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ABSTRACT Sometimes the normal course of events is disrupted by a particularly swift and

profound change. Historians have often referred to such changes as “revolutions”, and,

though they have identified many of them, they have rarely supported their claims with

statistical evidence. Here, we present a method to identify revolutions based on a measure of

multivariate rate of change called Foote novelty. We define revolutions as those periods of

time when the value of this measure is, by a non-parametric test, shown to significantly

exceed the background rate. Our method also identifies conservative periods when the rate of

change is unusually low. We apply it to several quantitative data sets that capture long-term

political, social and cultural changes and, in some of them, identify revolutions — both well

known and not. Our method is general and can be applied to any phenomenon captured by

multivariate time series data of sufficient quality.
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Introduction
What is a revolution?. It seems that the word “revolution” was
first applied to sublunary events when parliamentarians, aided by
the Dutch, deposed James II from the English throne and so
brought about the Glorious Revolution. Since then, it has been
applied ever more widely (Cohen, 1986). Responding to the
French Revolution of 1789, Friederich Schlegel called for an
Aesthetic Revolution in poetry, and so extended the term beyond
politics (Heumakers, 2015). In the latter half of the 19th century
—an age of revolutions—John Stuart Mill, Karl Marx and Arnold
Toynbee, following a French coinage, wrote of the Industrial
Revolution (Bezanson, 1922). In the 1950s Alexandre Koyré,
Herbert Butterfield, A. R. Hall, and Thomas Kuhn, descried the
Scientific Revolution (Koyré, 1957; Butterfield, 1950; Hall, 1954;
Kuhn, 1957; Cohen, 1994). In his 1972 book, The Structure of
Scientific Revolutions, Kuhn generalized the idea, arguing that
science advanced, if it advanced at all, by revolutions (Kuhn,
1972). The Darwinian Revolution was swiftly identified (Ruse,
1979; Himmelfarb, 1996), as were many others. Indeed, Kuhn’s
book prompted something of a revolution in scientific discourse,
as scientists themselves took to identifying, or calling for, “para-
digm shifts”—Kuhn’s term for a revolution—in their fields. A
search of all articles indexed by the Web of Science in 2017
reveals more than two thousand that do so, though many of the
purported revolutions seem quite modest in scope (e.g., Seward
(2017); Raoult (2017); Lowenstein and Grantham (2017); Lonne
(2017)).

For all that, revolutions are hard to pin down. Upon close
inspection they often seem to shrink. Pick a revolution, even a
famous and well-documented one, and you can be sure to find
scholars who have sought to cut it down to size or even deny that
it happened at all. “The drastic social changes imputed to the
Revolution, seem less clear-cut or not apparent at all.”—thus
Simon Schama on how his generation of historians viewed the
impact of the French Revolution (Schama, 1989). “There was no
such thing as the Scientific Revolution, and this is a book about
it.”—so Steve Shapin, in paradoxical mode, on early modern
science (Shapin, 1996). Evolutionary biologists may be surprised
to learn that the Darwinian Revolution has its skeptics too
(Hodge, 2005; Bowler, 1988).

The difficulty of identifying revolutions has plagued the
historical natural sciences as well. In the 1980s archeologists
labeled the sudden appearance, fifty thousand years ago, of
culture as the Human Revolution (Mellars and Stringer, 1989). It
was not long before others had dismissed it as the “revolution that
wasn’t” (Mcbrearty and Brooks, 2000). For much of his life
Stephen Jay Gould argued that the Darwinian Revolution had run
its course and that evolutionary biology needed another (Gould,
2002). (But one not to be confused with the broader
Paleobiological Revolution of the 1970s and 80s which he helped
shape (Sepkoski, 2012; Sepkoski and Ruse, 2009).) The coping
stone of Gould’s new paradigm, an unstable edifice, was the
theory of punctuated equilibrium that he proposed with Niles
Eldredge in 1972 (Eldredge and Gould, 1972). This theory, shorn
of its theoretical structure, postulated that change in fossil
lineages is itself best described as stasis interrupted by periods of
rapid change rather than gradual evolution. It may seem like a
simple matter to decide which, but the ensuing decades-long
quarrel among paleontologists about what the fossils show has
proved otherwise (Pennel et al., 2013).

Unsurprisingly given its fame, the idea of punctuated evolution
has spread to other fields. Natural languages (Atkinson et al.,
2008; Dediu and Levinson, 2012; Greenhill, 2017), computer
languages (Valverde and Solé, 2015), technology (De Dreu and

van Dijk, 2018), and socio-political structures (Spencer, 1990;
Currie and Mace, 2011; Turchin, 2018) have all been claimed to
to evolve in a punctuated fashion; and theoretical models that
explain why they might do so have been developed (Kolodny
et al., 2015, 2016). But the idea also appears now in fields as
remote from paleontology as management science and policy
research (e.g., Flink (2017); Fowler et al. (2017); De Ruiter and
Schalk (2017)). In them the term has lost its deeper meaning
altogether and is just another way to express the existence, or
hope, of revolutions.

