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Abstract
Based on data on school visits from Safegraph and on school closures from Bur-
bio, we document that during the Covid-19 crisis secondary schools were closed 
for in-person learning for longer periods than elementary schools, private schools 
experienced shorter closures than public schools, and schools in poorer US coun-
ties experienced shorter school closures. To quantify the long-run consequences of 
these school closures, we extend the structural life cycle model of private and pub-
lic schooling investments by Fuchs-Schündeln et al. (Econ J 132:1647–1683, 2022) 
to include private school choice and feed into the model the school closure meas-
ures from our empirical analysis. Future earnings and welfare losses are largest for 
children that started public secondary schools at the onset of the Covid-19  crisis. 
Comparing children from the top to children from the bottom quartile of the income 
distribution, welfare losses are 0.5 percentage points larger for the poorer children if 
school closures were unrelated to income. Accounting for the longer school closures 
in richer counties reduces this gap by about 1/4. A policy intervention that extends 
schools by 6 weeks generates significant welfare gains for children and raises future 
tax revenues sufficient to pay for the cost of this schooling expansion.
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1 Introduction

Governments around the world responded to the Covid-19 health crisis by shutting 
down economic and social activity, resulting in severe recessions and closed schools 
for much of 2020. The economic consequences of these lockdown measures trig-
gered a large scientific and popular literature. As many countries are on the path of 
economic recovery from this crisis, focus is shifting from the short- to the long-run 
consequences of the crisis. One such concern is the long-run impact of the signifi-
cant loss of instructional time in schools during 2020–21 on children’s education, 
earnings potential and future welfare.

In this paper, we use a structural life-cycle model and school visit measures from 
anonymized cell phone data combined with learning mode data to quantify the het-
erogeneous impact of school closures during the Covid-19 crisis on children affected 
at different ages and coming from households with different socio-economic paren-
tal characteristics. Our data suggests that secondary schools were closed for in-
person learning for longer periods than elementary schools, implying that younger 
children experienced shorter school closures than older children, and that private 
schools1 experienced shorter closures than public schools, and schools in poorer 
US counties experienced shorter school closures. We use these empirical facts as 
inputs for a positive and normative analysis of the long-run consequences of the 
observed Covid-19-induced school closures on the affected children. To do so, we 
extend the structural life cycle model of schooling investments studied in Fuchs-
Schündeln et  al. (2022) to include the choice of parents to send their children to 
private schools, empirically discipline it with data on parental investments from the 
PSID, and then feed into the model the school closures measures from our empirical 
analysis to quantify the aggregate and distributional consequences of the Covid-19 
school closures.

We highlight two main findings. First, the aggregate losses of human capital, col-
lege attainment, the present discounted value of earnings and welfare are large: the 
present discounted value (PDV) of future gross earnings (after the current school 
children enter the labor market) falls by 1.27% and the welfare losses amount to 
0.71% of permanent consumption. These results materialize despite the fact that par-
ents optimally adjust their private time- and resource investment into their children, 
as well as inter-vivos transfers of wealth to their offspring.

Second, if all children had their schools closed for the same amount of time, 
then younger children, and those from disadvantaged backgrounds would suffer 
larger welfare losses, as our previous work suggested.2 However, due to the signifi-
cant empirically documented differences in the extent of the school closures, these 

1 Private schools include, for the purpose of this paper religious schools.
2 This result is driven by the two key properties of the human capital production function, as emphasized 
by Cunha and Heckman (2007): self-productivity (holding current investment constant, larger human 
capital today leads to higher human capital tomorrow) and dynamic complementarity: the marginal 
product of investment into human capital today is increasing in the already accumulated stock of human 
capital). As a consequence, the loss of learning experienced by younger children accumulates over time, 
leading to larger human capital losses for these younger children, relative to their older brothers.



37The Fiscal and Welfare Effects of Policy Responses to the Covid‑19…

conclusions are partially overturned, and partially accentuated. The fact that, on 
average, secondary schools were closed much longer than primary schools leads to 
the finding that it is children just starting secondary school that endure the largest 
losses in their earnings capacity (a reduction of the PDV of earnings of approxi-
mately 1.5%) and welfare (a decline of 0.83%).

Turning to socio-economic characteristics, we make two empirical observations. 
First, private schools were closed on average for fewer days than public schools, 
and private schools are dis-proportionally frequented by children from parents with 
higher socio-economic characteristics (in the model, associated with higher educa-
tion, higher wealth and being married). However, focusing on only public schools, 
these were closed for longer in counties with higher average income.

The quantitative model maps these empirical findings into expected differential 
welfare consequences. Children attending private schools on average lose 0.31% 
points less welfare (measured in terms of permanent consumption), than children 
attending public schools, accentuating the larger welfare losses poorer children have 
in the absence of differential school closures. Within public schools, however the 
income gradient of welfare losses goes in the opposite direction since poorer areas in 
the USA, especially in the South but also the Midwest, saw shorter school closures 
on average than the more affluent regions on both coasts. Of course, children from 
poorer households are still worse off and might have been affected more severely 
from the Covid-19 crisis along many other dimensions, but the fact that, again on 
average, their schools were locked for shorter periods of time than the schools in 
richer counties implies that the losses in human capital, lifetime earnings, and ulti-
mately, welfare, are more benign than those children from richer families (or more 
precisely, residing in richer counties).

Finally, and motivated by the significant and heterogeneous human capital and 
welfare losses we consider potential policy interventions designed to mitigate the 
instructional losses from the Covid-19 crisis. One such proposal is to keep schools 
open for parts of future summer periods to make up the lost time. In the model, since 
we have a well-defined cost of schooling and model-predicted consequences of addi-
tional schooling on future human capital, earnings and taxes, we can ask whether 
such a measure is a positive net present discounted value proposition for households. 
Furthermore, since a policy intervention that keeps all schools open might not be 
feasible due to scarcity in the availability of teachers or physical infrastructure, we 
also investigate for which group of students such a policy intervention is especially 
promising, both in terms of the budgetary consequences for the government and 
in terms of welfare for the individual students. We find that for the average child 
the welfare gains from expanded schooling are significant (0.22% in terms of con-
sumption equivalent variation), and induce an increase in future revenues from labor 
income and consumption taxes approximately sufficient to pay for the entire cost of 
the reform; that is, the reform is essentially budget-neutral. Finally, the welfare gains 
from the expansion are highest for children from income-poor households, whereas 
the fiscal consequences for the government look most favorable if the intervention is 
targeted to children from the most affluent households.

In the next section, we briefly relate our model to the existing literature. Section 3 
describes the data we use to construct measures of school closures and the empirical 
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measures of school closures we will employ in the structural model. That model is 
spelled out in Sect. 4 and calibrated in Sect. 5. We present the results on the dif-
ferential welfare consequences of the school closures in Sect. 6, and Sects. 7 and 8 
contain the counterfactual policy analysis and robustness analysis, respectively. Sec-
tion 9 concludes. Details about the construction of the data as well as the dynamic 
programs in the model can be found in Appendix.

2  Related Literature

Our paper is part of the massive literature on the consequences of the Covid-19 epi-
demic on the economy. The early literature focused on short-run predictions of the 
evolution of the health crisis and the economic recession, triggered by a fall in the 
healthy work force and its desire to work in risky sectors, the demand for goods 
and services induced by falling household incomes as well as massive government-
mandated economic lockdowns. Representative contributions include Atkeson 
(2020), Fernandez-Villaverde et  al. (2020), Greenstone et  al. (2020) and Alemán 
et  al. (2021) on the health side and Eichenbaum et  al. (2020) as well as Krueger 
et al. (2020), Moll et al. (2020) on the economic side. A subset of this literature (see, 
e.g., Argente et al. (2020), Acemoglu et al. (2020), Glover et al. (2020), Brotherhood 
et al. (2020)) has considered optimal lockdown policies, where the main benefit of 
shutting down part of the economy is a slower transmission of the virus, and the 
main cost is modeled as the reduction of economic activity and thus incomes of 
individuals of current working age. The paper by Ma et al. (2022) makes the impor-
tant point that the impact of the economic contraction on child mortality, especially 
in developing economies, can be so severe to render lockdown measures counterpro-
ductive for protecting the lives of children. The potential impact of closing schools 
as part of the lockdown is not considered in this literature.

Complementary to this work, our paper takes a longer-run perspective and ana-
lyzes the consequences of one specific aspect of the crisis, school closures, that ini-
tially did not receive much attention, likely due to the fact that the main costs asso-
ciated with this non-pharmacological intervention accrue mostly in the medium to 
long-run when the cohort of school children affected by school closures enter the 
higher education- or labor market. In our previous work (Fuchs-Schündeln et  al. 
2022) we used a structural life cycle model to quantify the impact of a hypothetical 
school closure for 12 months on average human capital accumulation, lifetime earn-
ings and welfare. In the current paper we build on this framework, but turn to school 
visits data from Safegraph and information on school learning modes from Burbio 
to measure the actual length of school closures. Crucially, we argue that there is sig-
nificant heterogeneity across school types (public versus private), grade level (ele-
mentary versus secondary), and parental backgrounds in the extent to which schools 
were closed. This analysis is motivated by an emerging body of evidence that learn-
ing achievement during the pandemic was substantially lower than in prior years, 
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suggesting that the virtual instruction brought about by school closures was much 
less effective than traditional in-person instruction.3

Therefore, the main contribution of the current paper is to develop a new measure 
of effective school closures using Safegraph school visits data and employ it in a 
structural life cycle model with human capital accumulation to quantify the long-
run earnings and welfare consequences of the affected children. On the empirical 
side, the Safegraph visits data has been used by other studies to measure social dis-
tancing behavior, the impact of the pandemic on in-person services, and industry 
affiliation of particular businesses (e.g., Allcott et al. (2020), Goolsbee and Syverson 
(2021), or Kurmann et al. (2021) among many others). The papers closest to ours 
are Chernozhukov et al. (2021) and Bravata et al. (2021) who estimate the associa-
tion between changes in Safegraph visits to schools and the spread of Covid-19 at 
the county level, as well as Parolin and Lee (2021) who use the Safegraph data to 
construct a school closure index and, like us, match the Safegraph data with infor-
mation from NCES and other sources to relate their school closure index to grade 
level (elementary versus secondary) and a variety of socioeconomic indicators.4 Dif-
ferent from these papers, we build on the approach by Kurmann and Lalé (2021) and 
combine the Safegraph visits data with data on learning modes by Burbio to esti-
mate a mapping of changes in school visits to in-person schooling time. This allows 
us to construct a measure of effective schooling time by school type (public versus 
private school), grade level, and parental background, which in turn constitutes a 
crucial input for our model simulations.5

On the modeling side, we take a structural approach to answer our applied policy 
question, building on the literature modeling human capital accumulation in children 
of school age and public education, see, e.g., Cunha et al. (2006), Cunha and Heck-
man (2007), Cunha et al. (2010), Caucutt and Lochner (2020), Kotera and Seshadri 
(2017), Lee and Seshadri (2019), Yum (2020), Caucutt et al. (2020), Daruich (2022), 
Morchio (2022), Jang et al. (2021) and especially Agostinelli et al. (2020). A com-
plementary, more empirically oriented literature, assesses the importance of instruc-
tion time or schooling inputs for student outcomes, see, e.g., Lavy (2015), Carls-
son et  al. (2015), Rivkin and Schimann (2015), Fitzpatrick et  al. (2011), Pischke 
(2007),Jaume and Willén (2019), Werner and Woessmann (2021) and Maldonado 
et al. (2021).6

3 See for example Dorn et al. (2021), Engzell et al. (2021), Kogan et al. (2021), Lewis et al. (2021), or 
Goldhaber et al. (2022).
4 Chernozhukov et al. (2021) also use data from MCH Strategy on different school learning modes to 
predict Covid infection rates.
5 See Kurmann and Lalé (2021) for details on the estimation approach and a more in-depth analysis of 
the predictors of effective schooling time.
6 The longer-run impact of school closures on macroeconomic and fiscal outcomes is also being inte-
grated into work seeking to give applied policy advice, see, e.g., Penn-Wharton-Budget-Model (2021).
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3  Data

In this section, we describe the data and procedures to measure effective school-
ing time during the pandemic. We start with the Safegraph data, how we measure 
changes in visits to schools, and how we match the schools with records from the 
National Center for Education Statistics (NCES) to obtain information on differ-
ent school characteristics. Then, we show how we use Burbio data on school learn-
ing modes to map changes in school visits to total in-person learning and effective 
schooling time. Finally, we present the empirical results that serve as input for the 
structural model simulations.

3.1  Measuring In‑person Learning

3.1.1  Safegraph School Visit Data

The first source of information for measuring in-person learning comes from Saf-
egraph, which provides data for over 6 million Places of Interest (POIs) for the USA 
using cell phone pings.7 From this large set of POIs we extract establishments with 
North American Industry Classification System (NAICS) code 611110 (“Elemen-
tary and Secondary Schools”) that are present in Safegraph’s Weekly Patterns, 
which provides data on weekly visits by POI. We then match Safegraph’s POIs with 
NAICS code 611110 by school name and address to public and private schools from 
the Department of Education’s National Center for Education Statistics (NCES), 
resulting in about 102,500 high-quality matches of schools with Safegraph data on 
weekly visits. Appendix B provides details of the matching procedure and results. 
Relative to the universe of schools in the NCES, we lose about 22,000 schools, but 
the matched school sample remains highly representative of the overall population 
of schools in terms of socioeconomic and geographic makeup.

3.1.2  Measuring Changes in School Visits

The Safegraph data provide weekly visit counts for each school by dwell times. 
There are D = 7 dwell time intervals (less than 5, 5 to 10, 11 to 20, 21 to 60, 61 to 
120, 121 to 240, more than 240 minutes), Denoting weekly visits counts as vj,t(d) for 
d = 1,… ,D , the total visits count for school j in week t is vj,t =

∑D

d=1
vj,t(d).

As Fig. 4 in Appendix shows, prior to the pandemic, both aggregate total visit 
counts and aggregate visits longer than 240 minutes per day decline markedly dur-
ing the weeks of Thanksgiving, Christmas, and Summer break. In addition and in 
line with the public health emergency declared on March 13, 2020, both visits series 
drop precipitously during the week of March 15 to March 21, 2020, and remain sub-
stantially lower thereafter.

7 A cell phone ping is the process of determining the location of a cell phone at any given point in time.
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We construct changes in school visits as the dwell-time weighted growth rate in 
visits relative to average visits prior to the pandemic. This measure, which is dif-
ferent from Chernozhukov et al. (2021), Bravata et al. (2021), and Parolin and Lee 
(2021) who instead consider year-over-year changes in visits, has the advantage 
that it is not affected by holidays and other variations in visits that fall on different 
weeks across years, thereby reducing measurement error. Furthermore, we normal-
ize weekly visits for each school by the county-level count of cell phone devices 
in the Safegraph data so as to control for spurious variations in school visits due 
to changes in sample coverage.8 The construction of our measure of school visit 
changes involves three steps: 

1. For each school j, we define weights �j(d) as: 

 where t = t0,… , t1 denotes the base period (November 2019 through the end 
of February 2020, excluding the weeks of Thanksgiving, Christmas and New 
Year); and �j(d) measures the contribution of a dwell time d to school j’s raw 
visits counts during the base period.

2. Using the weights, we measure weighted weekly visits at school j in week t as 

 where nc(j),t denotes the normalization by SG devices during week t in county 
c(j) in which the school j is located.

