balance" approach. This method addresses the issue of generating
D-optimal designs when orthogonal designs are not available and
practitioners desire optimal designs. Two direct construction
methods are presented, both of which begin with the Wr matrix,
an D-optimal design derived from the weighing design theory.
The methods are particularly useful when designing for situations
where orthogonal designs are not available and attributes have

Table 2 Simulated discrete choice experiment I.

Choice set Alternative x1 x2 x3 x4 x5 x6 Probability Choice

1 1 1 1 1 1 -1 1 0.269 0
1 2 -1 -1 -1 -1 1 -1 0.731 1
2 1 1 1 1 1 1 -1 0.731 0
2 2 -1 -1 -1 -1 -1 1 0.269 1
3 1 1 1 1 -1 1 1 0.269 0
3 2 -1 -1 -1 1 -1 -1 0.731 1
4 1 -1 -1 1 1 1 1 0.858 1
4 2 1 1 -1 -1 -1 -1 0.142 0
5 1 1 -1 -1 1 1 1 0.354 1
5 2 -1 1 1 -1 -1 -1 0.646 0
6 1 -1 1 -1 1 1 1 0.450 1
6 2 1 -1 1 -1 -1 -1 0.550 0

Table 3 Comparison of DCE designs.

Designs DCE I DCE II

μ1 μ2 μ1 μ2
effD 0.9048 0.9048 0.8399 0.8399
Dz-error 0.7368 0.7368 1 1
Dp-error 0.7883 0.9601 1.0937 1.2216

Effect Estimates and Standard Errors

μ1 μ2 μ1 μ2
x1 −0.260 (0.0319) −0.522 (0.0491) −0.367 (0.0339) −0.532 (0.0512)
x2 −0.237 (0.0318) 0.492 (0.0484) −0.250 (0.0337) 0.462 (0.0513)
x3 0.323 (0.0315) −0.494 (0.0483) 0.351 (0.0337) −0.473 (0.0501)
x4 0.228 (0.0315) 0.511 (0.0485) 0.163 (0.0334) 0.544 (0.0521)
x5 0.210 (0.0313) −0.504 (0.0482) 0.175 (0.0331) −0.550 (0.0532)
x6 −0.298 (0.0311) 0.481 (0.0491) −0.320 (0.0330) 0.459 (0.0531)
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only two levels. The methods can also be extended to symmetric
attributes with higher levels, resulting in choice designs with
fewer possible pairs and high D-efficiencies for main effect
estimates.

It is worth noting that construction 3.1 described in this paper
for ℓ= 2, known as “foldover”, followed the method of Street and
Burgess (2004). However, Street and Burgess (2004) used a reg-
ular fractional factorial design of resolution III or higher for only
ℓ= 2 to generate choice pairs. Simultaneously, Graßhoff et al.
(2004) proposed a different technique using Hadamard matrices,
as a case 3.1.1 outlined in this paper where N≡ 0 mod 4, which is
applicable for general ℓ. However, instead of only using Hada-
mard matrices to construct an optimal paired choice design, we
considered other types of the Wr weighing matrices that give
fewer possible choice pairs. These types of matrices were grouped
into four cases, for each case, we presented the best-known
construction methods that construct D-optimal saturated designs
for attributes at two levels and main effects models.

As is known, including very large values of k and/or ℓ into the
designs does not appear to be very practical. As a result, we limit

ourselves to the same k and ℓ values mentioned in Table 2 of
Demirkale et al. (2013), whereas construction 3.2 outlined in this
paper enables one to construct at larger levels. Note that con-
struction 3.4 of Demirkale et al. (2013) yields choice pairs with
the same parameters as those found in Theorem 3 of Graßhoff
et al. (2004). The table presented below, named Table 4, shows a
collection of D-efficient designs and the corresponding reduction
percentage in sample size compared to the optimal design gen-
erated by the Hadamard approach, as stated in Theorem 3 of
Graßhoff et al. (2004). Such a finding holds significant practical
implications, particularly in the context of survey research, where
maintaining respondent interest and minimising the number of
questions they need to answer are key considerations. By
achieving a design with fewer runs while preserving its efficiency,
we can ensure that survey respondents remain engaged and
motivated, resulting in a more efficient and satisfactory survey
experience for all involved parties. Practitioners with the specific
goal of testing for variations across respondents or samples have a
distinct need for using consistent choice sets across all partici-
pants. Consequently, they tend to favour designs that feature a

Fig. 1 Standard Errors of the Designs. Comparison of Standard Error for the two different 2-level designs with Fixed Choices. The standard errors are
provided for all the designs variables x1 to x6.

