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Abstract
In this paper we focus on model risk and risk sensitivity when addressing the insur-
ability of cyber risk. The standard statistical approaches to assessment of insurabil-
ity and potential mispricing are enhanced in several aspects involving consideration 
of model risk. Model risk can arise from model uncertainty and parameter uncer-
tainty. We demonstrate how to quantify the effect of model risk in this analysis by 
incorporating various robust estimators for key model parameters that apply in both 
marginal and joint cyber risk loss process modelling. Through this analysis we are 
able to address the question that, to the best of our knowledge, no other study has 
investigated in the context of cyber risk: is model risk present in cyber risk data, and 
how does is it translate into premium mispricing? We believe our findings should 
complement existing studies seeking to explore the insurability of cyber losses.

Keywords  Cyber risk · Cyber insurance · Model risk · Risk sensitivity · Robust 
estimation · Robust dependence estimation

Introduction

Cyber risk continues to gain relevance in our society, as companies and enter-
prises increasingly rely on information systems. For a detailed overview of the state 
of cyber risk understanding in insurance contexts, see Eling (2020). A successful 
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cyberattack can cause major damage to a public or private institution. It can directly 
affect the budgetary bottom line, in addition to a business’ standing and consumer 
trust. Cybersecurity breaches can be categorised basically into three depending on 
the types of losses they cause following the attack: financial, reputational damage 
and legal, see detailed discussions in Eling and Schnell (2016) and Peters et  al. 
(2018).

Furthermore, cyberattacks can carry a significant direct economic and finan-
cial cost, see discussions in Romanosky et al. (2017) and the empirical analysis in 
Biener et al. (2015), Edwards et al. (2016) and Shevchenko et al. (2021). These costs 
can manifest for instance as losses due to: theft of corporate information; theft of 
financial information such as customer records; direct theft of money or assets; busi-
ness disruption of critical systems such as trading or transaction processing; and the 
loss of business or contracts, to name but a few  (see Peters et al. 2018 for a cluster 
analysis of cyber event types for insurance and risk contexts). Furthermore, there 
are also often significant losses arising from incurred costs associated with repairing 
affected systems, networks and devices. This is often required after major events in 
order to meet regulatory standards or satisfy investors or clients of the risk reduction 
changes made post significant cyber events, see an overview on discussions on Basel 
banking regulation requirements for operational risk cyber loss in Cruz et al. (2015).

After a cyberattack there are also a variety of indirect costs that often arise which 
may be due to reputational damage borne from news of the attack reaching the pub-
lic or customers affected by data breach of their records, see discussions on data 
breach fines in cyber risk in Ceross and Simpson (2017). Cyberattacks can dam-
age a business’ reputation and erode the trust of the customer, leading to customer 
attrition. The effect of reputational damage can even impact on an institution’s sup-
pliers, or affect relationships with partners, investors and other third parties vested 
in a business. Other impacts from cyber events can include legal and regulatory 
consequences. In many jurisdictions, both private and public entities are required to 
provide certain guarantees on data privacy under data protection and privacy laws 
which require firms to manage the security of all personal data being held on staff 
and customers. If this data is accidentally or deliberately compromised, and the firm 
in question can be deemed to have failed to deploy appropriate security measures, 
they may face fines and regulatory sanctions from multiple jurisdictions.