3. Given weighted and normalized school visits, we measure the change in school 
visits as 

 where ṽj,0 =
1

t1−t0+1

∑t1
t=t0

ṽj,t is the mean value of ṽj,t during the base period.
In order to further reduce measurement error, we top-code dj,t at 100%. In addition, 
if in any week t outside of the base period dj,t > 25 while dj,t−1 ≤ 25 and dj,t+1 ≤ 25 , 
we replace dj,t by the average of dj,t−1 and dj,t+1 . This adjustment implements the 
assumption that during the school year 2020–21, schools did not reopen for only 

�j(d) =

∑t1
t=t0

vj,t(d)
∑t1

t=t0
vj,t

,

ṽj,t =
1

nc(j),t

D∑

d=1

�j(d)vj,t(d),

dj,t =
ṽj,t − ṽj,0

ṽj,0
× 100,

8 As shown in Appendix Fig. 4 there is substantial week-to-week variation in raw school visit counts, as 
well as an overall upward trend over time. While part of the upward trend could be due to increased cell 
phone usage by students and teachers, comparison with visit counts to POIs that are not schools suggest 
that the upward trend is primarily due to the secular increase in the number of cell phone devices sam-
pled by Safegraph. Our normalization reduces the high frequency variation in school visits substantially 
and neutralizes the upward trend over time.
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one week at a time. Finally, we drop about 30,000 schools with sparse or very noisy 
visit data, and apply weights to ensure that the remaining sample of roughly 70,000 
schools remains representative of the full sample of schools in the USA. See Appen-
dix B.1 for details on the sample selection criteria and weighting procedure.

Figure  1 presents histograms of the distribution of changes in school visits dj,t 
during three subperiods (averaged over the weeks within a subperiod). The figure 
shows that relative to the pre-pandemic period, school visits declined massively dur-
ing March–May 2020, and were still significantly lower during September–Decem-
ber 2020 and (less so) during January–May 2021.

Figure 2 shows the geographical variation in county average school visit changes 
for the three subperiods. During March–May 2020, school visits were 75 to 100 per-
cent below pre-pandemic levels, without much regional variation. During Septem-
ber–December 2020, in contrast, we observe substantial variation in school visits 
across different regions, as many schools in the Southern, Midwestern, and Central 
Northern parts of the USA reopened while schools in the Western and Eastern parts 
remained largely closed. During January–May 2021, the situation becomes again 
more even, with school visits returning toward pre-pandemic levels in most counties 
except on the West Coast, parts of the East Coast, and a few other counties across 
the USA.

3.1.3  From Changes in School Visits to In‑person Learning

While the Safegraph data provide us with a high-frequency measure of changes in 
school visits for a large, representative sample of public and private schools, it is 
not clear what a given decline in school visits represents in terms of lost in-person 
learning. To map changes in school visits into a measure of in-person learning, we 
relate our school visit data to estimates of school learning mode from Burbio. Bur-
bio is a private company that collects data for 1200 public school districts represent-
ing 47 percent of USA. K-12 student enrollment in over 35,000 schools in all 50 
states. The data is aggregated to the county level and primarily used for commercial 
purposes, but the company generously shared the data with us and other research-
ers. The information on learning mode consists of weekly indicators between mid-
August 2020 and mid-June 2021 that for each county provide the percent of public 
school students engaged in a traditional, a hybrid, or a virtual learning mode. Tra-
ditional means that students attend in-person school every day of the week; hybrid 
means that students attend 2–3 days per week in-person; virtual means that students 
do not attend school in person. Appendix B.2 contains details about the Burbio data.

To construct the mapping, we start by computing county-level aver-
ages of the fractions that public school students spent in learning mode 
L ∈ {traditional,hybrid,virtual} between week t0 and week tn from the Burbio data, 
i.e.,

(1)Lc =
1

T

tn∑

t=t0

Lc,t,



43The Fiscal and Welfare Effects of Policy Responses to the Covid‑19…

where Lc,t denotes the percent of students in county c who spent week t in learn-
ing mode L; and T = tn − t0 + 1 is the number of weeks considered. For instance, 
Lc = 0.33 for L = traditional computed from September 2020 to June 2021 means 
that public school students in county c spent one third of the school year 2020–2021 
in traditional learning mode.

Next, we define the fraction of the school year that students in county c effectively 
spent in in-person learning mode as T

∗

c
= Tc + �Hc and the fraction effectively spent 

in virtual learning mode as V
∗

c
= Vc + (1 − �)Hc , where � measures the fraction of 

total student-days that are spent in person when the learning mode is hybrid. We 
then relate these measures to the change in Safegraph school visits with the follow-
ing linear regression

or equivalently,

where dc is the student-weighted average of changes in school visits across schools 
in county c. The regression tells us not only how a given change in school visits 
maps into total in-person learning relative to its pre-pandemic level, T

∗

c
 , but also the 

average proportion � of in-person learning when students are in hybrid mode. Since 
Tc + Hc + Vc = 100 , the regression also tells us how a given change in school visits 
maps into total virtual learning V

∗

c
= 100 − T

∗

c
.

We estimate (2) using Burbio and Safegraph data for Fall 2020 only. The reason 
we do not use data for Winter and Spring 2021 is that during this period, school 
districts increasingly moved away from virtual learning. As a result, changes in 
traditional learning Tc are close to linear with hybrid learning Hc ≈ 100 − Tc . In a 
regression, this implies � → 1 and � → 0 since dc is subject to idiosyncratic noise. 
During Fall 2020, in contrast, there are changes across all three learning modes, 
which enables us to identify the mapping between Tc and dc , controlling for Hc.

Table 1 reports the results of the estimation. In column (1), we consider all coun-
ties for which we have data on both Burbio learning modes and Safegraph school 
visits (3049 out of 3124 available counties in Burbio). The sample represents almost 
95 percent of all public-school students in the USA. The mapping between the dif-
ferent variables is tightly estimated, with a R2 of over 0.5 and highly significant coef-
ficients. A 1 percentage point decline in school visits reduces the average fraction 
of weeks spent in traditional learning mode by 1.14 percentage points, and the esti-
mated average fraction of hybrid learning mode spent in in-person learning mode is 
0.5 or 2.5 days out of a 5 day school week. Furthermore, we verify using a nonpara-
metric binned scatter plot that over the range of school visit changes observed, the 
resulting relationship between total in-person learning T

∗

c
 and the change in school 

visits is indeed well represented by a linear function. Finally, the estimated intercept 
is 101.67, close to the predicted value of 100 when school is fully in-person (i.e., 
dc = 0 and Hc = 0).

T
∗

c
= � + �dc + �c,

(2)Tc = � + �dc + �Hc + �c,
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As robustness checks, in column (2) we restrict the intercept to 100 and rerun 
the regression, while in columns (3) and (4), we reduce the sample to the counties 
with at least 5 schools for which we have data, respectively, to the counties in the 
top-25 percent of the population distribution. The results are strikingly robust across 
the different specifications: a 1 percentage point decline in school visits reduces the 
fraction of weeks spent in effective in-person learning by 1.14 percentage points, 
and hybrid learning mode is estimated to correspond to a fraction of 0.43 to 0.49 of 
in-person learning mode.

In sum, the regressions confirm that there is a tight linear relationship between 
change in school visits and effective in-person learning. We therefore feel confident 
to use this mapping to infer effective schooling time at the individual school level.

3.2  Effective Schooling Time by School Characteristic

In the model simulations below, effective schooling time over the two-year period 
between Summer 2019 and Summer 2021 will be an important input to quantify 
the consequences of learning loss during the pandemic. We proceed as follows to 
infer this value from our estimates of in-person learning. According to the NCES 
table of “Number of instructional days and hours in the school year” (https:// nces. 
ed. gov/ progr ams/ state reform/ tab5_ 14. asp), there are 180 instructional days per 
year in almost every state. Dividing this number by 5 (since weekends are excluded 

Fig. 1  Distribution of changes in school visits for selected subperiods

https://nces.ed.gov/programs/statereform/tab5_14.asp
https://nces.ed.gov/programs/statereform/tab5_14.asp


45The Fiscal and Welfare Effects of Policy Responses to the Covid‑19…

Fig. 2  Average Change in School Visits by County: March–May 2020
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from the counts), we obtain 36 weeks of potential schooling per year.9 Equivalently, 
we have 72 weeks of potential schooling for the two-year period between Summer 
2019 and Summer 2021. For the 25 weeks between September 2019 and mid-March 
2020 that precede the pandemic, we set effective school time to 100 percent. For the 
remaining 11 weeks of the 2019–2020 school year (week of Mar 15–Mar 21 through 
the week of May 24–May 30) and the 36 weeks of the 2020–2021 school year, 
hence for 47 = 75 − 25 weeks, we calculate effective schooling time using the esti-
mates in Table 1 as follows. For a set of schools with a certain characteristic s (e.g., 
public vs private schools), we take the average student-weighted change in school 
visits ds and calculate effective schooling time as ̂T

∗

s
+ 𝜙

̂
V
∗

s
 , where ̂T

∗

s
= 100 + 𝛽ds , ̂

V
∗

s
= −𝛽ds , and � ∈ [0 1] denotes the effectiveness of virtual learning. Thus, our 

estimate of effective schooling time – what we will call schooling input is in the 
model-based analysis – during the two-year period from 2019 to 2021, as a percent 
of what schooling time would have been without the pandemic, is

The equation makes clear that schooling input depends importantly on the effective-
ness of virtual schooling � . While empirical evidence is accumulating that virtual 
instruction was a highly imperfect substitute for in-person instruction, pinning down 

(3)is =
1

72

(
25 × 100 + (72 − 25)

(
̂
T
∗

s
+ 𝜙

̂
V
∗

s

))

Table 1  Regression of traditional learning against changes in school visits

Safegraph and Burbio data are averaged at the county level for Fall 2020 (weeks of September 27–Octo-
ber 3 to December 13–December 19, excluding the week of Thanksgiving). All regressions are weighted 
by county-level student enrollment and standard errors (in parenthesis) are clustered at the state level. In 
columns (2)–(4) the intercept is constrained to 100

Dependent variable: Traditional (in-person) learning mode T
c

(1) (2) (3) (4)

Change in school visits dc 1.14*** 1.12*** 1.13*** 1.15***

(0.04) (0.04) (0.04) (0.05)

Hybrid learning mode Hc
− 0.50*** − 0.49*** − 0.48*** − 0.43***

(0.02) (0.03) (0.03) (0.03)
Intercept 101.67***

(2.51)
Adjusted R2 0.513 0.513 0.522 0.589
N of counties 3049 3049 2438 794
N of students (in thousands) 48,013 48,013 47,250 40,485
% of all public-school students 94.5 94.5 92.9 79.6

9 The 36 weeks of potential schooling can be obtained by taking the 52 weeks in a year and subtracting 
13 weeks for summer break and 3 weeks for winter break, Thanksgiving, and other holidays.
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how much less effective exactly virtual instruction was for the average student is a 
non-trivial task.

The most direct way to determine � , and the one we follow for our benchmark 
result, is to use empirical studies that directly measure the loss in schooling inputs 
from test score declines. Dorn et  al. (2021) find, based on data from Curriculum 
Associates, a standardized test provider, that by the end of the 2020–21 school year, 
public school students in grades 1–6 were on average 5 months behind in mathe-
matics relative to their pre-pandemic peers. Under the assumption that lost effec-
tive schooling time translates one-to-one into learning loss, then based on (3), this 
implies a value for the effectiveness of virtual learning of � = 0.25 , the benchmark 
value we use.

On the one hand, this value of � may overstate the effectiveness of virtual learn-
ing both because of selection due to higher rates of absenteeism and declines in 
enrollment of lower-achieving students, and because many parents compensated for 
the loss of in-person schooling by taking over some of the instructional duties of 
teachers or paid tutors to do so (as they will in our model). On the other hand, stu-
dents may also have been negatively affected by pandemic disruptions not directly 
related to schooling (e.g., health issues, job loss in the family), which would imply 
learning losses even if virtual schooling was highly effective.

Anticipating model simulation results below, we find that with a value of 
� = 0.25 , we obtain an average learning loss of about 8.5% over the 2-year Covid 
period, while with a value of � = 0 , we obtain a learning loss of about 12%. Both 
of these values are considerably smaller than the estimated average learning losses 
by Dorn et  al. (2021), suggesting that disruptions not directly related to schools 
(and not taken into account by our model) indeed exerted a non-negligible negative 
impact. To make further progress, we contrast our simulation results with empirical 
studies such as Goldhaber et al. (2022) that seek to estimate pandemic learning loss 
directly as a function of instructional mode while controlling for regional differences 
in pandemic health and economic outcomes as well demographic and socio-eco-
nomic characteristics of students. Their results imply that relative to students who 
attended school mostly in-person, learning loss was about twice as large for students 
who were primarily in virtual mode than for students who were primarily in hybrid 
mode.10 This suggests that the effectiveness of virtual learning was indeed low for 
the average student. We therefore consider � = 0.25 a conservative assumption, and 
� = 0 appears as a plausible alternative whose consequences we explore in Sect. 8.1.

Table 2 shows lost effective schooling time by school characteristics under the two 
different assumptions about the effectiveness of virtual learning. Across all schools in 
the sample, school visits declined by a student-weighted average of d = 55% over the 
period from mid-March 2020 through the end of the 2020–21 school year. Using the 

10 The analysis of Goldhaber et al. (2022) is based on student-level data from 10,000 schools across the 
entire USA from NWEA, another standardized test provider. Their estimates compare student-level test 
achievement growth from 2019 to 2021 by school district learning mode to test achievement growth from 
2017 to 2019 for comparable students from the same school. Similar results about the ineffectiveness of 
virtual schooling are reported by Kogan et al. (2021) for Ohio and Halloran et al. (2022) for 11 US states 
based on average school test scores, and by Engzell et al. (2021) for the Netherlands.
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average of the coefficient estimates in columns (2) and (4) of Table 1, this implies total 
in-person learning of about ̂T

∗

s
= 100 + (1.12 + 1.15)∕2 × −55% = 37.6% during that 

period and total virtual learning of about ̂V
∗

s
= −(1.12 + 1.15)∕2 × −55% = 62.4%.

For the baseline case of � = 0.25 effectiveness of virtual learning, effective school-
ing time over the two-year period over the 2019–20 and 2020–21 school years therefore 
equals about

relative to a situation with full in-person learning. This value is shown in the top-left 
corner of the first panel of Table 2. If instead, virtual learning had 0% effectiveness, 
the implied effective schooling time equals 59.2% , as shown in the top-left corner of 
the second panel of Table 2.

The remainder of the table reports results of the same calculations separately for pri-
vate versus public schools and for elementary versus secondary schools. Private schools 
experienced on average smaller declines in school visits during the pandemic than pub-
lic schools. Similarly, elementary schools experienced smaller declines in school visits 
than secondary schools (either private or public, although for public schools the differ-
ence between elementary and secondary schools is larger). As a result, effective school-
ing time during the pandemic is estimated to have been highest for private elementary 
schools and lowest for secondary public schools.

The last two rows of each panel dig deeper into differences across public schools 
by looking separately at schools located either in a county ranked in the top or the bot-
tom quartile of the national household income distribution. Perhaps surprisingly, public 
schools in affluent counties experienced on average a larger decline in school visits and 
therefore lower effective schooling time during the pandemic than public schools in 
less affluent counties. As shown in separate work by Kurmann and Lalé (2021), this 
difference is primarily due to the fact that the affluent counties are disproportionally 
located in states where schools did not return to full in-person instruction for a large 
part of the 2020–21 school year. Within quartiles of average household income, the dif-
ference in effective schooling time between elementary and secondary schools remains 
similar as reported in Table 2.

To sum up, the results in this section reveal large differences in total in-person 
schooling across different types of schools. Under what we argue are reasonable 
assumptions about the effectiveness of virtual schooling, this implies substantial vari-
ations in effective schooling time, i.e., schooling input. In the model simulations that 
follow, we will exploit these variations in schooling input to analyze the extent to which 
they result in heterogeneous earnings- and welfare losses for children in different school 
types, grades, and with different household income.

4  A Quantitative Life Cycle Model with Education Choices

We now describe the structural life cycle model that we will employ to meas-
ure the heterogeneous consequences for lifetime earnings, welfare, and taxes paid 
of the school closures we measured empirically in the previous section. We first 

is =
1

72
(25 × 100 + (72 − 25)(37.6 + 0.25 ⋅ 62.4)) ≈ 69.4%
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describe the demographics, timing, stochastic structure, endowments, preferences 
and government policy and then formulate the individual decision problems 
recursively, since this is the representation we will compute. Since this model 
shares many features with the one used in Fuchs-Schündeln et al. (2022) we will 
focus on the novel features relative to their model when presenting the recursive 
representation of the model, relegating a complete account of all other dynamic 
programming problems of the model to Appendix A.