The problem is clear. Great revolutions may entail change in
many dimensions—ideas, wealth, social roles, political structures,
the composition of assemblages of artefacts and species or else
their features—but to varying degrees, at varying rates, and with
varying starts and ends. A revolution’s visibility, then, depends on
where you look. Even when considering the same data, some
scholars will see discontinuity where others see continuity—it
may be merely a matter of temperament—in the absence of an
objective method for distinguishing the two, there is no way to
know which of their accounts is more true. It seems desirable,
then, to give the detecting of revolutions a statistical foundation.

At a minimum, the idea of a revolution supposes a sudden
acceleration in the rate of change. The most direct way to estimate
a rate, or its increase, is from time series data, and various
methods have been developed to just that. Such methods identify
“regime shifts”, “phase shifts” and the like in time series data
(Andersen et al., 2009); some of them have even been used to
detect punctuated events in evolving lineages (Hunt, 2010, 2012;
Hunt et al., 2015). Evolutionary biologists, however, generally lack
good time series data: the fossil record is imperfect, and only a
few populations of living species have been studied for long
periods of time (but see Lambert et al., n.d.). They do, however,
have an abundance of phylogenies. Phylogenies provide a window
into the past: they allow models of evolutionary rates to be tested
from the distribution of phenotypes across extant species (Pennel
et al., 2013; Atkinson et al., 2008; Pagel et al., 2006; Bokma, 2008;
Harmon, 2010; Venditti and Pagel, 2010; Uyeda et al., 2011;
Landis et al., 2012; Duchen, 2017; Landis and Schraiber, 2017).
Such studies show that evolutionary rates are not constant, but
sometimes accelerate during speciation or else the invasion of
new adaptive zones.

These studies all concern the evolution of isolated character-
istics such as body size. But revolutions are usually thought of as
times when many things change at once. For this reason, here we
define revolutions as statistically significant local increases in the
multivariate rate of change relative to the background rate.
Following this definition, we outline a revolution-detector that
identifies such rate changes in time series by means of a non-
parametric permutation test. Existing multivariate time series
segmentation methods work by dividing series into self-contained
windows that assume a time-invariant (typically parametric)
relationship (Omranian et al., 2015; Preuss et al., 2015). Our
method, by contrast, uses the local multivariate rate of change of
series across neighboring periods to classify time points into
“revolutionary” or “conservative” periods. As such, it most
resembles some methods that have been used to study spatial
change in multivariate ecological data sets (Kent et al., 2006). We
have previously introduced our method while applying to the
evolution of American popular music (Mauch et al., 2015). Here
we refine its statistical basis, apply it to several large data sets that
capture changes in political, social, and cultural systems over
time, and identify a variety of revolutions that are well known, as
well as some that are not.
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Detecting revolutions
A sketch of the method. We assume that a method for detecting
revolutions should consider many characteristics of a population
simultaneously, that is, be underpinned by a multivariate metric
of change. The idea behind our method is as follows. We begin
with a collection of time series of summary statistics that capture
the evolving properties of a population. These summary statistics
might be frequencies or means or raw observations. For example,
such summary statistics might be gene frequencies in an evolving
population of fruit flies, topic frequencies in an evolving popu-
lation of novels, or socio-economic variables in an evolving
population of nations. The power of our method to detect revo-
lutions is greatest when series contain ample time steps, and when
sampling variances of the summary statistics are small compared
to overall variability (i.e., across data pooled over all time peri-
ods). These summary statistics will inevitably fluctuate over time.
We take a revolution, however, to occur only if many variables
change in concert, with exceptional speed.

To locate these revolutionary periods, we calculate a multivariate
temporal distance matrix, which computes a univariate measure of
discrepancy metering the difference between observations across all
possible pairs of time periods. Any distance metric can be used to
measure this discrepancy and can be chosen to best suit the data at
hand. The temporal distance matrix captures the multivariate rate
of change and can be usefully visualized in a heat map displaying
pairwise distances between pairs of time periods (rows being the
temporally-ordered first time period of a pair and columns being
the second). Often this heat map will be without structure and
appear as if differences between pairs occur at random. Revolutions,
however, induce a quite distinct checkerboard pattern in this
matrix. Within the checks, which are blocks of years, the rate of
multivariate change is relatively low, but among them it is high.
Where the checks meet is where a revolution may have occurred.