As such, it is increasingly becoming apparent that mitigation of cyber risk and cyber 
losses alone will not suffice to protect both public and private institutions from the 
potential for catastrophic monetary losses arising from cyberattacks. Therefore, upon 
the realisation that cyberattacks can never truly be completely mitigated, especially 
with the increasing pace of technology adoption and growth, then there is a growing 
need to find effective risk transfer strategies. One such strategy, not to mitigate a cyber 
loss but rather to ensure that the affected institution or firm is able to recover and fund 
any required losses, is through insurance and reinsurance markets. Cyber risk insurance 
markets and available products are still very much in their infancy, see discussions in 
Eling and Schnell (2016) and Eling (2018) and a recent U.S. case study in Xie et al. 
(2020). As the interest in the effects of cyber risk grows, so does the number of actu-
arial studies tackling several important questions on cyber risk (Eling and Loperfido 
2017; Eling and Wirfs 2019; Edwards et al. 2016; Jung 2021).
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In this manuscript, the focus is on aspects of the perception of the insurability of 
cyber risk. Two factors make this work distinct from previous studies of a related 
nature: the first is the fact that we have used one of the industry gold standards for cyber 
loss data, Advisen Cyber Loss Data (https://​www.​advis​enltd.​com/​data/​cyber-​loss-​data), 
which represents a comprehensive data set on cyber monetary losses, from which we 
form our analysis and conclusions; the second, perhaps more important aspect is that 
we question the standard statistical approaches to assess the question of insurability in 
several important aspects. In particular, one may conclude that we assess the question 
of insurability of cyber loss taking into account a previously unaccounted for dimen-
sion related to model risk. We seek to answer a question that, to the best of our knowl-
edge, no other study has investigated in the context of cyber risk: is model risk present 
in cyber risk data, and how does is it translate into premium mispricing?

Model risk can arise from two different factors: model uncertainty and parameter 
uncertainty. While model uncertainty generally refers to the assumptions that one 
makes in developing a statistical model representation, parameter uncertainty revolves 
around the idea of predictive inference (Fröhlich and Weng 2018). In this paper we 
focus on both aspects of model structure uncertainty as well as parameter uncertainty, 
and investigate two main channels of transmissions, using the Advisen cyber loss 
dataset. In this regard we focussed on two core components related to assessing the 
question of insurability for both an individual cyber risk threat type or a portfolio of 
multiple cyber risk threat types. The first component is the marginal tail behaviour of 
a cyber risk loss process and how assumptions regarding the validity of core details 
in reported losses and the completeness of such records, obtained from Freedom of 
Information (FOI) requests, may influence the outcome of determinations of the insur-
ability of cyber losses. We achieve this by considering a variety of parametric and non-
parametric estimators for the tail index of the loss processes under study and we add to 
this analysis the dimension of robust estimation, which involves the ability to question 
the validity, completeness, quantisation, providence, accuracy and veracity of losses by 
trimming or weighting exceptionally large losses that directly influence the marginal 
question of insurability. Secondly, we also study the effect of uncertainty in the model 
structure and estimation of dependence in cyber risk losses. To achieve this we employ 
novel methods for the quantification of copula dependence structures, robust estima-
tion techniques for correlation analysis and tail dependence estimation. This aspect of 
model risk allows us to assess the impact on diversification of cyber risk that may or 
may not be present in an insurer’s portfolio, should they offer cyber risk products to cli-
ents across a range of different cyber risk loss types or over a range of different industry 
sectors.

Contributions and outline

Our studies are undertaken in two parts and offer a variety of contributions to the 
understanding of model risk, parameter uncertainty and its translation to premium 
mispricing in cyber risk settings. Ultimately, we argue this provides a new dimen-
sion to understanding the insurability of cyber risk as quantified by required insur-
ance premiums.

https://www.advisenltd.com/data/cyber-loss-data
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First, we study model and parameter uncertainty risk as it relates to the key idea 
of tail index estimation. In particular we demonstrate significant challenges with 
working with cyber loss data when estimating tail indexes and we demonstrate the 
variation obtained in the different parametric and non-parametric tail index estima-
tors under varying assumptions on the data quality and accuracy as reflected in mod-
ifications to our estimators. As such, we first consider how parameter uncertainty 
impacts insurance premium calculations. Several studies have shown that cyber risk 
severity follows a heavy-tailed distribution (Eling and Wirfs 2019; Eling and Loper-
fido 2017; Edwards et al. 2016). We focus our analysis on the tail index of the cyber 
event severity distribution and recall some well-known facts about various estima-
tors proposed by the literature.