4.1  Individual State Variables, Risk, and Economic Decisions

We model individuals living in discrete time and denote the current period by t. 
Ours is a partial equilibrium model where individuals of two generations, a parent 
generation and a children generation, live through a full life cycle. When children 

Table 2  Estimates of effective schooling time over the 2019–2021 period

The upper panel reports the share of effective schooling time for the 2019–2021 period as a percent of 
what schooling time would have been without the pandemic under the assumption that virtual learn-
ing was 25% as effective as in-person learning. The lower panel reports the share of effective schooling 
time under the assumption that virtual learning was not effective (i.e., the figures correspond to the share 
of potential schooling time over the 2019–2021 period that was effectively spent in the classroom). In 
each cell, the bracketed numbers correspond to lower and upper bounds based on the Burbio estimates 
reported in Table 1, and the point estimate is computed as the mid-point of the interval

All Elementary Secondary

With virtual learning at 25% effectiveness
All 69.4 71.7 64.2

[68.7, 70.1] [71.0, 72.3] [63.4, 65.0]
Private schools 74.4 74.7 71.6

[73.9, 75.0] [74.1, 75.2] [70.9, 72.2]
Public schools, all 68.9 71.5 63.8

[68.2, 69.6] [70.8, 72.1] [63.0, 64.6]
Public schools, top-25% income 65.9 68.5 60.1

[65.1, 66.6] [67.8, 69.2] [59.2, 61.0]
Public schools, bottom-25% income 72.9 74.9 68.6

[72.3, 73.5] [74.4, 75.5] [67.9, 69.3]
With virtual learning at 0% effectiveness
All 59.2 62.2 52.3

[58.3, 60.1] [61.4, 63.1] [51.2, 53.3]
Private schools 65.9 66.2 62.1

[65.2, 66.7] [65.5, 67.0] [61.2, 62.9]
Public schools, all 58.5 62.0 51.7

[57.6, 59.5] [61.1, 62.8] [50.6, 52.8]
Public schools, top-25% income 54.5 58.0 46.8

[53.5, 55.5] [57.1, 58.9] [45.6, 48.0]
Public schools, bottom-25% income 63.9 66.6 58.2

[63.1, 64.7] [65.9, 67.3] [57.2, 59.1]
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live in the parental household, the key education investment decisions (whether 
to send the child to private or public school, and how much time and resources 
to invest into the child during her schooling years) are being taken by parents. 
The child generation makes one key decision upon becoming an independent 
household: equipped with inter-vivos transfers of the parent it decides what ter-
tiary education, if any, to attain. After this decision this generation lives through 
a standard consumption-saving life cycle model; the same is true for the parental 
generation after the children have left the household. The timing and events in 
the model are summarized in Fig. 3. We now turn to a detailed description of the 
underlying heterogeneity of individuals and of each phase of the life cycle they 
undergo.

Individuals are part of either the  child or  parental generation,  k ∈ {ch, pa} . 
They differ in their marital status  m ∈ {si,ma} for  single and  married, their 
age  j ∈ {0,… , J < ∞} , where a model period and age  j spans two years in 
real time, their asset position  a, their current human capital  h, their education 
level  e ∈ {no, hs, co} for  no higher education (no high school completion), high 
school attendance and completion, college attendance and completion, and idi-
osyncratic productivity risk modeled as a two state Markov process with state vec-
tor  � ∈ {�l, �h} , where  �l is low and  �h is high labor productivity, and transition 
matrix �(�� ∣ �) and initial distribution Π as well as a transitory shock � ∈ {�l, �h} 
drawn from distribution �(�) . Parents decide in each period to send their children 
either to public or private school, s ∈ {pu, pr} . All individual state variables and the 
range of values they can take are summarized in Table 3.

4.1.1  Demographics

Parents give birth to children when they are of age  jf  . The number of children a 
parental household has �(e,m) differs by marital status  m and educational attain-
ment of the parents e. There is no survival risk and all households live until age J. 
Therefore the cohort size within each generation remains constant over time. We 
now describe in detail how life unfolds first for parents and then for children, as 
summarized in Fig. 3.

4.1.2  Life of the Parental Generation

In the model, parental households start their economic life at age  jf  just before their 
children are born. Their initial characteristics include their exogenous marital sta-
tus m, education level e, initial idiosyncratic productivity states � and � and initial 
assets a. These initial states are exogenously given to the household, and drawn from 
the population distribution Φ(e,m, �, �, a) which are derived directly from the data, 
as described in the calibration section.

Parents observe the innate ability (initial human capital) h = h0(e,m) of their chil-
dren at child model age  j0 = 0 (real biological age 4), which depends on parental 
education e and marital status m. Children live with their parents until child age  ja 



51The Fiscal and Welfare Effects of Policy Responses to the Covid‑19…

(parental age (jf + ja) ), at which point they leave the household to form their own 
independent household. During these years (parental ages  j ∈ {jf , ..., jf + ja} ), 
parents invest resources  im and time  it into their children. For all ages of the 
child  j ≥ js > j0 ( js is real biological age 6), parents further decide in each period 
whether to send their children to a public or a private school, s ∈ {pu, pr} , trading 
off the cost of private school tuition with higher productivity in the human capital 
production function and thus higher human capital (and associated higher chance of 
attending college) as well as ultimately, higher expected earnings of their children. If 
parents opt for private school, then they pay private school tuition  f (j, s = pr) > 0 , 
which depends on a child’s age j because we distinguish between tuition for primary 
and secondary education.11 Attendance in public schools is free, f (j, s = pu) = 0 . 
Kindergarten at child age  j0 and school type determines the schooling invest-
ment is(j) which together with the resource and time investments im, it determines the 
evolution of a child’s human capital. As a result of these choices, the human capital 
of a child during school ages evolves according to

where g is a function of the child’s age  j (to reflect age differences in the rela-
tive importance of education inputs) as well as a function of the school type s (to 
reflect potential productivity differences across the two school types), and depends 
positively on the three inputs (parental resources im , parental time it and schooling 
input is(j) ). To give the human capital accumulation technology a clearer interpreta-
tion, from the perspective of the model, h will be useful because it decreases the 
utility cost of succeeding in high school and college and it increases earnings condi-
tional on a given tertiary education level. Thus, our notion of human capital should 
be interpreted as broad, including all cognitive and non-cognitive skills that con-
tribute to tertiary schooling success and is rewarded through higher earnings in the 
labor market.

When children leave the household at parental age  jf + ja , their parents may 
give them inter-vivos transfers  b ≥ 0 . This is the final interaction between par-
ents and children, after which the two households separate. Parents also make the 
private school choice  s ∈ {pr, pu} on behalf of their children with which the lat-
ter start their independent life. Thus, parental transfers to children for whom 
the parents choose private school have to be at least as high as the school fees, 
thus b(⋅, s = pr) ≥ f (ja, s = pr).

The remainder of parental life then unfolds as a standard life cycle model. 
Throughout their working ages, parental households spend an exogenous amount 
of time �(m) > 0 on market work which differs by marital status. Labor productiv-
ity and thus individual wages are determined by an exogenous productivity pro-
file �(j, e,m) that depends on household age  j, education  e, marital status  m, and 
is impacted by the persistent shock � and the transitory shock � . Labor income of 

(4)h� = g
(
j, h, i(im, it, is(j), s)

)
,

11 We also assume that at age j0 (age 4 in real time) children go to kindergarten for free, f (j = 0, s) = 0.
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parents of age j, education e and marital status m and hit by shocks (�, �) is then 
given by

In addition to making human capital investment decisions for their children 
when these are present in the household, parents in each period make a stand-
ard consumption-saving choice, subject to a potentially binding borrowing con-
straint a� ≥ −a(j, e,m, pa) , which will be parameterized such that the model rep-
licates well household debt at the age at which households have children  jf  . The 
borrowing limits decline linearly to zero over the life cycle toward the last period of 
work. Parents work until retirement at age  jr , at which point they start to receive per-
period retirement benefits bp > 0 until the end of life at age J. Table 4 summarizes 
the choices of parents described thus far, and those of children, to which we turn 
next.

4.1.3  Life of the Children Generation

Children born at age  j = 0 are economically inactive for the first ja − 1 periods of 
their life. A child’s human capital during ages j ∈ {0, ..., ja − 1} evolves as the out-
come of parental investment decisions (im, it) described above and schooling input 
is(j) . At the beginning of age ja, and based on both the level of human capital as well 
as the financial transfer b from their parents (which determines their initial wealth 
a), children make a discrete higher education decision e ∈ {no, hs, co} , where e = no 
stands in for the choice not to complete high school, hs for high school completion, 
and  co for college completion, respectively. For simplicity, children are stand-in 
bachelor households through their entire life-cycle.

Acquiring a high school or college degree e ∈ {hs, co} comes at a utility cost 
(psychological cost)  p(s, e, ep, h) , which is decreasing in the child’s acquired 
human capital h and also depends on parental education ep as well as on whether 
the student attended private or public school, s ∈ {pu, pr} . In addition, college 

(5)y = w ⋅ �(j, e,m) ⋅ � ⋅ � ⋅ 𝓁(m).

Table 3  State variables

This table lists the state variables of the quantitative model

State Var. Values Interpretation

k k ∈ {ch, pa} Generation
m m ∈ {si,ma} Marital status
j j ∈ {0, 1,… , J} Model age
a a ≥ −a(j, e, k) Assets
s s ∈ {pu, pr} School type
h h > 0 Human capital
e e ∈ {no, hi, co} Education
� � ∈ {�l, �h} Persistent productivity shock
� � ∈ {�l, �h} Transitory productivity shock
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education requires a monetary cost  � ≥ 0 . Children may finance some of their 
college expenses by borrowing, subject to a credit limit given by −a(j, e, ch) , 
which is zero for e ∈ {no, hs}, i.e.. for individuals not going to college. As was 
the case for parents, this limit decreases linearly with age and converges to zero 
at the age of retirement  jr, requiring the children generation to pay off their stu-
dent loans prior to their retirement.

Fig. 3  Life-cycle of child and parental households
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Youngsters who decide not to complete high school, e = no , enter the labor 
market immediately at age  ja . Those who decide to complete high school, but not 
to attend college, do so at age  jh > ja . While at high school, {ja, ..., jh − 1} , they 
work part-time at wages of education group e = no , and those children attending 
a private high-school also have to pay the school tuition  f (j, s = pr) > 0 . Those 
youngsters who decide to attend college enter the labor market at age  jc > jh and 
also work part-time at wages of education group e = no during their high-school 
and college years {ja,… , jc − 1}.

When the children generation enters the labor market (either without a 
high-school diploma, with a high-school degree or with a college degree), the 
acquired human capital during the school years is mapped into an idiosyn-
cratic permanent labor productivity state �(e, h) , which is increasing in acquired 
human capital h and also positively depends on education e to reflect differential 
complementarities between education and human capital in generating earnings. 
When starting to work, children also draw the persistent productivity shock � , 
which follows the same first-order Markov chain as for the parental generation, 
and stochastic transitory productivity � ∼ �(�) . Labor income of children during 
the working period is then given by

We restrict attention to the two generations directly impacted by the Covid-19 
school crisis, and thus assume that the child generation does not have offspring of 
their own. As a consequence the remaining decision problem of the child genera-
tion, after labor market entry, constitutes a completely standard life-cycle consump-
tion-saving problem.

4.2  Recursive Formulation of the Decision Problems

Our model is a partial equilibrium model where the only interaction of the decision 
problems comes in the period in which the children generation leaves the household. 
Furthermore, children do not make economic decisions prior to that period. We can 
therefore solve the entire model backward, starting from the retirement phase of the 
children generation. The details of those recursive problems not spelled out explic-
itly in the main text are contained in Appendix A.

w ⋅ �(e, h) ⋅ �(j, e, si) ⋅ � ⋅ � ⋅ 𝓁(si).

Table 4  Per period decision variables

This table lists the decision variables of the economic model

Dec. Var. Values Decision period Interpretation

c c > 0 j ≥ ja Consumption
a′ a� ≥ −a(j, e,m, k) j ≥ ja Asset accumulation
s s ∈ {pu, pr} j = jf School Type
it it ≥ 0 j ∈ {jf , ..., jf + ja − 1} Time investments
im im ≥ 0 j ∈ {jf , ..., jf + ja − 1} Monetary investments
b b ≥ 0 j = jf + ja Monetary inter-vivos transfer
e e ∈ {no, hi, co} j = ja (Higher) education
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4.2.1  Children

The children generation undergoes three distinct phases, first making the educa-
tion decision, and then living through a working phase and a retirement phase with 
which we begin.

The Retirement Phase During the retirement phase, at ages  {jr, ..., J} , the children 
generation solves a standard consumption-saving (c, a�) maximization problem, fac-
ing a typical budget constraint of the form:

where  pen(e, �jr−1, h) is pension income, whose dependence on  �jr−1 (the persis-
tent income state in the period prior to retirement), education e and human capi-
tal h captures the progressive nature of the social security system in past earnings, 
which are in turn determined by (e, �jr−1, h) . The function T(⋅) represents a progres-
sive labor income tax code, and capital and consumption are taxed at proportional 
rates (�k, �c) . The associated value function at the time of retirement is given by 
V(jr, e, �;a) with � = �jr−1.

Working Life Let V(j, e, �, �;a) denote the value function of a children household 
(assumed to be single) aged j that has entered the labor market with education level 
e, human capital h and has received stochastic income shocks (�, �) . This value func-
tion is the result of a standard consumption-saving maximization problem, as for 
retired households, but with budget constraint now given by

Here (1 − 0.5�p)y is taxable labor income, with �p being the social security payroll 
tax. The argument of the tax function T encodes that employer contributions to social 
security are not taxable income. In addition to the budget constraint, the household 
faces an age-, education, and generation-specific borrowing limit a� ≥ −a(j, e, ch).

The Higher Education Choice The key choice of the children generation impacted 
by the Covid-19 crisis and associated loss in schooling is the higher education deci-
sion this generation will make in the model right after the establishment of an inde-
pendent household, and after having received inter-vivos transfers from their par-
ents. 16-year-olds have three discrete choices e ∈ {no, hs, co} : they can either decide 
to drop out of high school and enter the labor market directly at age 16, or complete 
high school prior to labor market entry at age 18, or third, go to and complete col-
lege at age 22 prior to labor market entry. To spell out this higher education deci-
sion problem, we first have to specify the values from each of these three discrete 
options.

c(1 + �c) + a� = a(1 + r(1 − �k)) + pen(e, �jr−1, h) − T(pen(e, �jr−1, h))

c(1 + �c) + a� = a(1 + r(1 − �k)) + y(1 − �p) − T(y(1 − 0.5�p))

y = w�(e, h)�(e, j, si)���(si)
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Dropping Out of High School Members of the children generation that made the 
decision to drop out of high school at model age ja (real age 16), i.e., chose e = no , 
directly enter the labor market with permanent deterministic productivity  �(e, h) , 
then draw the persistent income shock � ∼ Π(�) (which then evolves according to 
the Markov transition matrix �(�� ∣ �) ) and the transitory income shock � ∼ �(�) . 
The expected value of entering the labor market as a high-school drop-out is then 
given by12

where V(j, e, �, �, a, h) is the lifetime utility of a worker of age j with assets and 
human capital (a, h) that has drawn productivity shocks (�, �) , as defined in the pre-
vious paragraph.

Completing High School Youngsters that at age ja decide to complete high school 
but not attend college (i.e., choose e = hs ) work part-time during high school at 
a deterministic wage and then enter the labor market two years later at j = ja + 1 , 
when they draw stochastic labor productivity  � ∼ Π(�) , � ∼ �(�) . In contrast to 
the e = no group, for children choosing e = hi their school type s is a relevant state 
variable because children in private high school have to pay the private school tui-
tion  f (j, s = pr) . Parental education ep is a state variable since the utility cost of 
completing high school p(s, hs, ep, h) depends on the education of their parents. This 
dependence captures heterogeneity in peer groups and social networks across socio-
economic groups that affect the difficulty of completing high school.