To search for the footprints of revolution, we use a quantitative
method called Foote novelty. We explain how it works in detail
below, but for the moment it is enough to say that Foote novelty
mimics our visual perception of checkerboards by applying
straightforward mathematical operations to the distance matrix in
an attempt to locate checkerboards, should they exist. For a given
period, Foote novelty contrasts the variation among diagonal
elements (which represent differences between consecutive time
periods) of the temporal distance matrix with that among
elements from the anti-diagonals (which represent differences
between non-consecutive periods) over a given window of time
(e.g., five years). Applying Foote novelty to the temporal distance
matrix thus returns series representing rates of change over time
in which the rate represents a sort of running average, and in
which the run length is dictated by the chosen time window. By
altering the window width, we can capture the relative rates of
change at different temporal scales ranging from one time-step to
as many as the data permit. Relatively high Foote novelty scores
indicate a potential revolution.

Of course, the Foote novelty scores wobble about over time for
any given time series, even when no revolution is present. So we
need some way of distinguishing normal, unrevolutionary,
variation from extraordinary, revolutionary, variation. We do so
by means of a non-parametric statistical test, which compares
Foote novelty series calculated on the actual distance matrix with
those series obtained from calculation on matrices that have been
randomly permuted along their diagonals. These random
permutations produce bootstrap samples of the original distance
matrices. These, in turn, provide a baseline measurement of Foote
Novelty used to define a threshold level, above which a revolution
is deemed to have occurred. Like any statistical test, ours is
vulnerable to both Type I and II errors. So, using simulations, we
have investigated the conditions under which it holds and those

under which it might fail, and suggest some procedures to
mitigate these errors.

Calculating Foote novelty. Foote novelty is a multivariate metric
of change that has its origin in signal processing (Foote, 2000).
Although particularly suited to estimating change in a multivariate
time series, here we explain its workings using a single time series.

Consider the time series (1, 2, 2, 1, 5, 4, 5, 4, 4) and its distance
matrix (Fig. 1). It has an obvious change point between the fourth
and fifth element: the data before (1, 2, 2, 1) and after (5, 4, 5, 4, 4)
being both quite homogenous. Calculate a distance matrix, plot
them as a heatmap, and these periods appear as distinct blocks of
low local variation along the main diagonal (the darker shaded
blocks in Fig. 1). By contrast, pairwise distances between data points
before and after such a change are larger, resulting in two off-
diagonal blocks of high-cross variability (the lighter shaded blocks
in Fig. 1) in the distance matrix. The result is a checkerboard. And
where the blocks meet pinpoints a large change.

In order to capture this checkerboard structure, Foote devised a
kernel that itself looks like a checkerboard, being composed of
two pairs of blocks of size k—the half-width—with the diagonal
blocks equal to −1 and the off-diagonal components equal to +1.
For example, the kernel for k ¼ 2 is given by,
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Fig. 1 How Foote novelty works: a simple example. Top. A univariate time
series. Middle. A distance matrix of the time series overlain by the Foote
novelty kernel. In the distance matrix, higher values are coloured lighter.
The 2 × 2 matrix marked with a blue box delimits the FN kernel and shows
the natural checkerboard structure of distances at points of rapid change.
Bottom. The Foote novelty values, showing a peak in the middle at the point
of maximum change in the series, F24, also colored blue.
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This kernel is moved along the main diagonal from one target
time step to the next and the elementwise product is taken of the
matrix and the values it overlaps (Fig. 1). The diagonal
components of the Foote kernel (“local variability”) estimates
the differences within the series before and after the target time
step, while its off-diagonal components (“cross variability”)
estimates the differences among them. The Foote novelty score,
then, depends on their relative magnitudes. More formally, Foote
novelty at target time step t is:

Fk
t ¼ Ck � Dk

t ;

where Ck is the Foote kernel with half-width k, Dk
t represents the

submatrix of the temporally-ordered distance matrix D centered
about diagonal element (t, t) and of the same dimensions as the
Foote kernel, and � is the Hadamart (i.e. elementwise) product.

Figure 1 shows how Foote novelty can be calculated for our
synthetic one-dimensional time series. In practice, we use a kernel
with two small modifications. First, we follow Foote in imposing a
radially symmetric Gaussian taper with a standard deviation of
2 ´ 0:4k, to remove edge effects. This amounts to multiplying
each grid point by a Gaussian kernel 1

4π ´ 0:4k e
�ðx2 þ y2Þ=2ð2 ´ 0:4kÞ2 ,

where x and y are the horizontal and vertical distances of the grid
point from the center of C. This gives distances closer to the
target time point more weight than those further away. Second, in
order to have a central point of reference, we add a “cross” of
zeros between the blocks of the kernel C. As a result, the size of
the whole kernel is 2k þ 1, and the value Fk

t corresponds
precisely to the kernel centered at t. The resulting k ¼ 2 kernel is
given by (to within numerical error),

C2 ¼

0:013 0:023 0 �0:023 �0:013

0:023 0:042 0 �0:042 �0:023

0 0 0 0 0

�0:023 �0:042 0 0:042 0:023
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Assuming that D is large (e.g., 100 ´ 100 time points) relative to
C (e.g., 4 ´ 4), Fk

t can be calculated for different points in time.
The calculation of the Foote novelty series {Fk

1; Fk
2; ::: F

k
T} hence

amounts to sliding C along the central diagonal of distance matrix
D, calculating Fk

t as we go.