Then, we aggregate cyber-related losses by business sector, adopting the North 
America Industry Classification (NAIC) which is the standard used by Federal sta-
tistical agencies in classifying business establishments for the purpose of collecting, 
analysing, and publishing statistical data related to the U.S. business economy. This 
categorisation was developed under the auspices of the Office of Management and 
Budget (OMB), and adopted in 1997 to replace the Standard Industrial Classifica-
tion (SIC) system. It was developed jointly by the U.S. Economic Classification Pol-
icy Committee (ECPC), Statistics Canada, and Mexico’s Instituto Nacional de Esta-
distica y Geografia, to allow for a high level of comparability in business statistics 
among the North American countries. It is utilised by Advisen in their data collec-
tion categorisation and is provided for every loss event recorded. Based on loss data 
aggregated by NAIC, we then proceed to analyse and compare the tail index esti-
mates using various estimators. We observe significant variations among tail index 
estimates, indicating the presence of parameter uncertainty. This acts as a motivation 
for robust and trimmed tail index estimators. In this process, we further explain how 
and why cyber loss data may need to be trimmed and then show the effect this has 
on the tail index estimations. Trimmed tail index estimators are a valid alternative 
in the context of cyber risk, where many extreme loss events are often of very high 
monetary amounts and one could question whether they do turn into realised losses, 
see Brazauskas and Serfling (2000), Zou et al. (2020), Goegebeur et al. (2014), Peng 
and Welsh (2001). Using the trimmed estimator in Bhattacharya et  al. (2017), for 
different trimming values, we confirm once more the presence of parameter uncer-
tainty given the great variability in the values of the tail index estimates. Ultimately, 
based on this estimation analysis, we then demonstrate for each tail index estimation 
method and set of assumptions, using both trimmed and non-trimmed estimators, 
how a utility-based pricing of an insurance premium, under an indifference pric-
ing framework, produces variation/sensitivity for a single insurance line by NAIC. 
Ultimately, we demonstrate, using the zero utility principle, how parameter uncer-
tainty translates into insurance premium mispricing risk, which could jeopardise the 
insurability of cyber risk with regard to required premiums to be incurred. We note 
that at present, premiums for such products are generally deemed prohibitive unless 
contracts are specifically designed to be bespoke and restricted in scope of coverage.

Next, we assess model and parameter uncertainty from a multivariate perspective, 
and determine how such model risk factors affect the diversification of an insurer’s 
portfolio of insured cyber risk lines, when multiple lines or multiple industry sectors 
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are being offered coverage. In particular, we explore copula model uncertainty as 
well as robust versus non-robust estimators of correlation dependence. To achieve 
this we adopt a novel approach to estimate the incurred premium for a portfolio of 
loss types or business lines. In particular, we assess model risk as it relates to the key 
idea of diversification of risk from risk pooling. To achieve this we study the linear 
correlation for all NAICs, then we focus on the top five NAICs and study robust 
correlation analysis using three robust estimators: median-based Sum-of-Squares 
(SSD), Quadrant (sign) correlation coefficient and Minimum Covariance Determi-
nation (MCD). We are able to then demonstrate how the risk-based diversification 
coefficient will vary for differing robust estimators and the role this sensitivity will 
have on portfolio net coverage, thereby demonstrating sensitivity to premium calcu-
lations in marginal versus conditional risk profile perspectives. Lastly, we also fit a 
variety of pairwise copulas on quarterly data and show sensitivity to these fits and 
the resulting sensitivity of premiums calculated.