Expected lifetime utility from high school completion is then given by

subject to 

V(ja, e = no, a, h) =
∑

�

Π(�)
∑

�

�(�) V(ja, e = no, �, �, a, h)

(6)

V(ja, s, e = hs, ep, a, h) =max
c,a�

{
u(c) − v(�(hs)�(si)) − p(s, hs, ep, h)+

�
∑

��

Π(��)
∑

��

�(��)V(ja + 1, e = hs, ��, ��, a�, h)
}

(7a)a� + c(1 + �c) = a(1 + r(1 − �k)) + y(1 − �p) − T(y(1 − 0.5�p)) − f (j, s)

(7b)y = w�(no, h)�(no, j, si)�(hs)�(si)

(7c)a′ ≥ 0.

12 Since high-school drop-outs do not pay private school tuition any longer, nor face utility costs of 
attending school or college (which depends on the education of their parents), neither school type s nor 
parental education ep is a state variable for high-school drop-outs.
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 That is, high-school students work for high-school drop-out wages w�(no, h) for a 
fraction �(hs) of their time �(si) and obtain period utility from consumption u(c) and 
disutility from (exogenous) labor supply v(�(hs)�(si)) . The utility cost p(s, hs, ep, h) 
associated with attending high school is decreasing in the human capital  h previ-
ously acquired by the student. Children form expectations over their stochastic labor 
market productivity when they enter the labor market upon graduating at age ja + 1 . 
Their remaining life (labor market and retirement) then unfold as described above.

Obtaining a College Degree Children who decide, at age  ja, to attend, and by 
assumption, to complete, college (i.e., choose  e = co ), during high school age 
ja solve the same problem as those who chose a high school education ( e = hs ), 
with the difference that the continuation value differs at age ja + 1 (the youngster 
goes to college rather than entering the labor market). Thus the value of choos-
ing, at age ja , the college option, is given by

where V(ja + 1, e = co, a�, h) is expected lifetime utility at age ja + 1 (age 18 in real 
time) from entering college. The budget set is identical to that in Eq. (7). Note that 
this value function still depends on parental education ep because the utility cost 
from attending college p(co, ep, h) will be, but no longer on high school type s.

Finally, during the two college periods students pay college tuition � and 
work part-time at high-school wages. Furthermore, they can borrow up to a limit 
a(j, co, ch) to pay for tuition. Thus, their budget set is described by 

 The Bellman equation differs between age ja + 1 and ja + 2 since at the first age 
students have two years (one model period) left in college, whereas at age ja + 2 
their continuation value is determined by labor market entry as college graduate. 
The corresponding Bellman equations are

and

(8)
V(ja, s, e = co, ep, a, h) =max

c,a�

{
u(c) − v(�(hs)�(si)) − p(s, hs, ep, h)+

�V(ja + 1, e = co, ep, a
�, h)

}

(9a)a� + c(1 + �c) = a(1 + r(1 − �k)) + y(1 − �p) − T(y(1 − 0.5�p)) − �

(9b)y = w�(hs, h)�(hs, j, si)�(co)�(si)

(9c)a� ≥ −a(j, co, ch).

V(ja + 1, co, ep, a, h) = max
c,a�

{
u(c) − v(�(co)�(si)) − p(co, ep, h)

+�V(ja + 2, co, ep, a
�, h)

}
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which are both maximized subject to Eq. (9). Here, as before, V(ja + 3, co, ��, ��, a�, h) 
is expected utility lifetime from entering the labor market as a college graduate at 
age ja + 3 (age 22 in real time) with (human) capital (a�, h) and having drawn initial 
shocks (��, ��).

The Education Decision Having spelled out above the values V(ja, s, e, ep, a, h) for 
the three education choices e ∈ {no, hs, co} , the choice is simply to choose the alter-
native that gives the highest expected lifetime utility, and the pre-education decision 
value function of children aged ja (which will enter parental lifetime utility through 
one-sided altruism) is given by:

In the computational implementation, we additionally apply Extreme Value 
Type I (Gumbel) distributed taste shocks to smooth this discrete decision prob-
lem.13 Accordingly, youngsters choose the three education alternatives with state 
(ja, s, ep, a, h)-specific probabilities �(ja, s, e, ep, a, h) , for e ∈ {no, hs, co}.

4.2.2  Parents

Given the focus of the paper, we model parental households as becoming economi-
cally active at the beginning of age  jf > ja when they give birth to children. Since 
human capital formation of parents is completed at this stage, we normalize parental 
human capital to h = 1 and let it be constant over the remainder of parental life. 
Children live with adult households until they form their own households and make 
decisions as described above. Household separation occurs at parental age  jf + ja , 
after which the parental generation lives through a standard life cycle model whose 
recursive formulation is described in Appendix A.2. Let V(ja + jf + 1, e,m, ��, ��, a�) 
denote the expected lifetime utility from this life cycle of a parent household at the 
beginning of age ja + jf + 1 with education and marital status (e, m), stochastic pro-
ductivity shocks (��, ��) and assets a′ . Working backward in age, we now discuss the 
inter-vivos transfer decision when children leave the household and the child human 

V(ja + 2, co, ep, a, h) =max
c,a�

{
u(c) − v(�(co)𝓁(si)) − p(co, ep, h)+

�
∑

��

Π(��)
∑

��

�(��) ⋅ V(ja + 3, co, ��, ��, a�, h)
}
.

(10)

V(ja, s, ep, a, h) =

max
e∈{no,hs,co}

{
V(ja, e = no, a, h),V(ja, s, e = hs, ep, a, h),V(ja, s, e = co, ep, a, h)

}
.

13 Given this structure, the set of individuals exactly indifferent between two education choices is of 
measure zero and thus it is inconsequential how we break the indifference. See Appendix C.6 for the 
details.
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capital investment decisions. It is convenient14 to express the recursive problems in 
those stages conditional on the private/public school choice s ∈ {pr, pu} and we for-
mally describe this choice at the end of this section.

Inter-vivos Transfers At parental age jf + ja children leave the household, and at this 
age parents can make inter-vivos transfers b. These transfers immediately (that is, 
within the period) become assets of their children. The dynamic program of parents 
at this age conditional on s ∈ {pr, pu} then is

subject to

Here V
(
ja, s, e,

b

1+r(1−�k)
, h
)
 is the pre-education decision value function of their chil-

dren defined in Eq. (10), and the parameter � measures the intensity of altruism of 
parents toward their children.15 ,16 Note that private school fees are not present in the 
parental budget constraint because these fees are paid by the children if they decide 
to continue with high school. However, since parents make the private/public school 
choice for the current period s ∈ {pr, pu} on behalf of their children, transfers b have 
to exceed the respective fees. Since also for children whom their parents send to a 
public school transfers have to be (weakly) positive, we condense the constraints on 
transfers as b ≥ f (ja, s) , for s ∈ {pr, pu}.17

(11)

V(ja + jf , s, e,m, �, a, h) =max
c,b,a�

{
u

(
c

1 + �m=ma�a

)
− v

(
�(m)

1 + �m=ma

)

+�
∑

��

�(��|�)
∑

��

�(��)V(ja + jf + 1, e,m, ��, ��;a�)

+�V

(
ja, s, e,

b

1 + r(1 − �k)
, h

)}

a� + c(1 + �c) + �(e,m)b = a(1 + r(1 − �k)) + y(1 − �p) − T(y(1 − �p))

y = w�(e, j,m)���(m)

a� ≥ a(ja + jf , e,m, pa)

b ≥ f (ja, s)

14 For reasons of the timing assumption in the period of the Covid-19 school closures shock described in 
Sect. 4.4.
15 Note that since assets in the value function enter the budget constraint as being multiplied by the 
gross, after-tax interest rate 1 + r(1 − �k), and since inter-vivos transfers are received in the same 
period in which they are made and thus do not accrue interest, these transfers b have to be divided by 
1 + r(1 − �k) on the right hand side of the Bellman equation above.
16 Note that we here denote by  e the education of parents, which is ep in the child’s value function, 
Eq. (10).
17 Recall that  f (ja, s = pu) = 0.
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Investment Decision The value function of children in the previous dynamic program 
that parents solve at age jf + ja includes their human capital h since it determines 
both the higher education decision as well as future earnings of this generation 
directly. We now turn to the accumulation of this human capital when the children 
are of school age and reside with their parents (at parental ages {jf , ..., jf + ja − 1} ). 
During these ages parents invest resources im and time investments it into each of 
their �(e,m) children and pay private, child-age dependent per-child school tuition 
f (j − ff , pr) > 0 in case they decide to send their children to a private school. Par-
ents derive utility from per capita consumption of its household members and suffer 
disutility from hours worked in the market and at home taking care of their children 
(rather than enjoying leisure). The dynamic program during this stage of the paren-
tal life cycle conditional on s ∈ {pr, pu} can then be written as

subject to

The parameter � is a weight on time spent with children, and reflects the possibility 
that reading to children carries a different disutility (or even positive utility) of time 
than work. Note that the sum of hours worked and time investment in children in the 
function v(⋅) is divided by the number of working household members.

Private Schooling Decision At each age  j ≥ jf + 118 parents decide on whether to send 
their children to a public or a private school. The optimal choice of parents is given by19

V(j, s, e,m, �, �, a, h) = max
c,im,it ,a�,h�

{
u

(
c

1 + �c�(e,m) + �m=ma�a

)

−v

(
𝓁(m) + � ⋅ �(e,m) ⋅ it

1 + �m=ma

)
+ �

∑

��

�(��|�)

∑

��

�(��) max
s�∈{pr,pu}

{
V(j, s�, e,m, ��, ��;a�, h�)

}
}

c(1 + �c) + a� + �(e,m)
(
im + f (j − jf , s)

)
= a(1 + r(1 − �k)) + y(1 − �p)

− T(y(1 − 0.5�p))

y = w�(e, j,m)���(m)

a� ≥ −a(j, e,m, pa)

h� = g(j − jf , s, h, i(i
m, it, is(j − jf )))

18 Recall that kindergarten at parental age  j = jf  is public so that at that age there is no private/public 
school choice.
19 As with the children’s tertiary education decision in (10), we assume that additionally parents are hit 
with Extreme Value Type I (Gumbel) distributed taste shocks to smooth this discrete decision problem 
and turn the discrete choice into a choice probability. See again Appendix C.6.
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4.3  Government

The government runs a pension system with a balanced budget. It also finances exoge-
nous government spending, expressed as a share of aggregate output G/Y, and aggregate 
education spending on public schools (for pre-tertiary and tertiary education) through 
consumption taxes, capital income taxes and the progressive labor income tax system 
T(y). In the initial pre-Covid-19 scenario, the government budget clears by adjustment of 
the average labor income tax rate encoded in T(.). In the thought experiment with school 
closures we hold fiscal policy constant, therefore implicitly assuming that the budget def-
icits or surpluses generated by a change in private behavior are absorbed by government 
debt which is serviced or repaid by future generations not explicitly modeled.

4.4  The Covid‑19 Thought Experiment

We compute an initial stationary partial equilibrium with exogenous wages and returns 
prior to model period t = 0 . In period t = 0 , the COVID-19 shock unexpectedly hits, 
and from that point on unfolds deterministically. That is, factor prices and fiscal poli-
cies are fixed by our partial equilibrium assumption, and households, after the initial 
surprise, have perfect foresight with respect to aggregate economic conditions. The 
COVID-19 crisis impacts the economy through an education crisis: the government 
temporarily closes schools, represented in the model by a temporary reduction in school 
investment is(j) into child human capital production. The reduction of is(j) differs by 
type of school s and age of the child j. Regarding the private/public school choice in the 
period of the shock we assume the following timing protocol. In the beginning of the 
period, parents observe their own current period state variables (j, e,m, �, �, a) as well 
as the human capital of their children h. They then decide on whether to send their chil-
dren to a private or public school, s ∈ {pr, pu} . Next, the corona shock hits and only 
after the realization of the shock, parents decide on their consumption and savings c, a′ 
and the monetary and time investments into their children im, it . That way, the private/
public schooling decision in the period of the corona shock does not change when the 
corona shock hits. We then trace out the impact of these temporary shocks on parental 
human capital inputs (both time and money) and intergenerational transfer decisions, as 
well as on the education choices, future earnings in the labor market, and ultimately, the 
distribution of welfare of the children generation, focusing specifically on the impact 
of the heterogeneity in the length of school closures by school type and the age of chil-
dren. Since children in the model differ by age and the type of school they attend at the 
time of the shock (as well as in terms of parental characteristics), so will the long-run 
impact on educational attainment, future wages, and welfare.

(12)s =

{
pu if V(j, s = pu, e,m, �, �;a, h) ≥ V(j, s = pr, e,m, �, �;a, h)

pr otherwise.
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5  Calibration

A subset of parameters is calibrated exogenously not using the model. These first-
stage parameters are summarized in Table 18. The second-stage parameters are those 
that are calibrated endogenously by matching moments in the data and are summa-
rized in Appendix C, Table 19. We next describe our choice and sources of first-stage 
parameters and the moments we match to calibrate the second-stage parameters. We 
focus the description on elements relevant to the characteristics of parents, human cap-
ital accumulation and the school closures experiment and relegate other aspects of the 
calibration, including a description of the data sets we use, to Appendix C.

5.1  Preferences

The per period sub-utility function u(x) is of the standard iso-elastic power form

We set  � = 1 (logarithmic utility), and consequently child and adult equivalence 
scale parameters are irrelevant for the problem. In the parental household’s problem, 
the per period sub-utility function v(x) is

so that if x = � , parameter � can be interpreted as a Frisch elasticity of labor supply. 
In our model of exogenous labor supply this interpretation of course seizes to be rel-
evant, but it provides us with a direct way of calibrating the power term of the utility 
function. We set � = 0.5 based on standard estimates of the Frisch elasticity.20

When children live in the parental household, we have x = 𝓁(m)+�⋅�(e,m)⋅it

1+�m=ma
 . �(m) are 

hours worked by marital status, which we calculate from the data, giving annual 
hours of �(si) = 1868 and �(ma) = 3810 . The time cost parameter � is calibrated to 
match average time investments by parents into the education of children, giv-
ing � = 1.10 (with further details described below as part of the calibration of the 
human capital technology).

When children attend high school or college, they experience utility costs 
for e ∈ {hs, co} according to the cost function

Utility costs of obtaining a high-school degree are equal to  � + 1

h
 and are thus 

monotonically decreasing and convex in the acquired human capital  h. Utility 

u(x) =
1

1 − �

(
x1−� − 1

)
.

v(x) = x
1+

1

�

p(s, e, ep;h) = �(1 + �(ep)�j∈[jh,jc−1]�e=co) +
1

h

20 For example, in his survey of thirteen influential studies from the literature Keane (2011) reports an 
average estimate of 0.85 and a median estimate of 0.17 for men, see his Table 6. Estimates for women 
tend to be higher, see also Blundell et al. (2016).
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costs for obtaining a college degree depend on parental education and are equal 
to, 𝜚(ep) +

1

h
≡ 𝜍(1 + 𝜚(ep)) +

1

h
.

The parameters of the cost function are calibrated to match education shares in 
the data for the three groups e ∈ {no, hs, co} . We measure these shares for adults 
older than age 22 – which is the labor market entry age of all education groups in 
the model – and younger than age 38 based on the PSID waves 2011, 2013, 2015 
and 2017.21 Parameter � is calibrated to match the fraction of children without a high 
school degree of  12.16%, giving � = −2.24 . With regard to the additional utility 
costs during the college period we restrict 𝜚(no) = 𝜚(hs) and calibrate it to match the 
fraction of children with a college degree of 33.21% giving 𝜚(no) = 𝜚(hs) = −0.98 . 
The parameter 𝜚(ep = co) is calibrated to match the fraction of children in college 
conditional on parents having a college degree of 63.3% as in Krueger and Ludwig 
(2016), giving 𝜚(co) = −1.05.