Statistical inference. In real data, the distance matrix, D, is nearly
always based on a multivariate time series. Foote novelty, Fk

t , is
generally positive and varies as the underlying variables fluctuate
in value. We therefore define revolutions as periods when its
value is statistically significantly higher than in the rest of the
series.

To determine this we compare the observed Fk
t values to the

distribution of Fk
t values obtained from randomly permuting the

distance matrix. In our original test, we permuted the distance
matrix on its axes (Mauch et al., 2015); here, following a
suggestion by T. Underwood, H. Long, R. J. So, and Y. Zhu (pers.
comm.), we permute on the diagonals.

By this we mean the following. A given distance matrix of
dimension p ´ p has p � 1 diagonals that can be independently
permuted (not 2ðp� 1Þ because distance matrices must be
symmetric). The longest non-degenerate diagonal (since the
central diagonal is composed only of zeros) is the vector of
elements, v1 ¼ ðD1;2; D2;3; Dp�1;pÞ and so on. To permute the
matrix along its diagonals, we visit each vj and randomly sort its
elements. The same changes are made on both sides of the central
diagonal so that the matrix remains symmetric. Permuting the
diagonals of the distance matrix retains more of its structure than

permuting its axes does, and so provides a more robust null
model. The motivation for this test is based on our empirical
results and because it is comparable to carrying out a permutation
of the time series in blocks of varying lengths greater than or
equal to one time period.

The kernel half-width, k, can be as small as 1 or as large as the
data allow, but different k show different aspects of change. Foote
novelty acts rather like a microscope. Small k values zoom in on
short-term heterogeneities that large k values may obliterate, and
large k values may reveal long-term variation invisible at smaller
fields of view. A sustained period of rapid change will tend to
produce revolutionary signals at many different k, but more
complex patterns of rate variation will result in conflicting signals.
For example, a large k may well identify a single, long, revolution
where a smaller one identifies two or more. The shifting picture of
the rate landscape that emerges as we adjust the focus of our
Foote Novelty microscope is not a weakness of the method, but a
consequence of making the scale of analysis explicit. In practice,
we examine all half-widths that the data allow and identify
revolutions by their consistency in a given region.

Any significance value is, of course, arbitrary, and we would
also like a general picture of fluctuations in the rate of change
regardless of whether or not they are statistically significant. To
this end we propose an index, Rt , which captures the relative rate
of change at a given time point, t. Assuming a set K of desired
kernel half-widths, this index is constructed by first standardizing
every Fk

t estimate by the average over all valid time points for its

half-width, �Fk, and then averaging the standardized values over
all k 2 K estimated for that time point to give a single value:

Rt ¼ 1
jKj

X
k2K

Fk
t

�Fk

If Rt > 1, then the rate of change at a given time point is
greater than the average rate of change in the entire series; if
Rt < 1 then it is smaller. Note that statistical inference does not
depend directly on the value of Rt . This means that Rt may
sometimes have a relatively high value even when no revolution
has been detected. This is particularly true at the start and finish
of time series where the statistical power to detect revolutions
diminishes.

Having identified a revolution, we would also like to know
which variables contribute to it. One simple way to find out
involves removing variables from the data set one at time and re-
running the analysis. Variables which, when removed, yield fewer
statistically significant Fk

t in a given revolution contribute to it;
those which yield more obscure it. Joint effects can be tested by
removing combinations of variables.

Figure 2a shows the method in action on simulated data. We
simulated twenty stationary series, each of which represents a
measured variable, for 100 time points (Fig. 2a first row). By a
“stationary” series, here we mean one whose mean is constant
over time, that is, one that shows stasis before and after (though,
obviously, not during) a revolution. Starting at time point 40, we
introduced a revolution by allowing the variables to undergo a
directional change for ten generations after which the series
become stationary again. The rate discontinuity can be clearly
seen in the distance matrix (Fig. 2a second row). To identify the
revolution, we estimated Fk

t for all kernel half-widths, k, and time
points, t, allowed by the data, in this case 1 � k � 49, and
calculated the rate index, Rt , for all time points. A sharp rate
discontinuity is visible between time points 37 and 53, where
Rt > 1 (Fig. 2a third row). Finally, we determine the statistical
significance for each Fk

t estimate (Fig. 2a fourth row).
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On the face of it, considering all k, there is strong evidence for a
revolution spanning time points 37–57. But we have carried out
2401 significance tests over all k, of which 60 (α ¼ 0:05=2) are
expected to be significant due to chance alone. In fact, we find
that 766 are significant, strongly suggesting that the series

contains at least one real revolution. This final inferential step is
equivalent to a Bonferroni correction. Since the test’s resolution
decreases as k increases, the most accurate estimate is given by the
smallest k at which the revolution appears: in this case, k ¼ 4,
where it spans time points 42–49—very close to the real values of
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40–50. A few statistically significant Fk
t values are seen well

outside of the simulated revolution; these are false positives and
we discuss their identification below.