Table 4 A percentage reduction in simple size using weighing designs compared to D-optimal designs with Hadamard structure.

Attributes Number of choice sets (N) at specific number of levels ℓ D-efficiency Reduction

(k) (ℓ= 2) (ℓ= 3) (ℓ= 4) (ℓ= 5) (ℓ= 6) (ℓ= 7) ⋯ (Deff) (%)

k=5 5 15 30 50 75 105 ⋯ 0.9409 37.5
k=6 6 18 36 60 90 126 ⋯ 0.9048 25
k=7 7 21 42 70 105 147 ⋯ 0.8782 12.5
k=9 9 27 54 90 135 189 ⋯ 0.9320 25
k=10 10 30 60 100 150 210 ⋯ 0.9409 16.7
k=11 11 33 66 110 165 231 ⋯ 0.9120 8.33

*Colour cells represent that designs in which the C-matrix is in a block form similar to the optimal form.
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reduced number of choice sets, as this ensures that respondents
can efficiently complete all the questions within a reasonable
time-frame.

As mentioned earlier in this paper, Singh et al. (2015) con-
structed optimal two-level paired choice designs with distinct
choice sets. These are optimal under the main effects model and
feasible for any number of choice sets. Their method was based
on Hadamard matrices. Their suggestion was to remove columns
and rows as needed to get the desirable optimal designs. Their
constructions work more effectively in the unsaturated case,
where N ≠ K. However, for the saturated case of N= K, where
orthogonal designs do not exist, an alternative design may be
applied using the same methodology. For example, one can
generate the desirable D-optimal design by a different procedure
that is known as “spring balance designs”. In general, both con-
structions define a two-level choice design with the same number
of choice sets, however, using this procedure outlined in this
paper for the same set of parameters gives better D-efficiency than
those found by Singh et al. (2015). For instance, for parameter
sets (ℓ= 2, k= 7), Singh et al. (2015) construction produces a
design with 84.91%D-efficiency, while using the approach
described in this paper produces a design with 87.82%D-effi-
ciency. Also, for some saturated cases, Singh et al. (2015) did not
provide such as N= K= 5 and N= K= 9.

For ℓ= 2, Graßhoff et al. (2004) already highlighted that choice
experiments can be directly derived from the theory of weighing
designs. To our knowledge, there has been no real-world appli-
cation of these techniques, and no software currently incorporates
them directly. This may be due to a lack of summarising of these
techniques for runs that are not multiples of four, as well as
limited knowledge of these techniques by practitioners since many
of them rely on the construction of Hadamard matrices. There-
fore, we have collected and presented techniques that can produce
D-optimal paired choice designs by modifying the constructions of
weighing designs. The designs presented here result in the form of
C�
c;k with a minimal sum of squares of off-diagonal terms.
In addition, we found that extending these techniques to be

applied for attributes with larger levels gives the same D-effi-
ciencies as in the two levels. We also noted that even though C�

c;k
is not in the optimal form, it still exhibits a block form similar to
the optimal form. Colour cells, shown in Table 4, represent that
designs in which the C-matrix is in a block form. This could
possibly be due to the fact that all the levels in the two alternatives
appear the same number of times in each attribute. Comparing
the method proposed in this paper with Graßhoff et al. (2004),
there are, on average, 8.33–37.5% fewer choice pairs in the design
with reasonably high D-efficiencies of at least 90% except for
k= 7, and those designs were 87.82% efficient. In addition, there
are only some parameter sets, such (ℓ= 3, k= 7, 10there are, on
average, 8.33 or 11) and (ℓ= 5, k= 6 or 11), where the OA+ g
construction produces an optimal design with a smaller number
of choice sets than the number of choice sets constructed in this
paper. One important contribution of this paper, in comparison
with the results of Dey et al. (2017), is that it is often possible to
obtain designs with higher D-efficiencies and at the same time
with a less or equal number of choice sets. However, their designs
do not have at all a block diagonal information matrix.