Households discount utility at rate � . We follow Busch et al. (2020) and calibrate 
it to match the assets to income ratio in the PSID for ages 25 to 60 giving an annual 
discount factor of � = 0.98 . Utility of future generations is additionally discounted 
at rate � . Parameter � is chosen so that average per child inter-vivos transfer is ca. 
61,200$, as implied by the Rosters and Transfers supplement to the PSID (based on 
monetary transfers from parents to children until age 26, see Daruich (2022)). This 
gives � = 0.78.

5.2  Initial Distribution of Parents

For the initial distributions of parents at the fertility age, we restrict the sample to 
parents aged 25–35, leaving us with 3024 observations.22

5.2.1  Marital Status

Marital status is measured by the legal status of parents. This gives a share of singles 
of 51.7% and a share of married households of 48.3%.

5.2.2  Education Categories

We group the data by years of education of household heads older than age 22. Less 
than high school, e = no , is for less than 12 years of formal education. High school 
completion (but no college) is for more than 12 but less than 16 years of education. 
College is at least  16 years of education. The population shares of parents in the 
three education categories by their marital status are summarized in the top panel of 
Table 5.23

21 Observe that we do not impose that children have the same education shares as parents.
22 For education, which is not changing much with age, we keep parents aged 22 or above.
23 The education distribution is consistent with other studies using the PSID, see Heathcote et al. (2010).
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5.2.3  Number of Children

The number of children by marital status and education of parents �(e,m) is com-
puted as the average number of children living in households with household heads 
aged 25-35. It is summarized in the middle panel of Table 5.

5.2.4  Assets

Conditional on the initial distribution of parents by marital status and education, we 
measure the distribution of assets according to asset quintiles, which gives the ini-
tial distribution �(a ∣ jf , e,m) . We set the borrowing constraint of parents as follows. 
First, we calculate average assets (debt) of the lowest asset quintile at age jf  from the 
data and set it equal to a(jf , e,m, pa), the initial debt of parents in the lowest asset 
quintile in the model. The result is summarized in the bottom panel of Table 5.

For all ages  j > jf  we then compute the borrowing limit recursively as:

where rp(e, m, pa) is chosen such that the terminal condition a(jr, e,m, pa) = 0 is 
met.

5.2.5  Income

We draw initial income shocks assuming independence of the asset position 
according to the stationary invariant distribution of the 2-state Markov process, 
thus Π(�h) = 0.5.

5.3  Productivity

We use PSID data to regress by education of the household head log wages meas-
ured at the household level on a cubic in age of the household head, time dummies, 
family size, a dummy for marital status, and person fixed effects. Predicting the age 
polynomial (and shifting it by marital status) gives our estimates of �(e,m, j) . We 
next compute log residuals and estimate moments of the earnings process by GMM 
and pool those across education categories and marital status.24 We assume a stand-
ard process of the log residuals according to a permanent and transitory shock speci-
fication, i.e., we decompose log residual wages ln

(
yt
)
 as

where �t ∼i.i.d D�(0, �
2
�
) , �t ∼i.i.d D�(0, �

2
�
) for density functions D , and estimate this 

process pooled across education and marital status. To approximate the persistent 

(13)a(j, e,m, pa) = a(j − 1, e,m, pa)(1 + r) − rp(e,m, pa)

ln
(
yt
)
= ln

(
zt
)
+ ln

(
�t
)

ln
(
zt
)
= � ln

(
zt−1

)
+ ln

(
�t
)

24 We thank Zhao Jin for sharing her code with us.
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component in our model, we translate it into a 2-state Markov process targeting the 
conditional variance of zt , conditional on zt−2 , (1 + �2)�2

�
 (accounting for the two 

year frequency of the model). The transitory component is in turn approximated 
in the model by two realizations with equal probability with the spread chosen to 
match the respective variance �2

�
 . The estimates and the moments of the approxima-

tion are reported in Table 6.
We set the fraction of time working during high school to �(hs) = 0.2 , which 

can be interpreted as a maximum time of work of one day of a regular work week. 
In college, students may work for longer hours and we accordingly set �(co) = 0.5.

The mapping of acquired human capital into earnings according to �(e, h) is based 
on Abbott et al. (2019). We use their data – the NLSY79, which includes both wages 
and test scores z of the Armed Forces Qualification Test (AFQT) – to measure resid-
ual wages �(e) of education group e (after controlling for an education specific age 
polynomial) and run the regression

where �(e) is an education group specific error term and  z̄ are average test scores. 
We denote the education group specific coefficient estimate by  �̂�1(e) , see Table 7. 
The estimated ability gradient is increasing in education reflecting complementarity 
between ability and education. In the model, we correspondingly let

ln (𝜔(e)) = 𝜌1(e) ⋅ ln

(
z

z̄

)
+ 𝜐(e),

ln (𝛾(e, h)) = 𝜌0(e) + �̂�1(e) ⋅ ln

(
h

h̄

)
,

Table 5  Fraction of households, 
number of children and lower 
asset limits by education and 
marital status

Top panel: Fraction with education e ∈ {no, hs, co} by marital sta-
tus. Middle panel: Number of children by marital status and edu-
cation. Bottom panel: lower asset limit for parents at model age jf  , 
expressed in 2010 dollars by marital status and education

Education e | Marital 
status m

si ma

Fraction of households
no 0.2194 0.1621
hs 0.6064 0.5577
co 0.1742 0.2802

Number of children
no 2.36 2.33
hs 1.86 2.15
co 1.77 1.96

Lower asset limit
no − 2380 − 18,931
hs − 33,065 − 51,332
co − 60,037 − 43,629
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where h̄ is average acquired human capital at  j = ja (biological age 16) and �0(e) is an 
education group e specific normalization parameter, chosen such that �[�(h ∣ e)] = 1 
for all  e. The normalization—which gives �0(e) = 0.30, 0.05,−0.25 , 
for e ∈ {no, hs, co} , respectively—implies that the average education premia are all 
reflected in �(e, j,ma) , which in turn are directly estimated on PSID data.

5.4  Human Capital Production Function

At birth at age  j = 0 , the innate ability (initial human capital) h = h0 of children 
is determined, conditional on the distribution of parents by parental characteris-
tics ep,mp , by the function h0(ep,mp) . We calibrate the distribution from the Letter 
Word test score distribution in the PSID Child Development Supplement (CDS) sur-
veys I–III, and match it to parental characteristics by merging the survey waves with 
the PSID. Table 8 reports the joint distribution of average test scores of the chil-
dren by parental education and marital status. We use this test score distribution as 
a proxy for the initial human capital distribution of children conditional on parental 
education and marital status.25 We base the calibration of the initial ability distribu-
tion of children on this data by drawing six different types of children depending 
on the combination of marital status (2) and parental education (3). Children’s ini-
tial human capital is normalized as the test score of that mp, ep-group relative to the 
average test score. We further scale the resulting number by the calibration parame-
ter h̄0 and, thus, initial human capital of the children is a multiple of h̄0 . Parameter h̄0 
is calibrated exogenously to match the ratio of mean test scores at ages 3–5 to mean 

Table 6  Stochastic wage process

This table contains the estimated parameters of the residual log wage process

Parameter Estimates Markov Chain Transitory Shock

� �2
�

�2
�

�
hh

= �
ll

[�
l
, �

h
] [�

l
, �

h
]

Estimate 0.9559 0.0168 0.0566 0.9569 [0.8226, 1.1774] [0.881, 1.119]

Table 7  Ability gradient by 
education level

This table contains the estimated ability gradient �̂�1(e) , using 
NLSY79 as provided in replication files for Abbott et  al. (2019). 
Standard errors are in parentheses

Education level Ability gradient

HS − 0.351 (0.0407)
(HS & CL −) 0.564 (0.0233)
(CL & CL +) 0.793 (0.0731)

25 Importantly, by correlating the test score distribution with these parental characteristics, we do not 
pose a causal link between parental education and children’s characteristics. The test scores just give us a 
convenient way to proxy the initial joint distribution.
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test scores at ages 16–17, which gives  h̄0 = 0.125 . Initial abilities relative to aver-
age abilities and the corresponding multiples of h̄0 for the six types are contained in 
Table 8.

At ages  j0,… , ja − 1 children receive parents’ education investments through 
money and time  im(j), it(j) and school input  is(j) . Education investments of the 
respective education institution  s ∈ {pu, pr} are certain, known by parents, and 
equal across children. In the baseline pre-Covid-19 scenario we normalize the edu-
cation input in both institutions to 1 unit of time, thus is(j) = 1 for both s and all j. In 
private school one unit of time leads to a higher productivity than in public schools 
which is reflected in a productivity parameter Bs . Specifically, we normalize Bs = 1 , 
for s = pu and calibrate Bs > 1 , for s = pr endogenously to match the average frac-
tion of parents with children in private schools of 11.24% observed in the data. This 
gives Bs = 1.81 for s = pr . Given these inputs, human capital is acquired in a multi-
layer human capital production function 

which partially features age dependent parameters for calibration purposes. We 
divide the endogenous age dependent per child monetary and time investments by 
the parents  im(j), it(j) , as well as the CES aggregate of these (normalized) invest-
ments, ip(j) , by their respective unconditional means through which we achieve unit 
independence.

(14a)h�(j) =
(
�h(j)h

1−
1

�h + (1 − �h(j))i(j, s)
1−

1

�h

) 1

1−
1

�h

(14b)
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Table 8  Initial ability by 
parental education

This table contains the estimated initial ability of children as meas-
ured by the letter word test in the Child Development Supplement 
Surveys 1–3 (years 1997, 2002, 2007) of the PSID

Marital status and educ of 
HH head

Avg. Score Fraction of h̄0

Single low 35 0.843
Single medium 38 0.906
Single high 46 1.107
Married low 39 0.945
Married medium 41 0.984
Married high 45 1.085
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The outermost nest (first nest) augments human capital and total investments 
according to a CES aggregate with age-specific parameter �h(j) and age-independent 
substitution elasticity �h . We set �h = 1,26 and calibrate �h(j) to match (per child) 
time investments by age of the child. We model age dependency as

and determine ��h

1
, ��h

2
 by an indirect inference approach such that the age pattern of 

log per child time investments in the data equals the pattern in the model for biologi-
cal ages 6 to 14 of the child. Recall that we in turn match the average level of time 
investments at biological ages  6 to  14 by calibrating the utility cost parameter � . 
Time investments at biological age 4 are matched differently, with details described 
below. The intercept term ��h

0
 is calibrated to match average monetary investments. 

Consistent with  Cunha et  al. (2010), we find that the weight on acquired human 
capital at age j is increasing in j, so that investments become less important in the 
course of the life-cycle. While our model is not directly comparable to their empiri-
cal analysis,27 also the magnitude of �h(j) is similar.

In the second nest, we restrict 𝜅s(j) = �̄�s=pu = �̄�s=pr = �̄�s for  j > 0 and calibrate 
it exogenously according to the estimates for the US by Kotera and Seshadri (2017) 
– who estimate the parameters of a CES nesting of private and public education 
investments similar to ours – giving �̄�s = 0.676.

At biological age 4 of the child, children are still in kindergarten. To take into 
account this structural break in the process of education according to the institu-
tional setting, we separately calibrate �s

0
 to match the average time investments by 

parents into their children at biological age 4 of the child. This gives �s
0
= 0.56.

We restrict the substitution elasticity  �s to be the same for private and pub-
lic schools, �s=pu = �s=pr and calibrate it with reference to  Kotera and Seshadri 
(2017) who estimate an elasticity of substitution between private and government 
investment of �s = 2.43 . Thus, parental investments  ip(j) and government invest-
ments is=pu(j) are gross substitutes but substitution across these education inputs is 
far from perfect. Ā is a computational normalization parameter which we choose 
such that average acquired human capital is equal to 1, sufficiently below the maxi-
mum human capital grid point, giving Ā = 1.19.

The third nest augments the endogenous age specific per child monetary and time 
investments. As in Lee and Seshadri (2019), we restrict �m = 1 . The age dependency 
of �m(j) is specified as

(15)ln

(
1 − �h(j)

�h(j)

)
= ��h

0
+ ��h

1
⋅ j + ��h

1
⋅ j2

ln

(
1 − �m(j)
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)
= ��m

0
+ ��m

1
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26 That is approximately the mean value of the parameter for young and old children in Cunha et  al. 
(2010)
27 Total Investments in our model in the first nest include government investments from the second nest, 
and we do not distinguish explicitly between cognitive and non-cognitive skills.
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We calibrate ��m

0
 to achieve the normalization �m(3) = 0.5 , and ��m

1
 is calibrated to 

match the monetary investment profile, which is relatively flat in the data.
At age  ja the human capital process is extended to the high school period (i.e., for 

all children with education e = hs and e = co ). Time and monetary investments by 
parents in this phase of the life-cycle are zero, because children have already left the 
parental household and the human capital production function at  j = ja, e ∈ {hs, co} 
is

We compute �h(6) as a predicted value from the above described regression in (15) 
and calibrate the additional scaling parameter Ã such that the ratio of average human 
capital at  j = 6 (biological age 16) to average human capital at age  j = 5 is equal to 
the ratio of test scores of ages 16 − 17 to age 14 − 15 of 1.07. This gives Ã = 1.07.

The production function in (16) is an approximation as it ignores parental inputs 
entirely,28 reflecting that parental inputs may not be that effective at that age. The 
specification also ignores that children may invest into the human capital formation 
themselves, which may be of particular relevance for our main experiment of school 
closures. We thus regard our model of biological age 16 children as a crude approxi-
mation and will accordingly not put a key emphasis on those children when discuss-
ing our results. However, it is important for parental decisions at younger child ages 
that parents do foresee that the human capital process for age 16 children continues 
when children have left the household, which is our main motivation for extending 
the human capital accumulation process beyond that age.

5.5  College Tuition Costs and Borrowing Constraint of Children

We base the calibration of college tuition costs and borrowing constraints for college 
youngsters on Krueger and Ludwig (2016). The net price � (tuition, fees, room and 
board net of grants and education subsidies) for one year of college in constant 2005 
dollars is $13,213. In 2008 dollars, the maximum amount of publicly provided stu-
dents loans per year is given by $11,250, which is the children’s borrowing limit in 
the model for e = co and  j ∈ [jh, jc − 1] . For all ages  j ≥ jc we let

and compute rp such that the terminal condition a(jr, co, ch) = 0 is met.

(16)h�(j) = Ã

(
𝜅h(6)h
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1

𝜎h + (1 − 𝜅h(6))

(
ig

īg

)1−
1

𝜎h

) 1
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1
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.

a(j, co, ch) = a(j − 1, co, ch)(1 + r) − rp(ch)

28 It would not be possible in our setup to model parental inputs at that age because children have 
already left the household.
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5.6  Public Education Spending

The government spends on schooling for children and pays the college subsidy for 
college students. The former we approximate as $5000 per pupil based on UNESCO 
(1999-2005) data, as, for example, in  Holter (2015). The latter is set to 38.8% of 
average gross tuition costs, as in Krueger and Ludwig (2016). Assuming, as in Krue-
ger and Ludwig (2016), that the difference between net and gross tuition costs is due 
to both a public and a private subsidy with the latter not being explicitly modeled in 
our setup29 gives an average public subsidy of $6, 119 per student.

5.7  Calibrating the School Closures Experiments

The calibration of the length of school closures is based on Table 2 which shows the 
effective schooling time, as percent of the total available time in the two year inter-
val starting from March 2020, for different groups of students and under different 
assumptions on the effectiveness of online learning format. The crucial model input 
is the fraction of instructional time lost due to Covid-19 school closures, which is 
simply given by 1 minus the respective entry in Table 2. Our benchmark results are 
derived under the assumption of 25% effectiveness of online schooling formats, i.e., 
the first panel of Table 2. In our sensitivity analysis of Sect. 8 we discuss an alter-
native scenario when online schooling formats do not contribute to human capital 
accumulation, i.e., the second panel of Table 2.