Sensitivity and specificity. In the example shown in Fig. 2a, we
simulated stationary variables with a revolution characterized by
large changes in a variable’s mean occurring over relatively long
periods of time. To see whether our method works in other kinds
of series, we applied it to many sets of simulated time series and
then counted the revolutions detected. In these simulations, we
varied: (1) the persistence of the series, ρ, (2) the magnitude of
change in variable values during a revolution, that is, its strength,
s, and (3) the length of the revolution, l and (4) the number of
variables measured, n, giving 3300 combinations of parameter
values, for which we simulated 20 replicates each, or 66,000 sets
of series in all.

The persistence of a series measures the autocorrelation in an
autoregressive order-one process. In these simulations, persis-
tence varied between 0 (fully mean stationary) to 1 (random
walk); the revolution length between 2 and 18 time units, and
variable number between 10 and 190 (See Supplementary
Information Materials and Methods for details). For each of
these 66,000 sets, we estimated Fk

t for five kernel half-width, k,
determined which were statistically significant, and then used
these data sets to study the trade-off between sensitivity and
specificity by estimating the rate of false positives (Type I errors)
and false negatives (Type II errors).

We investigated the rate of false positives in series with no
revolutions (s ¼ 0). In this subset of the simulations, only three
parameters vary: the persistence of the series, ρ, the number of
variables, n, and the kernal half-width, k. Here the overall number
of (false) revolutions detected should be equal to, or less than,
α ¼ 0:05. For fully stationary series (ρ ¼ 0), we found that this was
so, however, as the series became more persistent the rate of false
positives increased, so that in random walks (ρ ¼ 1), revolutions
were detected, on average, in 16% of the series (Fig. 3a). Thus, like
many econometric tests, ours requires stationary series.

The risk of false-positives climbs above the set significance
threshold at ρ ¼ 0:25 (Fig. 3a). Persistent series can be made
stationary by taking their first differences, xðtÞ � xðt � 1Þ,
where x is the mean at time steps t and t � 1 and, when we do
so, we find that the rate of false positives is, once again, equal to
or below the set significance threshold regardless of persistence
(Fig. 3b). Figure 2b illustrates the effect of differencing on one set
of random walk time series with a revolution introduced between
time points 40–50. Now the revolution appears as spikes in
Fk
t andRt marking its start and end and a set of significant Fk

t
values between time points 32–41 and 46–57. Smaller k values
(e.g., k ¼ 8) give the most accurate estimates of the revolution’s
boundaries as time points 39–41 and 49–50 (Fig. 2b third and
fourth rows).

We investigated the rate of false negatives in all series which
contained revolutions (s > 0). When applied to levels, we found
that, regardless of persistence, our test fails to detect about 22% of
revolutions (Fig. 3b). Differencing reduces the power of the test
considerably when applied to stationary series, but only slightly in
highly persistent series (Fig. 3b). Focusing on the two extreme
cases, stationary series (ρ ¼ 0) and random walk series (ρ ¼ 1)
made stationary by differencing, we find that our method often
fails to identify short and weak revolutions (l � 6, s � 0:5) in data
sets based on few variables (n � 10), particularly when analyzed
using very small half-widths (k ¼ 1) (Fig. 3c).

In order to balance the risk of Type I and II errors when
applying our test to real data, we recommend that investigators
first estimate the overall persistence, ρ, of the set of time series. If
the series prove to be stationary or weakly persistent (ρ � 0:25),
then the test can be safely applied to the original data. But if the
series are even moderately persistent, then it should be applied to
the first differences.

The prevalence of revolutions. To illustrate our method, we
applied it to several real data sets, all of which document changes
in the historical record over the course of decades. Some of these
use unbounded, continuous, data (Fig. 4); others, frequencies
(Fig. 5). The first concerns a familiar subject: the spread and
retreat of democracy across the globe in the course of the 20th

century. In 1991, the political scientist Samuel Huntington
identified three great global “waves” of democratization (Hun-
tington, 1991). The first wave began around 1820; the second is
associated with post-War War II de-colonization, and the third
began in 1974 and is associated with the collapse of European and
Latin American dictatorships, the fall of the Iron Curtain in 1989,
and the spread of democracy in Africa. Huntington evidently
based his argument on a simple count of “democracies” without
either defining what he meant by the term or presenting any data.
Here, using much better data, we ask whether our method can
identify the second and third of his waves.