The manuscript is structured as follows. The “Significance of cyber risk losses 
and cyber insurance markets” section presents an overview of the significance 
of cyber losses and a brief discussion on cyber insurance markets. In the “Data 
description and attributes” section a detailed data description is provided for the 
Advisen cyber loss data set, followed by several sets of empirical data analysis of 
the cyber risk data according to Advisen risk types and industry sectors determined 
by the NAIC codes. The “Quantifying heavy tails in cyber risk loss models” section 
addresses the quantification of heavy tails in cyber risk losses. A variety of methods 
are explored including smoothed Hill plots, extremogram estimators and analysis 
of tail index estimators from a variety of different statistical perspectives, including 
empirical characteristic function asymptotic regression methods, Hill type estima-
tion methods and variations. These methods are briefly mathematically outlined and 
then applied to study cyber risk loss data from Advisen. The “Robust trimmed hill 
estimators for cyber losses” section outlines the challenges associated with work-
ing with real world cyber loss data that include: inaccuracies, rounding, truncation, 
partial settlement and unreliable massive reported cyber total losses. To address this 
and determine how it can manifest as a form of model risk via model uncertainty, 
and parameters uncertainty, the “Dealing with real world cyber data: inaccurate, 
rounded, truncated, partially settled unreliable massive reported cyber total losses” 
and “Dependence and tail behaviour estimation on Advisen NAIC cyber losses” sec-
tions introduce robust methods. This includes overviews of relevant classes of robust 
trimmed Hill estimators that are applied subsequently to the cyber loss data. The 
“Dependence and tail behaviour estimation on Advisen NAIC cyber losses” section 
presents a comprehensive analysis of the Advisen Loss Data using the various pro-
posed robust tail index estimation methods as well as a study of robust dependence. 
Subsequently, a detailed insurance pricing example is performed for various cyber 
insurance lines of business to show how model risk in tail index estimation trans-
fers to potential for mispricing in cyber risk insurance, ranging from uninsurable 
due to exorbitant costs through to affordable, depending on the modelling approach 
adopted. Furthermore, a detailed analysis of dependence between different cyber 
risk loss processes is studied via robust dependence estimation methods and copula 
estimation methods and a little-known Monte Carlo−based simulation method is 
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detailed in order to perform insurance pricing and portfolio diversification assess-
ment in standard and robust contexts to further assess aspects of multivariate model 
risk in insurance pricing contexts. The paper concludes with the “Conclusions” 
section.

Significance of cyber risk losses and cyber insurance markets

We begin this section with a brief overview of the significance of cyber losses and 
then we provide a brief discussion on cyber insurance markets. Comprehensive and 
detailed discussions can be found in Eling and Schnell (2016), Peters et al. (2018), 
Falco et al. (2019), Eling (2018) and the challenges with quantitative analysis in this 
multidisciplinary domain are discussed in Falco et al. (2019).

Global significance of cyber risk losses

According to a recent estimate provided in the Global Risk Report by the World 
Economic Forum (2020a), losses from cyber-related risks are expected to increase 
by up to USD 6 trillion 2021. Recently, McShane et  al. (2021) noted that His-
cox insurance stated that in 2020, the median cost of a cyberattack on a business 
increased from USD 10,000 in 2019 to USD 57,000 in 2020. These increases are not 
unexpected when one factors in the increasing digitisation of business and economic 
activities via the Internet of Things (IoT), cloud computing, mobile, blockchain and 
other innovative technologies. Financial losses from malicious cyber activities result 
from IT security/data/digital asset recovery, liability with respect to identity theft 
and data breaches, reputation/brand damage, legal liability, cyber extortion, regu-
latory defence, penalty coverage and business interruption. In the financial sector, 
cyber risk is classified by the Basel Committee on Banking Supervision (2006) as 
a category of operational risk, for instance affecting information and technology 
assets that can have consequences for the confidentiality, availability, and integrity 
of information and information systems (Cebula and Young 2010).

Not only are the losses substantial for given cyber risk events, but of concern 
is the fact that the frequency of malicious cyber activities is rapidly increasing, 
with the scope and nature dependent on an organisation’s industry, size and loca-
tion. According to the Allianz Global Risk Barometer 2021 (Allianz 2021), cyber 
incidents (including cybercrime, IT failure/outage, data breaches, fines and pen-
alties) are currently a top-three global business risk. It is therefore critical that 
corporations and governments focus on IT and network security enhancement. 
Unless public and private sector organisations have effective cybersecurity plans 
and strategies in place, and tools to manage and mitigate losses from cyber risks, 
cyber events have the potential to affect their business significantly, possibly 
damaging hard-earned reputations irreparably (McShane et al. 2021).

Furthermore, the impact of COVID-19 has driven business and economic 
activities at an accelerated rate into cyberspace, which could significantly 
increase the frequency and impact of cyber events around the globe, with 
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alarming consequences for public and private sector organisations (Lallie et  al. 
2021).