6  Results

In this section, we document the positive and normative consequences from the dif-
ferential school closures documented in the empirical part of the paper assuming an 
effectiveness of online formats of � = 25% , in line with the estimates by Dorn et al. 
(2021), which is based on test score losses.

6.1  Young and Old Children

In Table 9, we display the impact of the differential school closures on tertiary edu-
cation attainment, human capital, the present discounted value of future earnings 
and welfare, broken down by the age of the child. Holding the length of school clo-
sures constant, younger children are more adversely affected from the Covid-19 
school crisis than older children. As explained in Fuchs-Schündeln et  al. (2022), 
this is a direct consequence of the self-productivity and dynamic complementarity 
in the production of human capital. However, as we saw from the empirical section, 

29 The private subsidy is set to 16.6% of average gross tuition costs as in Krueger and Ludwig (2016).
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secondary schools were closed for significantly longer than primary schools. As a 
consequence of these two competing factors, it is the youngest secondary school 
children that are most severely affected by the Covid-19 school closures.

6.2  Public vs. Private Schools

According to our empirical estimates, private schools were closed for a significantly 
shorter amount of time than public schools. We now quantify the impact of these 
differences in Table 10, which displays the differential impact, by school type, of 
the Covid-19 crisis on human capital, lifetime earnings and welfare (measured in 
consumption-equivalent variation).

First we note that children attending private schools would have higher human 
capital and lifetime earnings in the absence of the Covid-19 shock, see the second 
column of Table 10. This is due to the fact that children attending private schools 
tend to come from affluent parents with higher education that on average invest more 
into their children (which also tend to have higher initial human capital); this selec-
tion effect is compounded by the higher productivity of private schools in the human 
capital production function.

As the first panel of Table 10 shows, the longer school closings of public schools 
lead to larger human capital losses from the Covid-19 crisis among its pupils 
( −2.07% vs. 1.67% ), which translates into larger declines in lifetime earnings, 
directly and indirectly though the larger impact on high school and college comple-
tion rates. As the second panel of Table 10 shows, the net present value of lifetime 
earnings falls by −1.26% among children attending public schools, but only −1.09% 
for those in private school. This translates into differential welfare losses for the two 
groups of −0.75% and −0.44% , respectively, as the third panel of Table 10 displays.

6.3  Income‑Rich vs. Income Poor Households

One of the most surprising findings from our empirical analysis in Sect. 3 was that 
public school students in income-poorer regions (counties) experienced shorter 
school closures than their brethren in more affluent places. We now quantify the dif-
ferential welfare impact of this observation using our structural model.

Comparing children from the top- to children from the bottom quartile of the 
income distribution, welfare losses are 0.51 percentage points larger for the poorer 
children if school closures were unrelated to income ( −0.90% compared to −0.39% ), 
see the top panel of Table 11. Accounting for the longer school closures in richer 
counties reduces this gap to 0.39 percentage points ( −0.80% compared to −0.41% ), 
as documented in the bottom panel of Table 11. Therefore, although poorer children 
are still more severely affected by the pandemic, this force reduces the gap by about 
1/4 (0.39 versus 0.51 percentage points).
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7  Counterfactual Policy Analysis

The previous section documented significant welfare losses from the Covid-19-in-
duced school closures. In this section we evaluate whether responding to these 
losses by keeping the schools open in subsequent summers is an appropriate policy 
response, and we quantify the fiscal consequences of such an intervention. Specifi-
cally, we consider an additional 3 months of schooling in the two-year period fol-
lowing the Covid-19 pandemic, corresponding to one full summer, or two half-sum-
mers, starting in the summer of 2022.

Table 9  Aggregate outcomes for main experiments

Education share in education categories s = no (less than high school), s = hs (high school), s = co (col-
lege); av HK measures average acquired human capital at age 16; PDV gross earn measures the present 
discounted value of gross earnings assuming labor market entry at age 22 and retirement at age 66; PDV 
net earn measures the present discounted value of net earnings; CEV: is the consumption equivalent vari-
ation welfare measure. Columns for biological ages 4–14 show the respective percentage point changes 
of education shares, the percent changes of acquired human capital and average earnings, and the CEV 
expressed as a percent change, for children of the respective age at the time of the school closures. Col-
umn “average” gives the respective average response

Baseline Average Change for children of biological age

4 6 8 10 12 14

Change in %p
Shares = no 16.55 1.36 0.90 1.87 1.55 1.60 1.26 0.98
Shares = hs 49.99 0.02 0.13 − 0.45 − 0.05 0.07 0.19 0.26
Shares = co 33.46 − 1.39 − 1.04 − 1.42 − 1.50 − 1.67 − 1.45 − 1.24

Change in %
av HK 1.00 − 2.05 − 1.63 − 2.41 − 2.16 − 2.37 − 2.03 − 1.71
PDV gross earn $847,910 − 1.27 − 1.01 − 1.47 − 1.35 − 1.48 − 1.27 − 1.07
PDV net earn $690,446 − 1.02 − 0.80 − 1.18 − 1.08 − 1.18 − 1.01 − 0.85
Child CEV – − 0.71% − 0.55% − 0.82% − 0.73% − 0.83% − 0.72% − 0.61%

Table 10  % Change in human capital, lifetime earnings, welfare by school type and age

Human capital losses are measured at age 16, dependent on age at which Covid-19 hits

Baseline Average 4 6 8 10 12 14

Human capital
Public 0.95 − 2.07 − 1.56 − 2.43 − 2.16 − 2.46 − 2.10 − 1.75
Private 1.43 − 1.67 − 1.56 − 1.90 − 1.91 − 1.86 − 1.56 − 1.31

Lifetime earnings
Public $812,650 − 1.26 − 0.97 − 1.46 − 1.30 − 1.50 − 1.30 − 1.08
Private $1,092,667 − 1.09 − 0.97 − 1.19 − 1.33 − 1.26 − 1.03 − 0.80

Welfare
Public − 0.75 − 0.54 − 0.90 − 0.79 − 0.89 − 0.75 − 0.61
Private − 0.44 − 0.54 − 0.44 − 0.44 − 0.47 − 0.43 − 0.35
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7.1  National Schooling Expansion

The first row of Table  12 shows that, on average across households, the net pre-
sent value of the future labor income gain from the intervention net of the cost of 
the schooling extension is positive at $943 . Alternatively put, for each of the $1396 
spent on each child,30 the present discounted value of that child’s lifetime earning 
increases by $1.68 , for a total gain of $2339 . As the last row of Table 12 shows, 
the welfare gain for the average child from this intervention amounts to 0.22% of 
lifetime consumption. In other words, a national 3 months schooling expansion com-
pensates for more than 30% of the welfare losses of children induced by the Covid-
19 shock.31 

The government, though the tax system, of course only captures a part of the 
increase in the net present value of earnings. As the second row of Table 12 shows, 

Table 11  Welfare: bottom, top income quartile, homogeneous/heterog. school closures

Welfare losses are measured by consumption equivalent variation. Top panel assumes identical school 
losses across groups. Bottom panel uses empirically measured school losses

Average 4 6 8 10 12 14

Homog. Closures
Bottom 25% − 0.90% − 0.71% − 1.04% − 0.92% − 1.05% − 0.90% − 0.76%
Top 25% − 0.39% − 0.25% − 0.42% − 0.39% − 0.46% − 0.43% − 0.39%
Heterog. Closures
Bottom 25% − 0.80% − 0.65% − 0.91% − 0.81% − 0.91% − 0.81% − 0.68%
Top 25% − 0.41% − 0.27% − 0.52% − 0.50% − 0.45% − 0.39% − 0.32%

Table 12  National schooling expansion: NPV for households, government, welfare

The table shows the change in the present discounted value of gross earnings (in $) for households (row 
1) and the government (row 2) as well as the welfare consequences from the reform, measured in con-
sumption equivalent variation (CEV). All numbers are in per capita terms

Average 4 6 8 10 12 14

NPV households 943.36 1330.26 1148.03 1020.29 879.30 719.18 563.08
NPV government 38.51 265.91 155.91 69.55 − 30.55 − 146.39 − 83.39
Welfare children 0.22% 0.29% 0.25% 0.22% 0.20% 0.17% 0.16%

30 The per child cost of the intervention is computed based on the annual per student government spend-
ing of $5,584 (in 2010 dollars) in the baseline.
31 If the goal of the government were to fully offset the welfare losses that affected children incur as 
a result of school closures then the public schooling input during the 2 years following the lockdown 
of schools would have to be increased by ca. 51%, taking into account the crowding-out of parental 
investments as well as the fact that the human capital production function exhibits self-productivity and 
dynamic complementarity, and thus the Covid-19 schooling losses make future investments into human 
capital less productive. Also note that an expansion of schooling in the summer is welfare improving (in 
fact slightly more so) and budget neutral in the absence of the Covid-19 shock as well.
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the reform turns out to be completely self-financing in net present value terms; in 
fact, its impact on the government budget is slightly positive.

Table 13 reports the fiscal consequences, in the form of the present discounted 
value of tax revenues following the Covid-induced school closures and the school-
ing expansion. To give this thought experiment some context, the table, in the top 
panel, first reports the consequences for tax revenues in the absence of the schooling 
extension. It is clear that, on account of the massive decline in future labor income 
taxes, the fiscal situation of the government deteriorates significantly. Overall, tax 
revenues fall by 1.74% relative to pre-Covid-19 times.

This loss is reduced to 1.24% by the schooling intervention, as the lower panel of 
Table 13 demonstrates. Thus, even though this policy reform pays for itself (given 
the assumptions on the cost of the schooling expansion), it is insufficient to raise tax 
revenues to pre-Covid levels. Larger, longer lasting schooling interventions would 
be necessary to achieve that objective.

7.2  Schooling Expansion for Selected Subgroups of the Population

Next, we ask which groups to prioritize, in terms of additional schooling. We con-
sider the two income groups of parents studied in Sect. 6.3 and ask which group of 
children to prioritize if scarcity of school buildings or availability of teachers makes 
an expansion of school for the entire children population infeasible, or too large 
a program from a fiscal perspective if the government’s ability to borrow against 
future tax revenue generated by the program is limited.

The answer to this question is not obvious: on the one hand, children from poorer 
families accumulate less human capital and have lower lifetime utilities to start with even 
without the Covid-19 school closures, and sustain larger welfare losses than income-rich 
children, although the shorter school closures (relative to those of income richer chil-
dren) mitigate this gap somewhat, see Sect. 6.3. This suggests that poorer children would 
reap larger benefits from the additional schooling, an argument that underlies most pol-
icy proposals for selective school expansions in the USA. On the other hand, precisely 
because children from income-richer families accumulate more human capital and have 
a higher propensity to go to college pre-Covid-19, they tend to have higher earnings and 
pay more taxes. Therefore, from a fiscal perspective it might be this group whose Covid-
19-induced loss of human capital an expansion of schooling should tackle.

The top panel of Table  14 shows the welfare results, and indeed confirms that 
implementing a school summer program in the next two summers has a significantly 

Table 13  Change of present 
discounted value of tax 
revenues [in %] in the absence 
and presence of schooling 
intervention

The table shows the change in the present discounted value of tax 
revenue (in % ). Revenue source: All: sum of all tax sources; lab.: 
from labor income taxes; cap.: from capital income taxes; cons.: 
from consumption taxes

Revenue source All Lab. Inc. Cap. Inc. Cons.

No schooling expansion − 1.74 − 4.66 0.26 − 0.68
Schooling expansion − 1.24 − 3.24 0.25 − 0.47
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positive welfare impact on children, and that these welfare gains are especially large 
for younger children from poorer parental backgrounds. As a potentially desirable 
side effect, earnings and welfare inequality would fall under such a selective school 
expansion policy.

On the other hand, the budgetary consequences of such a school expansion are 
more favorable if focused on children from affluent social backgrounds. The bot-
tom panel of Table 14 displays the per-child32 fiscal consequences from the school 
expansion. It shows that for the typical child from a poor parental background the 
cost of additional schooling (assumed to be $1, 396 per child, as above) outweighs 
the extra tax revenue by $131 . In contrast, the higher taxes induced by the additional 
human capital accumulation for children from affluent households more than offset 
the costs, for a net budgetary gain for the government of $148 per child. Therefore 
a government exclusively concerned about the fiscal impact of the reform would 
select the top-, rather than the bottom quarter of the parental income distribution as 
the target for the reform.33

8  Robustness and Extensions

In Sect. 8.1, we probe the sensitivity of our results to the magnitude of virtual learn-
ing effectiveness. We then, in Sect. 8.2, comment on the potential benefits of school 
closures, through the lens of our model, and discuss limitations of the model that 
renders the measurement of these benefits incomplete, thereby justifying our focus 
on the cost side of school closures.

8.1  Variations in Losses of Effective In‑person Learning

8.1.1  Zero Effectiveness of Online Learning Formats

In our benchmark results, we had assumed that students learning online was 
25% as effective as in-person learning, based on the evidence presented by Dorn 
et  al. (2021). However, as we discussed at the end of Sect.  3, based both on 
other studies measuring learning losses directly, and based on ancillary predic-
tions of the model this assumption, at least in the context of our model, likely 
leads to an understatement of the actual learning losses that occurred during the 
two-year period under consideration. We therefore now display selected results 
under the assumption that online learning formats are completely ineffective, 
as implied by the findings from Engzell et  al. (2021) stemming from the early 
phase of the Covid-19 epidemic. In Table 2 of Sect. 3, we summarized effective 

32 Even though the top and bottom quartile of the income distribution has the same number of par-
ents and the school expansion costs the same per child, the total size of the program differs slightly if 
bestowed upon the poor and the rich children, since income poorer parents have on average slightly more 
children.
33 The welfare and fiscal revenue consequences for income groups in between the bottom and top quar-
tiles lie in between the extremes reported in Table 14.



76 N. Fuchs-Schündeln et al.

schooling times during the 2020-2021 period. The baseline results thus far were 
derived under the results in the first panel; now we use the numbers from the 
second panel, which assume that online formats were not effective at all. Quali-
tatively, under this assumption school closures are longer, and the dispersion in 
school closures by school types (public vs. private and primary vs. secondary) 
and county income is larger as well. To give one summary measure, with 25% 
effectiveness of online schooling (our benchmark), the loss in schooling input 
(averaged over all school types) was 30.6% over a two year period, and if virtual 
learning is completely ineffective, this number is roughly 40.8% (compare the 
first entries in the first and second panel of Table 2).

Here, we provide a summary of the findings under this alternative assump-
tion; Appendix D contains the details. Table  20 displays the consequences for 
educational attainment, human capital, the present discounted value of earnings 
and welfare measured in terms of consumption-equivalent variation. Compared 
to the benchmark results in Table  9 all qualitative results from Sect.  6 remain 
fully intact, but its magnitudes become larger since the effective size of the 
negative schooling shock increases by roughly 1/4. Interestingly, the increase in 
the negative impact on human capital, earnings and welfare is larger than 25% 
of its previous magnitude since in the model future human capital accumula-
tion depends positively on current human capital (due to self-productivity and 
dynamic complementarity in the human capital production function), and there-
fore the costs of school closures are strictly convex in its length.