To do this we use the V-Dem data set. This data set, the work
of many scholars, rates the degree to which the world’s nation
states were democratic over the course of the 20th century by
means of a large number of ordinal variables that capture, in fine
detail, the political structure of a given state in a given year
(Coppedge, 2016). V-Dem provides indices where these variables
have been aggregated to five higher-level quantitative variables
that capture the degree to which a state exhibits: (i) freedom of
expression; (ii) freedom of association; (iii) clean elections; (iv) an
elected executive and, (v) universal suffrage (see Supplementary
Information Materials and Methods for details). Fig. 4a (top)
shows the yearly means of these variables averaged over the states
extant in a given year (�174). Consistent with previous V-Dem
studies (Lindberg et al., 2014; Lührmann, 2018), it shows that
global democracy has increased over the course of the 20th

century but that the rate at which it has done so has not been

Fig. 2 Identifying revolutions using Foote novelty in simulated series. a Evolution of 20 simulated stationary time series with a revolution in the middle. b
Evolution of 20 simulated undirected random walk time series with a revolution in the middle. In both sets of simulations, the standard deviation of series
perturbations in non-revolutionary periods is set at σ ¼ 1. During the revolutions, which start at time point 40, the size of the change in each time point is
increased until time point 50, when the revolution ends. The amount by which each variable, i, changes during during a revolution is drawn from a normal
distribution. First row from top: Evolution of the time series. Second row: Distance matrices among time points: dark reds are increasingly dissimilar. Third
row: The rate of change index, Ri, which is the sum of the Fki values for any time point i over all k, relative to the sum of the mean Fki values over all time
points. Fourth row: Identifying revolutions by Foote novelty. Each cell represents the Fki estimate for a given half-width, k and time point; the color of the cell
gives the relative Fki value, light gray being low and dark gray being high. Note that this color scale is only comparable within any given plot. Statistically
significant (α ¼ 0:05=2) revolutionary periods are overlain in red; conservative periods are blue. In both cases, we identify a revolution in the correct
region, but at larger half-widths, the resolution becomes coarser. Statistically significant time points which are not contiguous with the simulated revolution
are false positives. Note that, for the random walk series, the undifferenced data are shown but the distance matrices, Ri and F

k
i values are all based on first

differences. This means that only revolution boundaries are expected to have high Fki values.
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constant. We first estimated the persistence, ρ, of the series and,
finding that it was �0:25, took the first difference (Supplementary
Information Table 1). Our index, R, shows that the relative rate of
change was elevated in the 1940s, early 1960s and between
1974–1999 (Fig. 4a). We then carried out 3192 significance tests
over all k of which 208 were significant (α ¼ 0:05=2), many
more than the 78 expected by chance alone, suggesting that the

series contains at least one real revolution. The years in which the
rate of change is significantly higher than the background rate fall
into four nearly contiguous groups: 1944–1949, 1962, 1975–1985,
and 1989–1996 which we then identify as distinct “revolutions”
(Supplementary Information Table 2).

Even when differenced, the entire series proved to be more
persistent than desirable if we wish to avoid a high rate of Type I
errors (ρ = 0.437), but visual examination of the data suggested
that, outside of the inferred revolutions, the series was close to
stationary. To test this idea we estimated the persistence of
periods before, between and after our inferred revolutions, and
found that they were indeed acceptably non-persistent
(ρ= 0.255). We also took the second differences of the entire
series, which made it overall stationary (ρ ¼ �0:275), and even
so found revolutions in 1947–1948 and 1990–1992, albeit reduced
in size. Thus, we are confident that the revolutions we identified
are not due to the general persistence of the series.

These revolutions are very consistent with Huntington’s
“waves”, if we allow that his “third wave” is composed of two
distinct sub-waves (c.f., Kurzman, 1998; McFaul, 2002; Way,
2005). Interestingly, the 1962 revolution—by far the most weakly
supported of the four—is an anti-democratic one caused by
military coups in Indonesia, Pakistan, Greece, Nigeria, Turkey,
and many Latin American countries. Huntington identified this
phenomenon too and labeled it a “reverse wave” as have previous
V-Dem studies (Mechkova et al., 2017). But we can add some
detail to this picture. Analysis of the contributions of individual
variables shows that, where the revolution of the late 1940s was
due to changes in political structures, the 1977–1984 and
1989–1996 revolutions were due to an increase of personal
liberty (Supplementary Information Table 3). Revolutions,
unsurprisingly, differ in their natures and causes. Thus, our
method can identify times of rapid political change of the sort
that political scientists and historians have spotted using less
formal methods.