Designs with N≡ 0 mod 4 choice sets are both optimal and
orthogonal and that is why a lot of researchers suggest only using
this case when searching for good designs. While this is correct,
we can still argue for the need for these constructions. First, our
design allows up to a 37% reduction in the number of choice pairs
at the cost of a maximum 10% loss in D-efficiency relative to an
optimal design. Also, as designers, we should not force practi-
tioners to fall into the N≡ 0mod 4 case. King et al. (2020) pointed

out that “the whole field of optimal design theory is predicated on
the belief that experimental designs should tailor to the needs of
the practitioner and not the other way around”. An objection that
could be raised against this work is that there are many software
applications that are able to generate the needed choice sets for
N≢ 0 mod 4 using sophisticated search algorithms, such as the
SAS macros and Ngene. As discussed earlier, however, these
algorithms do not guarantee optimality over the whole search
space, and obtaining a good design may take a very long time.
Thus, we suggest that in cases where an optimal choice design
exists, as the approach, we have presented here, they can simply
incorporate into software to either enhance or even replace
algorithms. To illustrate that, we can start with weighing designs
instead of random starting designs, this would allow the software
to be quicker and more accurate in constructing D-optimal choice
designs, especially at a large number of levels and/or attributes. As
is known, the quality of the design generated by search algorithms
may be influenced by the choice of starting design, such as
coordinate exchange algorithm Kuhfeld (2005). We noted that
the constructions proposed in this study will, for specific para-
meter sets, provide D-optimal DCEs with a smaller number of
choice sets, as compared to construction methods that have been
known in the literature.

Conclusion
Driven by the recognition of the paramount importance of the
method of choice experiments in various fields as a powerful tool
for understanding people’s preferences and aiding decision-makers
in making informed choices, this study sought to construct new
paired choice designs under the MNL model for estimating the
main effects. Throughout this paper, the constructions were pro-
vided for binary attributes using weighing designs and were com-
pared using theD-optimality criterion under the assumption that all
alternatives per choice set are equally attractive.

The proposed design techniques can be extended to be applied
to situations where the attributes of DCEs have a higher number
of levels (ℓ > 2), resulting in designs with the same improved D-
efficiencies and sufficiently small sample sizes. We believe that the
methods described in this article give small, optimal designs that
are at least easy to construct, i.e. can be systematically obtained
even without the help of a computer, and have scientific sig-
nificance and potential application prospects.

A simulation study was also conducted to verify the feasibility of
the proposed design in comparison to existing ones. This affirms its
potential as a valuable alternative for academics and practitioners in
their work. By providing a robust and efficient approach, this study
contributes to the growing body of research on paired choice
experiments and equips decision-makers with an additional tool to
optimise their decision-making processes, while enriching the
understanding of human preferences in diverse contexts.

Data availability
No real data were used in this paper. The simulated data that
support the findings of this study are available from the corre-
sponding author upon request.

Received: 18 May 2023; Accepted: 17 September 2023;

References
Alamri, A. S., Georgiou, S. & Stylianou, S. Discrete choice experiments: An over-

view on constructing d-optimal and near-optimal choice sets. Heliyon (2023)

ARTICLE HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS | https://doi.org/10.1057/s41599-023-02153-4

10 HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS |          (2023) 10:635 | https://doi.org/10.1057/s41599-023-02153-4



Barba, G.Intorno al teorema di Hadamard sui determinanti a valore massimo, vol.
71 (Giornale di Matematiche di Battaglini, 1933)

Bliemer, M. C. & Rose, J. M.Serial choice conjoint analysis for estimating discrete
choice models (Emerald Group Publishing Limited, 2010)

Burgess L, Street DJ (2005) Optimal designs for choice experiments with asym-
metric attributes. Journal of Statistical Planning and Inference 134:288–301

Chai F-S, Das A, Singh R (2018) Optimal two-level choice designs for estimating
main and specified two-factor interaction effects. Journal of Statistical Theory
and Practice 12:82–92

Cook RD, Nachtrheim CJ (1980) A comparison of algorithms for constructing
exact d-optimal designs. Technometrics 22:315–324