The differences in lifetime earnings and welfare across children attending 
public versus private schools increase as well. Table 2 of Sect. 3 shows that if 
online educational formats are completely ineffective substitutes for in-person 
learning, then the gap across these school types in the effective length of school 
closures grows, and so do the differences in the earnings and welfare losses 
between its graduates as can be seen by comparing Tables 21 with the bench-
mark results in Table 10 from Sect. 6. Finally, Table 22 in Appendix shows that, 
relative to the benchmark in Table  22 from Sect.  6, under the assumption of 

Table 14  Welfare and tax revenues: bottom and top parental income quartile

The table shows the welfare and tax revenue consequences for a 3 month schooling expansion, separately 
for children in the top 25% and bottom 25% of the parental income distribution. All numbers are per cap-
ita. Welfare is measured as consumption equivalent variation, relative to no intervention. Tax revenues 
are measured as change in the net present value of taxes paid, relative to no schooling expansion

Average 4 6 8 10 12 14

Welfare (in %)
Bottom 25% 0.28% 0.41% 0.35% 0.30% 0.26% 0.22% 0.13%
Top 25% 0.09% 0.05% 0.08% 0.08% 0.08% 0.09% 0.19%
Tax revenue (in $)
Bottom 25% − 130.92 134.23 71.62 − 18.28 − 126.08 − 247.29 − 599.73
Top 25% 148.15 203.19 156.87 71.12 − 2.46 − 109.00 569.19
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0% effectiveness of virtual learning the magnitude of welfare losses is larger 
for both children from income-rich and income-poor parents and the difference 
between the two groups is magnified as well (as is the share of the gap under 
homogeneous school closure lengths that is being closed due to low-income 
regions experiencing shorter school closures).

8.1.2  Heterogeneity in School Closures Across Rich and Poor Areas

The results in Sects. 6 and 8 allow us to assess, in the context of our model, the 
potential importance of heterogeneity in the effectiveness of online learning formats. 
If online formats are significantly less effective in neighborhoods or school districts 
with (income-) poorer children, as suggested by the recent evidence in Halloran 
et al. (2022) and Kogan et al. (2021), then the distributional impact of school clo-
sures will be more pronounced.

Table  15 demonstrates this point by summarizing the average welfare loss by 
poor and rich children under alternative assumptions about the length of school clo-
sures and the effectiveness of online schooling formats. The first column stems from 
the first panel of Table 11 and shows the welfare losses if the length of school clo-
sures is uniform across incomes at 25% effectiveness (as assumed in the benchmark 
results), the second column incorporates the empirical finding that schools in poorer 
counties were closed less (the second panel of Table 11), and the last column repro-
duces the losses from Table 22 and captures both differential school closures and no 
productivity of online teaching.

The point we want to make here is that heterogeneity in the amount of online 
learning across the income distribution can be a very substantial force of amplifica-
tion of inequality in the impact of the Covid-19 crisis. Suppose that online formats 
in poorer neighborhoods are not effective at all whereas schools in affluent neighbor-
hoods manage to replace in person-learning with online formats more effectively (at 
25% productivity, say), then the welfare gap roughly doubles from 0.39% (the differ-
ence between the top and bottom row in column 2) to 0.72% (the difference between 
the bottom row in column 2 and the top row in column 3). This amplification of 
inequality is significantly larger than the reduction from the differential length of 
school closures favoring the poor, comparing the gap between the first and the sec-
ond column of Table 15.

8.1.3  Consequences of School Time Extensions

How do longer and more dispersed effective school closures impact the positive 
and normative implications of government schooling interventions from Sect.  7? 
Table  23 in Appendix summarizes the welfare consequences from the reform, as 
well as the fiscal consequences for private households and the government, respec-
tively. The main observation, comparing Tables 12 and 23 is that the main results 
from Sect.  7 are qualitatively, and to a very large extent quantitatively robust to 
longer effective schooling losses.
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8.2  On the Health Benefits of School Closures

Although we do not attempt a full cost-benefit analysis of school closures in this 
paper, which would require the integration of our framework into a model of disease 
transmission in the SIR tradition as well as good estimates of the causal impact of 
school closures on the transmission of Covid-19 infections, we can use the model 
to provide some back-of-the envelope calculations of the potential benefits of these 
school closures.

In the context of the model, the cost of a lost child is equal to the associated earn-
ings loss, i.e., the PDV of the future gross earnings of a child, and thus amounts 
to $847, 910 (see Table 9).34 For children of married parents with a college degree 
this number rises to $1, 064, 461 . An additional benefit of school closures that can 
be calculated inside the model is associated with preventing infections of parents. 
The welfare loss for a child of losing a parent to Covid-19 in the model, by compar-
ing welfare using consumption equivalent variation of a child living in a two-parent 
household with welfare of the child living in a household with a single parent (and 
the same education and asset holdings) ranges from 2% for a 14-year-old child with 
high-school dropout parents to 20% for four-year old children with college-educated 
parents. It is again important to note that these numbers do not capture the emo-
tional losses of having a parent die (of Covid-19), only the economic losses as esti-
mated by our model.

To put these numbers in perspective, the average model-implied earnings loss 
for each child is 1.27% of 847, 910 (see Table 9), that is, $10, 768 , and the welfare 
loss is 0.71% for each child. Given the very low incidence of children and adults of 
parent age (32–44 in the model) dying from Covid-19 the health impact of school 
closures would have to be dramatic for the potential health benefits stated above to 
outweigh the cost.35

Table 15  Child CEV: 
homogeneous/heterogeneous 
school closures, different 
effectiveness of virtual 
schooling

The table shows the welfare consequences, measured in consump-
tion equivalent variation (CEV). “Homogeneous" and “heterogene-
ous” refers to the length of school closures in rich vs. poor counties. 
� denotes the effectiveness of virtual learning

Homog, � = 25% Heterog, � = 25% Heterog, 
� = 0%

bottom − 0.90% − 0.80% − 1.13%
top − 0.39% − 0.41% − 0.64%

34 This estimate is significantly lower than the value of a statistical life used by or the range of values 
discussed in Hall et al. (2020) ( $10.8 million) and Greenstone et al. (2020) of roughly $10 million, since 
the latter includes not just the lost earnings of the child, but the intrinsic value for the child of being 
alive.
35 About 0.0015% of all children aged 0–17 have died from Covid-19 thus far. For adults aged 30–39 this 
number is roughly 0.04%.
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The evidence on this impact is mixed. Papers exploiting natural experiments 
include Bismarck-Osten et al. (2021) who use the staggered timing of school holi-
days across German states to estimate the impact of school closures on Covid-19 
infections in school and conclude that “neither the summer closures nor the closures 
in the fall had a significant containing effect on the spread of SARS-CoV-2 among 
children or a spill-over effect on older generations." Similar findings are contained 
in the other quasi-experimental papers we are aware of, cf.  Vlachos et  al. (2021) 
and  Isphording et  al. (2020).36 In contrast to this literature, correlational studies 
that investigate the relationship between in-person schooling and the incidence of 
COVID-19 across countries or states within a country tend to find a negative impact 
of school closures on infection rates and mortality of children and their parents, see 
Auger et al. (2020), Harris et al. (2021) and Goldhaber et al. (2021) for the USA or 
Liyaghatdar et al. (2021) for a cross section of countries. However, the magnitude of 
the effects even in these studies is not large enough for the health benefits of school 
closures measured by our model to approach the costs documented in the paper.

However, our model might not capture the full health benefits of school closures. 
First, we do not measure the potential health benefits of school closures for teachers, 
which the Vlachos et al. (2021) study concludes could be substantial, or for grandpar-
ents. Second, Covid-19 infections may have long-term adverse health consequences 
that manifest themselves in lower earnings. Third, as discussed above, the value of 
life might be significantly understated by the lost present discounted value of earnings 
implied by the model. Thus, we fully acknowledge that the results in this paper should 
not be interpreted as a complete cost-benefit analysis of school closures.

9  Conclusion

We document, using Safegraph cell phone data, that the Covid-19 crisis led to 
lengthy school closures that are heterogeneous across school types. Using a struc-
tural life cycle model with private and public school choice and parental time and 
resource investment into their children and empirically informing it with the school 
closure data we estimate the human capital- and welfare losses of affected children 
with different characteristics. We then use the model to evaluate the fiscal and wel-
fare consequences of recent policy proposals that will extend instructional time in 
the next two summers by three months to partially compensate for these losses. Such 
a policy reform raises welfare of children and approximately pays for itself by gener-
ating higher future labor income- and consumption taxes.

In this paper we focus on dimensions of heterogeneity among children that we can 
associate with Safegraph school visits data, such as the type of school a child attends, 

36 Some papers argue that Covid-19 school closures will increase mortality among affected children 
because they will reduce human capital accumulation and educational attainments, and mortality rates 
are strongly negatively correlated with these educational outcomes. Christakis et al. (2020) find that for 
the USA, primary school closures during the first Covid-19 wave in March to June 2020 led to more life 
years lost than the counterfactual of having kept these schools open. Based on these studies a cost-benefit 
analysis of school closures is a non-starter since there are no health benefits from school closures.
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and the income of the county in which the school is located. We abstract from other 
aspects of inequality among children, and thus potentially understate the dispersion in 
the welfare consequences across the affected cohorts of children. First, when schools 
close, not only lose students access to in-person instruction, but they also lose contacts 
to their peers who might be crucial for their learning success. This effect can be espe-
cially important for children who are already struggling in school, and thus amplify 
the already unequal direct effects of school closures, see Agostinelli et al. (2020).

Second, one crucial response of parents to the Covid-19 school crisis in our 
model is to increase the time spent with children, partially offsetting the loss in edu-
cational time in school. In the model this is always feasible for parents, albeit more 
costly in terms of disutility for parents who also work. In practice, there is signifi-
cant heterogeneity in the ability of parents to work from home and thus increase 
time investment into their children while continuing to work.37 Working from home 
was much more prevalent in high-pay white-collar jobs than in low-paying jobs in 
services or manufacturing, and abstracting from this source of heterogeneity in the 
ability to work from home likely leads to an understatement of the dispersion of the 
welfare losses between children at the top and at the bottom of the distribution.

Third, this paper studies the impact of school closures in the USA, a high-income coun-
try (with very substantial inequality). A similar structural framework can be combined with 
data on learning losses due to Covid-19 in developing countries where the schooling crisis 
occurred against the backdrop of pre-existing lower educational attainment, and online for-
mats were even harder to implement. Thus, it is likely that the dispersion of welfare losses 
among children across countries is even higher than the ones we have documented here.38

A. Dynamic Programs of the Model

A.1 Children Generation

A.1.1 Retirement Phase

In retirement, households of both generations solve the following completely stand-
ard recursive consumption-saving problem of the form:

subject to

V(j, e, si, �;a, h) = max
c,a�≥0

{
u(c) + �V(j + 1, e, si, �;a�, h)

}

c(1 + �c) + a� = a(1 + r(1 − �k)) + y − T(y)

y = pen(e, si, �jr−1, h)

� = �jr−1

37 See Adams-Prassl et al. (2020) for empirical evidence along this line.
38 For a model-based comparison of the Covid-19 crisis across the world income distribution, see Alon 
et al. (2020) and Alon et al. (2021).
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where u(.) is a standard period utility function that is strictly increasing, strictly 
concave and twice differentiable. Here,  pen(e,m, �jr−1, h) is pension income, whose 
dependence on educational attainment e, marital status, the persistent income state 
in the period prior to retirement �jr−1 and human capital h serves to proxy for the 
progressive nature of the social security system. More precisely, for the children 
generation we have assumed that all individuals remain single (and thus pensions 
are pen(e, si, �jr−1, h) ), and for the parental generation we will normalized human 
capital to 1, so that pension benefits are independent of h, so that pen(e,m, �jr−1) , 
see below. Apart from these differences in the exact form of the pension benefits for-
mula, the retirement decision problems of both generations are identical.

A.1.2 Working Phase

During working life, the dynamic programming problem of the children generation reads 
as

subject to the constraints

Since labor supply is exogenous in our model, the disutility of work v(⋅) does not 
affect optimal choices of children, but impacts the child value functions which in 
turn enter the parental transfer decision problem as spelled out in the main text. 
Income y depends on permanent labor productivity �(e, h) which in turn is a function 
of human capital acquired during the child’s schooling years as well as the chosen 
level of education e.

A.1.3 Education Decision and Phase

The dynamic programs for this phase of the children’s life cycle were explicitly 
spelled out in the main text.

A.2 Parental Generation

A.2.1 Retirement Phase

The retirement phase of the parental generation is a standard consumption-saving 
problem of the form

V(j, e, �, �, a, h) = max
c,a�

{
u(c) − v(�(si)) + �

∑

��

�(�� ∣ �)
∑

��

�(��)V(j + 1, e, ��, ��, a�, h)

}

c(1 + �c) + a� = a(1 + r(1 − �k)) + y(1 − �p) − T(y(1 − 0.5�p))

y = w�(e, h)�(e, j, si)���(si)

a� ≥ −a(j, e, ch)



82 N. Fuchs-Schündeln et al.

subject to

A.2.2 Working Phase

After children have left the household, the parent generation solves, at age 
j ∈ {ja + jf + 1, ..., jr − 1} a standard consumption-savings problem during the rest of 
working life, similar to the one by the children generation in Sect. A.1.2. As with the 
retirement phase, the main difference to the children generation is that now both house-
hold income as well as effective per capita consumption and labor supply depends on 
whether a household is single or married. The recursive problem then reads as

subject to

A.2.3 Inter‑vivos Transfer, Human Capital Investment and Private Schooling 
Decisions

The dynamic programs for these decisions were given directly in the text since they 
are the main focus of the model.

B. Data Appendix

To obtain information about elementary and secondary schools, we use two data sets 
from the National Center for Education Statistics (NCES).

The first data set is the Common Core of Data (CCD), which is comprehen-
sive database of all public elementary and secondary schools and school districts 
(including public charter schools). The CCD consists of different surveys completed 

V(j, e,m, �;a) = max
c,a�≥0

{
u

(
c

1 + �m=ma�a

)
+ �V(j + 1, e,m, �;a�)

}

c(1 + �c) + a� = a(1 + r(1 − �k)) + y − T(y)

y = pen(e,m, �jr−1)

� = �jr−1

V(j, e,m, �, �, a) = max
c,a�

{
u

(
c

1 + �m=ma�a

)

−v

(
�(m)

1 + �m=ma

)
+ �

∑

��

�(��|�)
∑

��

�(��)V(j + 1, e,m, ��, ��, a�)

}

c(1 + �c) + a� = a(1 + r(1 − �k)) + y(1 − �p) − T(y(1 − �p))

y = w�(e, j,m)���(m)

a� ≥ −a(j, e,m, pa).
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annually by state education departments from their administrative records. We use 
the 2019–2020 CCD school data files released in March 2021.

The other data set is the NCES’s Private School Universe Survey (PSS). PSS is a bien-
nial survey that collects data on private schools and serves as a sampling frame for other 
NCES surveys of private schools. The schools surveyed in the PSS come with a survey 
weight (which we use in our construction of sample weights presented in the next sec-
tion). We use the 2017–2018 data files released in August 2019. This is the most recent 
version of PSS as of this writing.

We combine the pooled CCD-PSS data set to the Safegraph data set of POIs with 
NAICS code 611110. We first pre-clean the data by standardizing school names and 
addresses (i.e., we convert the capital letters to lower case, remove non-alphanumeric 
characters and spaces, etc.). Then, we attempt direct merges on combinations of school 
names, addresses and zip codes. For those schools that do not have a direct merge, we 
apply fuzzy-name matching within the same zip code and retain those matches with a 
high-confidence matching scores. For private schools, we only have school names and 
GPS coordinates. We match them to the Safegraph data by using a combination of 
Levenshtein distance between school name and geographic distance based on the GPS 
coordinates.

Table 16 compares the schools of the pooled CCD-PSS data set to the subset of 
schools matched to Safegraph data. As can be seen, all the observable characteristics 
of schools line up closely with each other (Fig. 4).