The lack of historical data on losses from cyber risk is another challenge to 
model the frequency and severity of individual cyber-related events (Biener et al. 
2015; Eling and Wirfs 2019; Gordon et al. 2003; World Economic Forum 2020b). 
For example, in Australia, it only became mandatory for breached organisations 
to notify their data breach details in February 2018 (see Parliament of Australia 
2017). Many countries around the world are in a similar situation, such that often 
only very limited data on losses from cyber-related events is available. This 
makes the design of adequate models for the quantification of cyber risks very 
difficult.

The Advisen data set utilised in this manuscript is considered one of the cur-
rent industry gold standards for cyber risk data collection; we will discuss in greater 
detail this data set in the “Data description and attributes” section. Figure 1 illus-
trates the number of events in the Advisen database by country; the studies under-
taken in this manuscript focus on the U.S. but we briefly outline the global perspec-
tive from this data set. The vast majority of the recorded events in this database 
occurred in the U.S. (83.09%), while only a minority of events is recorded for the 
entire European Union (2.65%), Asia (3.17%) or Oceania (1.04%). As mentioned 
earlier, given the focus of the data set on the U.S. companies presented have been 
classified according to the NAIC system by Advisen.

In the following, we focus our analysis on non-zero losses in the dataset, i.e. 
4,667 cyber events. Note that the share of these losses in the entire database is 
only 3.53% of the total events. However, given our emphasis on the severity of 
cyber-related events, we have to rely on events where information on the magni-
tude of the loss was provided.

Table 1 provides descriptive statistics of non-zero losses for each cyber risk cat-
egory. We find substantial differences for the number of non-zero loss events across 
the different risk categories. While we observe over 1900 non-zero losses for the 
category Privacy—Unauthorised Contact or Disclosure, only six non-zero losses 
are observed for the category Industrial Controls throughout the sample period. We 

Number of Cyber Events
less than 100
more than 100 and less than 500
more than 500 and less than 1000
more than 1000 and less than 5000
more than 5000 and less than 10000
more than 10000

Fig. 1   Number of cyber events by country during the period 2008–2020 across all loss categories in the 
Advisen cyber risk data set
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also find heterogeneity in the magnitude of losses across the different categories. All 
risk categories exhibit a mean loss that is higher than the median, indicating that the 
loss distribution is skewed to the right, potentially exhibiting heavy tails. In some 
cases this effect is so pronounced that the mean is more than 100 times higher than 
the median. Table 1 also illustrates that losses from cyber events typically have a 
very high standard deviation, positive skewness paired with high kurtosis. Overall, 
the descriptive statistics in Table  1 also seem to confirm earlier results on cyber-
related losses typically following heavy-tailed distributions; see, e.g. Maillart and 
Sornette (2010), Edwards et al. (2016) and Eling and Loperfido (2017).

Figure  2 shows the business sector ranked by frequency and severity of cyber 
events. Each circle represents a business sector, and its area corresponds to the aver-
age number of records affected by a cyber event, i.e. the larger the circle the more 
records have been affected.

Figure  2 also depicts the fact that monetary losses and the number of records 
affected vary across business sectors. Business sectors in the top right corner of the 
graph in Fig. 2 share some common features: they exhibit high average loss and high 
number of events, and a high average number of records affected (the bubbles have 
larger sizes than the sector in the top left corner of the graph). This seems to indicate 
that depending on the intrinsic nature of the business sector, for some sectors there 
is a connection between a high number of records stolen which translates into high 
losses. However, for other sectors, a larger number of records does not necessarily 
translate into greater losses.