We now turn to another familiar phenomenon: American pop
music (Fig. 5a). Pop music is also said to undergo revolutionary
change as new genres rise and fall, but unlike the spread of
democracy there is little consensus as to when those revolutions
occurred and what, exactly, changed in them (Frith, 1988;
Tschmuck, 2006). We have previously studied the evolution of
the US Billboard Hot 100, 1960–2010 (Mauch et al., 2015). In that
study, we assayed 17,094 songs for 16 harmonic and timbral
features and, using an earlier version of our method, claimed the
existence of three revolutions: in the mid-1960s, early 1980s, and
late 1980s–early 1990s. We re-analyzed these data using our
improved testing procedure and, finding that the series is highly
persistent, took the first differences. We find that Rt > 1 during
1967–1969, 1971, 1978, 1982–1983, 1986–1989, 1994–1995,
1998–2000, and 2005. We carried out 552 tests over all k of
which 58 show a significantly elevated rate of change, more than
the 14 expected by chance alone (α ¼ 0:05=2); these fall into
three revolutions: 1968–1969, 1982–1983, 1986–1988. These are
very close to the revolutions that we previously identified and that
are due, respectively, to the rise of rock-related chords and timbres
(aggressive percussion) in the 1960s, the revival of guitar-heavy
rock and the arrival of drum–machine percussion in the early
1980s and, in the late 1980s, the rise of hip hop at the expense of
rock and pop-related timbres (Supplementary Information
Table 3). Note that since here we used differenced data, rather
than levels, these are the boundaries of revolutions and not, as
previously, their entire span. This accounts for the small
discrepancy of dates between this analysis and the earlier one.

Besides these data sets we also applied our test to five others:
the car models sold in the USA, 1950–2010 (Fig. 4b); a data set on
the crimes committed in England and Wales 1900–2000 (Fig. 4c);
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Fig. 3 Performance of revolution detection by Foote novelty based on
simulated series. a Mean Type I error (false positive) rate as function of
persistence, ρ, in series without revolutions (s ¼ 0). When estimated on
levels (solid gray line), the observed Type I error rate quickly increases
above the significance level, α ¼ 0:05 (solid red line), but when
differenced it does not (dotted gray line). The risk of false-positives climbs
above the set significance threshold at ρ ¼ 0:25. b Mean Type II error
(false negative) rate as function of persistence in series with revolutions
(s>0). When estimated on levels (solid line), the observed Type II error
rate is around 22%, but is higher when estimated on differences,
decreasing as persistence increases. c A closer look at Type II error rates in
stationary series (ρ ¼ 0) (Top) and first-differenced random walk series
(ρ ¼ 1) (Bottom) as as a function of the kernal half-width, k, number of
variables in the simulation, n, the strength of the revolution, s, and its
length, l. These plots are an expansion of the data in b marked with a circle.
In both cases, our method tends to fail to identify short and weak revolution
(l � 6, s � 0:5), in data sets based on few variables (n � 10), particularly
when analyzed using very small half-widths (k= 1). Although the
distribution of false negatives differs somewhat between the two sets of
series, the overall mean false negative rates are very similar, 22% and 23%,
respectively.
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the common names given to newborn girls in the USA, 1945-
2010 (Fig. 5b); the articles published in the British Medical
Journal, 1960–2008 (Fig. 5c), and American, Irish, and English
novels published between 1840 and 1890 (Fig. 5d) (See
Supplementary Information Materials and Methods for details).
Of these series, two: the girls names and English and Welsh crime
rates, showed strong evidence of revolutions.

The girls names showed revolutions particularly in the years
1974–1975 and 1988–1991 (Fig. 5b; Supplementary Information
Table 3). These dates mark when a set of names—Jessica, Ashley,
Lauren, Amanda, and Amber among others—become swiftly and
immensely fashionable and then, about 15 years later, passé and
replaced by names such as Emma, Isabella, Olivia and Hannah
(Supplementary Information Table 3, Supplementary Informa-
tion Fig. 1) . Of course, baby names change in frequency all the
time (Lieberson, 2000): it is the fact that several of them rose and
fell in tandem that makes their dynamics revolutionary.

For the crime data set (Fig. 4c), we carried out 2304 tests, of
which 138 show a significantly elevated rate of change, many
more than the 58 expected by chance alone (α ¼ 0:05=2). We
detected two periods of revolutionary change: general increase in
crime between 1965 and 1978 and, then, a general decrease from
1989–1995. The former is the increase of crime rates—and, for
decades, their accelerating rate of increase—that occurred in
Western democracies after 1960, part of what Francis Fukuyama
called “The Great Disruption” (Fukuyama, 1991); the latter is the
well known sharp decline in crime rates in the 1990s (Pinker,

2011). The rise was mostly due to an increase in criminal damage
and robbery; the decline mostly due to a decline in burglary.

These examples show that our method can be applied to quite
different data sets: some are count data (e.g., baby names), while
others are continuous traits (e.g., measure of democracy); some
aggregate many individual entities that exist only in a single time
interval (e.g., pop songs), while others track the evolution of a
collection of entities over time (e.g., the democratic qualities of
nations): all it requires is that we can estimate a distance in
feature-space between intervals in a time series. Using it we have
convincingly identified revolutions—some well known, others not
—in several data sets, but not in all of them. This is as expected.
After all, revolutions are, by definition, rare.