Table 16  Comparison between 
all schools and schools matched 
to SG data

% Free lunch and % Reduced-price lunch denote the share of stu-
dents who are eligible for free and reduced-price lunches, respec-
tively

Public schools Private schools

All Matched All Matched

Sample count 101,688 85,210 22,895 17,482
Student-teacher ratio 15.68 15.55 10.53 10.45
% Male 52.2 52.1 52.5 52.6
% Indian 1.84 1.68 0.72 0.70
% Asian 3.87 3.88 6.06 5.75
% Pacific 0.40 0.34 0.52 0.52
% Hispanic 25.2 24.5 11.7 11.8
% White 49.9 51.5 65.0 65.9
% Black 14.6 13.7 11.6 11.1
% Other 4.29 4.34 4.34 4.32
% Free lunch 44.2 43.8 n.a. n.a.
% Reduced-price lunch 5.07 5.14 n.a. n.a.
City 27.6 26.0 34.0 34.9
Suburban 31.4 31.9 37.9 36.9
Town 13.2 13.7 8.73 9.95
Rural 27.8 28.4 19.4 18.3
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B.1 Further Sample Selection and Sample Weights

In an effort to reduce noise further, we implement the following additional sample 
restrictions: 

1. We drop schools where the raw visits count on average during the base period is 
less than 10, and schools where dj,t is larger than 50 more than once during the 
based period. The goal of these first two restrictions is to ensure that the measure-
ment of school visits for the base period are reliable enough to compare them with 
school visits in any other period. Together these restrictions reduce the sample 
size by 20%.

2. We drop schools where dj,t is larger than 75 more than once, either during the 
period from beginning of September 2019 to November 2019 or the period from 
beginning of September 2020 to the end of the sample period (currently end of 
May). This procedure intends to purge the data from extreme values that affect 
the average of changes in visits in any given period. We use a larger threshold 
(75 instead of 50) to trim the data because it is to expected that the visits time 
series for each school are more volatile outside of the base period. This sample 
restriction reduces the sample size by an additional 10%.

The resulting “in-scope” data set contains 69,910 schools or about 70% of all 
schools that we manage to match to the CCD + PSS data set Recall that the sample 
of matched schools is itself a subsample of the CCD + PSS data set (see previous 
section). One concern is that the data is becoming less representative of the universe 

Fig. 4  Aggregate time series of visits (week 1 = 1st week of 2020)
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of schools. In particular, smaller schools and/or schools in areas where SG has lower 
coverage are likely to have more noisy visits data. As a result, these schools are less 
likely to be included in our data set of school visits.

To address the potential concern about the representativeness of the remaining 
sample, we construct sampling weights for schools included in the in-scope data set. 
We estimate a Probit model where the regressors are school size (as measured by 
student enrollment) interacted with school covariates (public/private, Charter/non-
Charter, locale area type) and Census divisions, and the left-hand side variable is 
an indicator yj that takes the value of 1 if school j is included in the data set of 
school visits and is 0 otherwise. Then, we weight each public school by the inverse 
of P̂r

{
yj = 1

}
 , and each private school by its PSS sampling weight times the inverse 

of P̂r
{
yj = 1

}
 . We check the quality of this adjustment by comparing the weighted 

counts of students, teachers, and schools in the data to the counts reported in the 
NCES digest of education’s statistics (i.e., those reported in Table 17).

B.2 Details of the Burbio Data

Burbio is a private company that collects data on public schools’ calendars for com-
mercial use and for research purposes. The Burbio data contains, for 3124 counties, 
weekly indicators of the main learning mode of public schools within a country, cat-
egorized as traditional, hybrid, or virtual. These indicators are created by first audit-
ing school districts’ websites, Facebook pages, etc. to determine the main learning 
mode currently in place at the school district level, and then aggregating up to the 
county level by taking the average of the indicators weighted by student enrollment 
in each school district. This approach is relevant because public education at the 
local level is organized by school districts. For the most highly populated counties, 
Burbio samples school districts that represent an average of 90% of students in those 
counties. For less populated counties, Burbio adapts its methodology to ensure that 
its indicators are representative of the learning mode in place for the majority of 
students enrolled in public schools in those counties. See https:// about. burbio. com/ 
metho dology/ for details about Burbio’s methodology.

Burbio shares with us a county-level weekly panel of its indicators. In addition 
to indicators about traditional, hybrid, and virtual learning, the data contains infor-
mation on the usual start week of most schools within each county, which we take 
into account while constructing measurements of the fractions of the schooling year 
2020–2021 that a given country spends in a given learning mode. In about one third 
of the counties, schools usually open before the last week of August; another one 
third usually opens during the last week of August; and the remainder usually opens 
some time later in September.

https://about.burbio.com/methodology/
https://about.burbio.com/methodology/
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C. Calibration Appendix

C.1 Data

In the first stage of calibration, we use PSID data to estimate the deterministic age 
wage profiles and to construct the initial distribution of parents. Furthermore, we 
use NLSY79 data to estimate education-specific human capital gradients of the 
non-age related wage component. Finally, in the second stage of the calibration we 
use the Child Development Supplement (CDS) of the PSID, surveys I-III, to obtain 

Table 17  Comparison to the NCES digest of education’s statistics

NCES numbers refer to the year 2017–2018. ( a ) Includes special education, alternative, and other 
schools not classified by grade span. ( b ) NCES enrollment numbers in public schools include imputa-
tions for public school prekindergarten enrollment in California and Oregon

Number of educational institutions

NCES table  105. 50 CCD & PSS

Public Schools 98,469 101,688
Elementary 67,408 68,953
Secondary 23,882 21,434
Combined 6278 6678
Other ( a) 901 4623
Private Schools 32,461 27,641
Elementary 20,090 17,378
Secondary 2845 2301
Combined 9526 7962
All 130,930 129,329

Number of students (in 1000s)

NCES table  105. 20 CCD & PSS

Public Schools ( b) 50,686 50,834
Prekindergarten to grade 8 35,496 33,415
Grades 9 to 12 15,190 17,419
Private Schools 5720 4090
Prekindergarten to grade 8 4252 3450
Grades 9 to 12 1468 0.639
All 56,406 54,924

Number of teachers (in 1000s, full-time equivalents)

NCES table  105. 40 ( c) CCD & PSS

Public Schools 3170 2911
Private Schools 482 401
All 3652 3312

https://nces.ed.gov/programs/digest/d19/tables/dt19_105.50.asp
https://nces.ed.gov/programs/digest/d19/tables/dt19_105.20.asp
https://nces.ed.gov/programs/digest/d19/tables/dt19_105.40.asp
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empirical moments related to the child human capital and parental investments into 
children.

PSID The initial distribution of parents by marital status, education, number of 
children and assets is constructed based on the four most recent PSID waves, 2011-
2017. We use the PSID family files and keep only parents in the sample (i.e., only 
observations where children are present in the household). We keep only obser-
vations with positive hours and labor income of the household head. This leaves 
us with 7591 observations. Labor earnings and wealth are inflated to 2010 dollars 
using the CPI . Deterministic age wage profiles are estimated using a PSID sample 
from 1967 to 201339 based on observations from both households with and without 
children. For measuring the initial distributions of parents in Sect. 5.2, we restrict 
our PSID data sample to parents aged 25–35.40

NLSY79 We use the NLSY79 data set provided in the replication files of Abbott 
et al. (2019). Following their approach, we approximate adult human capital by the 
test scores taken from the Armed Forces Qualification Test AFQT89.

PSID CDS To obtain child related statistics by parental characteristics, we merge 
the CDS data files with the PSID family files of the respective waves. As children 
of married couples, we consider children for whom both caregivers correspond to 
the household head and the spouse in a PSID household,41 and for whom at least 
one of the caregivers is the biological parent. This leaves us with  4393 observa-
tions (2419 children) for the three waves of the survey. All children for whom the 
reported school type is private (354 observations) are classified as going to private 
schools – including those for whom parents report zero expenses on schooling fees. 
The average schooling fee used as an exogenous input in the model is computed 
based on reported average expenses on schooling fees for children attending pri-
vate schools.42 All descriptive statistics are computed using cross-sectional sample 
weights provided in the survey.

C.2 Age Brackets

The model is calibrated at a biannual frequency. We initialize the parental economic 
life-cycle when their children are of age 4, which is model age  j = 0 . The reason for 
this initialization age is the calibration of the initial human capital endowment h(j = 0) , 
which is informed by data on test score measures at child biological ages 3 to 5, as 
described below. Thus, children are irrelevant to the economic model for the first  3 

39 We thank Chris Busch for helping us with the data.
40 For measuring education, which is not changing much with age, we keep parents aged 22 or above.
41 In case of singles, only the household head is the primary caregiver.
42 The share of parents reporting zero fees in private school in our sample is 5.11% and the average tui-
tion reported is $6942 (in 2010 dollars). These observations might contain non-trivial measurement error, 
but the positive, albeit small, share of zero-fee paying students also represents those children who receive 
full academic or athletic scholarships.



88 N. Fuchs-Schündeln et al.

years of their biological lives. Parental age at the economic “birth” of children 
is  jf = 14 , which we also refer to as “fertility” age. This corresponds to a biological 
age of 32, when children are of biological age 4.43 Children make the higher education 
decision at biological age 16, model age  ja = 6 . Children who complete high school 
stay in school for one additional model period, thus high school is completed at  jh = 7 . 
Children who attend college stay in college for two model periods, thus college is com-
pleted at  jc = 9 . Retirement is at the exogenous age  jr = 31 , corresponding to biologi-
cal age 66. Households live at most with certainty until age J = 38 , biological age 80.

C.3 Prices

We normalize wages to w = 1 and directly parameterize the income process. The 
interest rate is set to an annual rate of 4% based on Siegel (2002).

C.4 General Government Budget

The government side features the budget of the general tax and transfer system and a 
separate budget of the pension system. In the general budget the revenue side is rep-
resented by consumption, capital income and labor income taxes. The consumption 
tax rate is set to �c = 5% based on Mendoza et al. (1994), and the capital income tax 
rate to �k = 20% , which is the current statutory capital income tax rate on long-term 
capital gains (assets held longer than a year) for households in the highest income 
tax bracket.

The labor income tax code is approximated by the following two-parameter func-
tion, as in, e.g., Benabou (2002) and Heathcote et al. (2017):

where � is the progressivity parameter and � determines the average tax rate. We 
set � = 0.18 as suggested by estimates of  Heathcote et  al. (2017) and calibrate � 
endogenously to close the government budget, giving � = 0.89.

Exogenous government spending (net of spending on education) is set 
to G∕Y% = 13.8%.

C.5 Pension System

The payroll tax �p is set to the current legislative level of 12.4% and the pension 
benefit level relating average pension benefits to average net wages is endogenously 
chosen such that the benefits of the parent generation equal their contributions, giv-
ing a replacement benefit level of �p = 0.19 (Table 18).

T(y) = y − �y1−� ,

43 Thus, children are biologically born at parental age 28.
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C.6 Extreme Value Type I (Gumbel) Taste Shocks

In order to smooth both the discrete choice problem of the child generation which 
tertiary education option to choose (dropping out from high school, completing high 
school, attending and completing college) and of the parental generation whether to 
send their children to private or public school, we introduce small taste shocks to 
each of these discrete options and assume that these shocks follow an Extreme Value 
Type I (Gumbel) distribution with scale parameter of 0.005. To give the magnitude 
of this shock some content, the fraction of parents whose school choice is shifted 
due to the shock is 1.2%, and the fraction of children whose higher education choice 
is shifted is 0.01%. Iskhakov et al. (2017) define taste shocks with scale parameter 
below 0.01 as “small” scale shocks, and they also explain why adding these shocks 
is helpful for the computation of the model. The main advantage of introducing 
these shocks in our application is that it turns the discrete choice into a choice prob-
ability over these discrete options and makes the upper envelope over the continua-
tion lifetime utilities a smooth function of the state variables (Table 19).

D. Sensitivity Analysis Appendix

Table 20 displays the consequences for educational attainment, human capital, the 
present discounted value of earnings and welfare measured in terms of consump-
tion-equivalent variation discussed in the main text. Compared to the benchmark 
results in Table 9 we see that all qualitative results from Sect. 6 remain fully intact, 
but its magnitudes become larger, which is to be expected because the effective size 
of the negative schooling shock is raises by roughly 1/4.

The same observation applies to the differences in lifetime earnings and welfare 
across children attending public versus private schools. Table 21 shows the differ-
ences in the earnings- and welfare impact between public and private schools if on-
line formats are completely ineffective, and should be compared with the benchmark 
results in Table 10 from Sect. 6.

Table 22 shows welfare losses of children whose parents are in the bottom and 
the top quartile of the income distribution, respectively. Compared to Table 22 from 
Sect. 6, under the assumption of 0% effectiveness of virtual learning the magnitude 
of welfare losses is larger for both groups and the difference between the two groups 
is magnified as well (as is the share of the gap under homogeneous school closure 
lengths that is being closed due to low-income regions experiencing shorter school 
closures).

Table  23 summarizes the key results concerning the national schooling expan-
sion in the version of the model where online formats are fully ineffective and thus 
the Covid-19 school closures are especially severe. Compared to the benchmark 
results in Sect. 7, with larger schooling losses the impact of additional schooling in 
the summer on the present discounted value of household earnings and tax revenues 
is somewhat smaller (so that the intervention now is literally budget neutral for the 
government). Child welfare gains from the intervention are also marginally smaller 
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if online learning is less effective, but by and large the quantitative consequences of 
the schooling expansion are robust to starting with larger school closures than in the 
benchmark. The same is true for the heterogeneity by parental income in the welfare 
and fiscal consequences.

Table 20  Aggregate outcomes when virtual learning is not effective (� = 0)

Share s ∈ {no, hs, co} : education share in respective education category s = no : less than high school, 
s = hs : high school, s = co : college; av HK: average acquired human capital at age 16; PDV gross earn: 
present discounted value of gross earnings assuming labor market entry at age  22 and retirement at 
age 66; PDV net earn: present discounted value of net earnings; CEV: consumption equivalent variation.
Columns for biological ages 4–14 show the respective percentage point changes of education shares, the 
percent changes of acquired human capital and average earnings, and the CEV expressed as a percent 
change, for children of the respective age at the time of the school closures. Column “average” gives the 
respective average response. The CEV is the consumption equivalent variation welfare measure

Baseline Average Change for children of biological age

4 6 8 10 12 14

Change in %p
Share s = no 16.55 1.91 1.34 2.58 2.15 2.25 1.78 1.38
Share s = hs 49.99 0.01 0.07 − 0.62 − 0.08 0.08 0.26 0.36
Share s = co 33.46 − 1.92 − 1.40 − 1.96 − 2.07 − 2.33 − 2.04 − 1.74

Change in %
av HK 1.00 − 2.85 − 2.27 − 3.32 − 2.98 − 3.31 − 2.84 − 2.40
PDV gross earn 847,910 − 1.77 − 1.40 − 2.03 − 1.86 − 2.07 − 1.78 − 1.51
PDV net earn 690,446 − 1.42 − 1.12 − 1.63 − 1.49 − 1.65 − 1.42 − 1.20
Child CEV – − 0.99% − 0.78% − 1.13% − 1.00% − 1.16% − 1.01% − 0.86%

Table 21  Percentage change in gross lifetime earnings, welfare by school type and age

Human capital losses measured at age 16, but contingent on the age at which Covid-19 shock hits

Baseline Average 4 6 8 10 12 14

Lifetime earnings
Public 812,650 − 1.76 − 1.34 − 2.01 − 1.80 − 2.11 − 1.83 − 1.51
Private 1,092,667 − 1.51 − 1.34 − 1.65 − 1.83 − 1.74 − 1.42 − 1.11

Welfare
Public − 1.05% − 0.77% − 1.24% − 1.10% − 1.25% − 1.06% − 0.88%
Private − 0.62% − 0.77% − 0.60% − 0.61% − 0.66% − 0.60% − 0.51%

Table 22  Welfare: bottom, top parental income quartile, heterogeneous schooling

Welfare is measured as Consumption Equivalent Variation (CEV)

Average 4 6 8 10 12 14

Bottom − 1.13% − 1.24% − 1.25% − 1.07% − 1.10% − 0.91% − 1.24%
Top − 0.64% − 0.69% − 0.60% − 0.68% − 0.57% − 0.61% − 0.69%
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Average 4 6 8 10 12 14

NPV Households 909.77 1288.83 1110.76 986.79 841.54 700.29 530.44
NPV Government 8.45 225.05 119.42 38.99 − 61.61 − 159.20 − 111.94
Welfare children 0.21% 0.29% 0.25% 0.22% 0.19% 0.17% 0.16%
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