Table 1   This table reports descriptive statistics of cyber risk related losses aggregated by category

All dollar values are reported in million dollars. The losses exhibit great variability in terms of median 
and first four moments across the considered risk types. “Digital Breach/Identity Theft”, “IT—Process-
ing Errors”, and “Privacy—Unauthorised Data Collection” have the highest average loss amongst all 
cyber risk categories

Risk category N Mean Median StDev Skew Kurt

Phishing, Spoofing, Social Engineering 202 12.36 0.57 79.3 9.72 95.53
Privacy—Unauthorised Contact or Disclosure 1916 3.05 0.03 23.8 31.75 1185.92
Data—Unintentional Disclosure 217 1.34 0.1 8.81 12.73 172.27
Privacy—Unauthorised Data Collection 133 46.77 0.45 434.07 11.18 124.5
Data—Malicious Breach 858 22.13 0.5 171.64 17.33 360.13
Identity—Fraudulent Use/Account Access 689 1.2 0.03 6.55 10.28 124.79
Data—Physically Lost or Stolen 97 23.91 0.24 202.14 9.63 91.16
Skimming & Physical Tampering 91 1.72 0.05 6.08 6.14 42.59
IT—Processing Errors 44 76.55 0.66 264.77 5.32 29.25
IT—Configuration/Implementation Errors 63 17.06 0.8 43.3 3.23 10.41
Network/Website Disruption 181 18.77 0.16 68.85 4.76 23.32
Cyber Extortion 137 0.52 0.01 2.78 6.86 48.24
Digital Breach/Identity Theft 11 469.22 30.0 1064.11 2.62 5.24
Denial of Service (DDOS)/System Disruption 1 0.39 0.39 – – –
Undetermined/Other 21 1.53 0.65 2.43 3.25 10.68
Industrial Controls and Operations 6 30.7 2.07 62.39 1.78 1.18



380	 G. W. Peters et al.

4
5

6
7

8
9

1M
2

3
4

5
6

7
8

9
10

M

10
025

10
00

25

10
k25

A
dm

in
is
tr
at
iv
e
an

d
S
up

po
rt

an
d
W
as

te
M
an

ag
em

en
t

M
an

uf
ac

tu
ri
ng

Ed
uc

at
io
na

lS
er

vi
ce

s
Fi
na

nc
e
an

d
In

su
ra

nc
e

In
fo
rm

at
io
n

H
ea

lth
C
ar

e
an

d
S
oc

ia
lA

ss
is
ta
nc

e
Pr

of
es

si
on

al
,
S
ci
en

tif
ic
,
an

d
Te

ch
ni
ca

lS
er

vi
ce

s
Re

al
Es

ta
te

an
d
Re

nt
al

an
d
Le

as
in
g

Pu
bl
ic

A
dm

in
is
tr
at
io
n

O
th

er
S
er

vi
ce

s
(e

xc
ep

t
Pu

bl
ic

A
dm

in
is
tr
at
io
n)

A
rt
s,

En
te
rt
ai
nm

en
t,

an
d
Re

cr
ea

tio
n

Re
ta
il
Tr
ad

e
Tr
an

sp
or

ta
tio

n
an

d
W
ar

eh
ou

si
ng

A
cc

om
m
od

at
io
n
an

d
Fo

od
S
er

vi
ce

s
W
ho

le
sa

le
Tr
ad

e
C
on

st
ru

ct
io
n

U
til
iti
es

M
in
in
g,

Q
ua

rr
yi
ng

,
an

d
O
il
an

d
G
as

Ex
tr
ac

tio
n

M
an

ag
em

en
t
of

C
om

pa
ni
es

an
d
En

te
rp

ri
se

s
A
gr

ic
ul
tu

re
,
Fo

re
st
ry
,
Fi
sh

in
g
an

d
H
un

tin
g

B
us

in
es

s
S
ec

to
rs

by
C
yb

er
Ev

en
t
Fr

eq
ue

nc
y
an

d
Av

er
ag

e
S
ev

er
ity

Av
er

ag
e
Lo

ss
(d

ol
la
rs
)

NumberofCyberEvents

Fi
g.