Croissant, Y. et al. Estimation of multinomial logit models in r: The mlogit
packages. R package version 0.2-2. http://cran.r-project.org/web/packages/
mlogit/vignettes/mlogit.pdf (2012)

Cuervo DP, Goos P, Sörensen K (2016) Optimal design of large-scale screening
experiments: a critical look at the coordinate-exchange algorithm. Statistics
and Computing 26:15–28

Das A, Singh R (2020) Discrete choice experiments—a unified approach. Journal of
Statistical Planning and Inference 205:193–202

Demirkale F, Donovan D, Street DJ (2013) Constructing d-optimal symmetric
stated preference discrete choice experiments. Journal of Statistical Planning
and Inference 143:1380–1391

Dey A, Singh R, Das A (2017) Efficient paired choice designs with fewer choice
pairs. Metrika 80:309–317

Ehlich H (1964) Determinantenabschatzungen fiir binire matrizen mit n = 3 mod
4. Mathematische Zeitschrift 84:438–447

Ehlich H (1964) Determinantenabschätzungen für binäre matrizen. Mathematische
Zeitschrift 83:123–132

Farmakis N, Kounias S (1987) The excess of hadamard matrices and optimal
designs. Discrete mathematics 67:165–176

Goethals J, Seidel JJ (1967) Orthogonal matrices with zero diagonal. Canadian
Journal of Mathematics 19:1001–1010

Graczyk M (2013) Some applications on weighing designs. Biometrical Letters
50:15–26

Grasshoff U, Großmann H, Holling H, Schwabe R (2003) Optimal paired com-
parison designs for first-order interactions. Statistics 37:373–386

Graßhoff U, Großmann H, Holling H, Schwabe R (2004) Optimal designs for main
effects in linear paired comparison models. Journal of Statistical Planning and
Inference 126:361–376

Großmann H (2017) Partial-profile choice designs for estimating main effects and
interactions of two-level attributes from paired comparison data. Journal of
Statistical Theory and Practice 11:236–253

Großmann, H. & Schwabe, R. Design for discrete choice experiments. InHandbook of
design and analysis of experiments, 807–852 (Chapman and Hall/CRC, 2015)

Großmann H, Schwabe R, Gilmour SG (2012) Designs for first-order interactions
in paired comparison experiments with two-level factors. Journal of Statistical
Planning and Inference 142:2395–2401

Hadamard J (1893) Resolution d’une question relative aux determinants. Bull. Des
Sciences Math. 2:240–246

Huber J, Zwerina K (1996) The importance of utility balance in efficient choice
designs. Journal of Marketing Research 33:307–317

King C, Jones B, Morgan J, Lekivetz R (2020) Direct construction of globally
d-optimal designs for factors at two levels and main effects models. Quality
and Reliability Engineering International 36:797–816

Kuhfeld, W. F. Experimental design, efficiency, coding, and choice designs. Mar-
keting research methods in sas: Experimental design, choice, conjoint, and
graphical techniques 47–97 (2005)

Louviere, J. J., Hensher, D. A. & Swait, J. D.Stated choice methods: analysis and
applications (Cambridge University Press, 2000)

McFadden, D. Conditional logit analysis of qualitative choice behavior. Frontiers in
econometrics 105–142 (1974)

Meyer RK, Nachtsheim CJ (1995) The coordinate-exchange algorithm for con-
structing exact optimal experimental designs. Technometrics 37:60–69

Norman R et al. (2019) Issues in the design of discrete choice experiments. The
Patient-Patient-Centered Outcomes Research 12:281–285

Nyarko E (2023) On the design of paired comparison experiments with applica-
tion. Research in Mathematics 10:2180873

Nyarko E, Doku-Amponsah K (2022) Approximate and exact optimal designs for
paired comparison experiments. Calcutta Statistical Association Bulletin
74:42–58

Nyarko E, Schwabe R (2019) Optimal designs for second-order interactions in
paired comparison experiments with binary attributes. Journal of Statistical
Theory and Practice 13:1–16

Orrick WP, Solomon B (2007) Large-determinant sign matrices of order 4k+ 1.
Discrete mathematics 307:226–236

Plackett RL, Burman JP (1946) The design of optimum multifactorial experiments.
Biometrika 33:305–325

Raghavarao, D. Some optimum weighing designs. The Annals of Mathematical
Statistics 295-303 (1959)