Conclusion
We began this paper by defining a revolution as a period of time in
which the multivariate rate of change is demonstrably higher than at
other times. This is most likely to occur when several variables show
simultaneous increases in the rate of change. Thus, our definition
captures the classical idea of a revolution as a rapid, correlated,
change in many properties of a system. The magnitude of change in a
revolution—what we have called its strength—may be large or small
in absolute terms: what matters is its size relative to the variance of
change across the entire series. The period over which it occurs—
what we have called its span—may be short or long.

A revolution cannot, however, span an entire time series. This
is true even when all variables are changing constantly. To see this
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consider a collection of variables changing as directed random
walks. Since each variable diverges from its original value linearly
over time, its rate of change at any time, hence D over any
interval, will be, within the limits of stochastic variation, constant
as will Fk

t . Thus, viewed retrospectively, although there can be
perpetually high rates of change, there are no perpetual revolu-
tions. We can, however, find ourselves perpetually embroiled in
revolution. When evolution is super-linear—we are thinking here
of patterns such as that expressed in Moore’s law of the evolution
of semi-conductor density (Moore, 1965)—the rate of change, D
over any interval, and Ft

k, all increase monotonically. In such a
series, a revolution will shift as the series grows so that it always
defines the cutting edge. Thus, there is a sense in which perma-
nent revolutions can, and probably do, exist.

We have focused on identifying revolutions simply because
times of great change capture the imagination and are invariably
the subject of scholarly debate. But significance levels are, of
course, arbitrary, and the number of revolutions identified will
change as they do. They may even be dispensed with. In their
absence Fk

t , and its summary index, Rt , provides a simple way of
measuring, and visualizing, local variation in rates of change. We
note that evolutionary biologists commonly compare rates of
evolution using measures such as the darwin and the haldane.
Although both can be applied to any kind of time series data,
both are univariate and generally estimated over an entire series

(Lambert et al., n.d.), and so are not well suited to estimating
temporal variation in rates of multivariate evolution.

In all our data sets, all variables had non-zero values. However, it
is possible to imagine revolutions in which some variables become
irrelevant even as others arise. To give a concrete example, consider
car design. Over fifty years of car evolution we detected much
change, but no revolutions. Now, however, electric cars are upon us.
Some of their features are much like those of their fossil-fueled
ancestors (e.g., door number), but some (e.g., cylinder number, gear
number) are not applicable, others can still be measured but are
radically different (e.g., the relationship between maximum torque
and RPM), while yet others are altogether new (e.g., power train
battery capacity). Such changes in the salience of variables can be
handled by our method and, if they have a sufficiently swift and
strong effect on the multivariate distribution, will appear as a
revolution. However, the revolution they will surely bring about
seems to be of a different kind than any involving merely quanti-
tative changes, however rapid, in mean horsepower or chassis
length. The fundamental distinction is between revolutions that
entail changes in the relationships among variables or, more for-
mally, their variance-covariance structure, and those that do not.
We think of the former as “structural” revolutions (c.f., Snodgrass,
1980) and the latter “non-structural”— note that they are subsets of
the revolutions that our method detects, but leave the problem of
telling them apart for future research.

Fig. 5 Cultural revolutions: frequency variables. a pop music: Billboard Hot 100, USA; b newborn girls’ names, USA; c BMJ articles; d English, Irish and
American novels. Top row of each series. Trends of frequencies shown as stacked area plots. Middle row. The rate of change index, Rt . Bottom row.
Identifying revolutions by Foote novelty. Each cell represents the Fkt estimate for a given half-width, k and time point; the color of the cell gives the relative
Fkt value, light gray being low and dark gray being high. Note that this color scale is only comparable within any given plot. Statistically significant
(α ¼ 0:05=2) revolutionary periods are overlain in red; conservative periods in blue; when necessary Foote novelty tests were done on differences.
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Our method can be applied to identifying dramatic changes in
any multivariate time series data of sufficient length and quality. In
biology, it might be applied to the study of gene expression profiles,
the evolution of gene frequencies or morphology (e.g., Hunt et al.,
2015; Tu et al., 2005; Bergland et al., 2014). But the idea of revo-
lution has its origin in historiography and so we have focused on
political, social and cultural phenomena. As large data sets cap-
turing their evolution become available (Michel, 2011; Hughes et al.,
2012; Rodriguez Zivica et al., 2013; Perc, 2013; Klingenstein et al.,
2014; Rule et al., 2015; Bearman, 2015), it will be increasingly
possible to infer the quantitative patterns of history and so test
general explanations for their causes (Kolodny et al., 2015).

Data and code availability
The code and data are available at: https://github.com/Armand1/
A-revolution-detector.
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