Rose JM, Bliemer MC (2009) Constructing efficient stated choice experimental
designs. Transport Reviews 29:587–617

Sándor Z, Wedel M (2002) Profile construction in experimental choice designs for
mixed logit models. Marketing Science 21:455–475

Singh R, Chai F-S, Das A (2015) Optimal two-level choice designs for any number
of choice sets. Biometrika 102:967–973

Singh R, Dean A, Das A, Sun F (2021) A-optimal designs under a linearized model
for discrete choice experiments. Metrika 84:445–465

Soekhai V, de Bekker-Grob EW, Ellis AR, Vass CM (2019) Discrete choice
experiments in health economics: past, present and future. Pharmacoeco-
nomics 37:201–226

Street DJ, Burgess L (2004) Optimal and near-optimal pairs for the estimation of
effects in 2-level choice experiments. Journal of Statistical Planning and
Inference 118:185–199

Street, D. J. & Burgess, L.The construction of optimal stated choice experiments:
Theory and methods, vol. 647 (John Wiley & Sons, 2007)

Street DJ, Burgess L, Louviere JJ (2005) Quick and easy choice sets: constructing
optimal and nearly optimal stated choice experiments. International journal
of research in marketing 22:459–470

Street, D. J. & Street, A. P. Partially balanced incomplete block designs. In
Handbook of Combinatorial Designs, 588-591 (Chapman and Hall/CRC,
2006)

Street, D. J. & Viney, R. Design of discrete choice experiments. In Oxford
Research Encyclopedia of Economics and Finance (Oxford University Press,
2019)

Sylvester JJ (1867) Lx. thoughts on inverse orthogonal matrices, simultaneous
signsuccessions, and tessellated pavements in two or more colours, with
applications to newton’s rule, ornamental tile-work, and the theory of
numbers. The London, Edinburgh, and Dublin Philosophical Magazine and
Journal of Science 34:461–475

Thurstone LL (1927) A law of comparative judgment. Psychological review 34:273
Toutenburg, H. et al. Incomplete block designs. In Statistical Analysis of Designed

Experiments, Third Edition, 181–244 (Springer, 2009)
Williamson J (1944) Hadamard’s determinant theorem and the sum of four

squares. Duke Mathematical Journal 11:65–81
Williamson J (1946) Determinants whose elements are 0 and 1. The American

Mathematical Monthly 53:427–434

Acknowledgements
A.S. Alamri is thankful for the support of the University of Jeddah, grant number 18300.

Author contributions
A.S. Alamri and S. Georgiou conceptualised and designed the study. A.S. Alamri
established the data, with S. Georgiou also contributing to this step, and then conducted
the analysis and prepared the initial draft of the manuscript. All authors participated in
result discussions and interpretation. S. Georgiou and S. Stylianou reviewed and provided
comments on the manuscript. The final manuscript received evaluation and approval
from all authors.

Funding
Open-access funding is provided by RMIT University.

Competing interests
The authors declare that they have no competing interests.

Ethical approval
This article does not contain any studies with human participants performed by any of
the authors.

Informed consent
This article does not contain any studies with human participants performed by any of
the authors.

Additional information
Correspondence and requests for materials should be addressed to Stelios D. Georgiou.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS | https://doi.org/10.1057/s41599-023-02153-4 ARTICLE

HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS |          (2023) 10:635 | https://doi.org/10.1057/s41599-023-02153-4 11

http://cran.r-project.org/web/packages/mlogit/vignettes/mlogit.pdf
http://cran.r-project.org/web/packages/mlogit/vignettes/mlogit.pdf
http://www.nature.com/reprints


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

ARTICLE HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS | https://doi.org/10.1057/s41599-023-02153-4

12 HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS |          (2023) 10:635 | https://doi.org/10.1057/s41599-023-02153-4

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Construction of symmetric paired choice experiments: minimising runs and maximising efficiency
	Introduction
	Preliminary definitions and notation
	Construction of D-optimal choice design
	DCEs with two-level symmetric attributes
	D1

	Case 0
	Case 1
	Case 2
	Case 3
	DCEs with more than two-levels symmetric attributes
	D2


	Case study
	Discussion
	Conclusion
	Data availability
	References
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