 2
  

Fr
eq

ue
nc

y 
an

d 
se

ve
rit

y 
of

 in
di

vi
du

al
 c

yb
er

-r
el

at
ed

 e
ve

nt
s a

nd
 th

e 
nu

m
be

r o
f a

ffe
ct

ed
 re

co
rd

s (
in

di
ca

te
d 

by
 th

e 
si

ze
 o

f t
he

 c
irc

le
) a

cr
os

s b
us

in
es

s s
ec

to
rs



381Cyber loss model risk translates to premium mispricing and…

Figure 3 shows the Advisen cyber risk threat types ranked by frequency and aver-
age severity. Each circle represents a risk category, and the area of the circle corre-
sponds to the average number of records affected. The cyber risk type with the high-
est average loss and average number of records affected is “Digital Breach/Identity 
Theft”. Looking at Fig. 3, cyber risk types can be divided into three groups accord-
ing to their average loss: 

1.	 Average loss lower than USD 2 million: “Cyber Extortion”, “Denial of Service 
(DDOS)/System Disruption”, “Privacy - Unauthorized Contact or Disclosure”, 
“Data-Unintentional Disclosure”, “Identity Fraudulent Use/Account Access”, and 
“Skimming, Physical Tampering”;

2.	 Average loss between USD 10 million and USD 100 million: “Phishing, Spoof-
ing, Social Engineering”, “IT-Configuration/Implementation Error”, “Network/
Website Disruption”, “Data-Malicious Breach”, “Privacy-Unauthorized Data 
Collection” and “IT-Processing Error”; and

3.	 Average loss greater than USD 100 million: “Digital Breach/Identity Theft”.

Overall, there seems to be no clear-cut relationship between the frequency of events, 
loss severity, and the number of affected records. The relationship depends also on 
the business sector and type of cyber threat.

Cyber insurance markets

Several interesting works have arisen that study the emerging market for cyber risk 
insurance, see discussions in Eling and Schnell (2016), McShane et al. (2021) and 
the editorial and associated special issue of Boyer (2020) and references therein. 
Recently, McShane et al. (2021) provided a comprehensive review of the literature 
on managing cyber risks, focusing in particular on work that is related to risk iden-
tification, risk analysis, and risk treatment. In particular they noted that despite the 
emergence of cyber risk studies as far back as 1960, there is still only a fledgling 
market for cyber risk insurance. Importantly, they highlight many areas that the 
industry needs to work on in consideration with researchers in the field under the 
category of “Gaps in the overall cyber risk management process” and they also dis-
cuss the importance of cyber resilience, a theme also discussed from a quantitative 
perspective recently in Xiang et al. (2021).

As discussed in Eling (2018), Eling and Wirfs (2015) and Peters et  al. (2018), 
currently the market for cyber risk insurance is in a state of flux due to uncertainty; 
in fact it is reported that in practice many companies are favouring forgoing avail-
able policies, due to the perceived high cost and confusion about what they cover. 
Furthermore, there are still several questions arising as to the efficacy of cyber risk 
insurance, in the sense that creating a market may not provide sufficient coverage of 
pooling of risk for insurers underwriting such large and uncertain potential losses 
from this source of risk to remain solvent. In this regard studies that question the 
suitability of such types of insurance product start to emerge, see discussions in 
Biener et al. (2015), Peters et al. (2011) and recently in Malavasi et al. (2022).
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In Biener et al. (2015) it is noted that as of 2015 the annual gross premiums for 
cyber insurance in the U.S. are USD 1.3 billion and growing 10–25% on average 
per year. Furthermore, in continental Europe they claim that cyber insurance prod-
ucts so far are estimated to generate premiums of around USD 192 million, but this 
figure is expected to reach USD 1.1 billion in 2018. Clearly, this is still a fledgling 
market compared to other more mainstream lines of insurance business. For such an 
important and emerging risk class, which is gaining rapidly increasing attention of 
the banking and finance sector, one may question why these products are still slowly 
emerging and slowly gaining popularity.

One challenge in this insurance market is the non-standardisation of nomencla-
ture and contract specification of covered items. For instance, products and coverage 
tend to change rapidly, and exclusions as well as terms and definitions vary signifi-
cantly between competitors. There is a reason for this flux, primarily it is currently 
being driven by the fact that the risks faced by corporations are often unique to their 
industry or even to the company itself, requiring a great deal of customisation in 
policy writing. This will, we believe, begin to resolve as more data and studies such 
as the ones we present here begin to emerge highlighting aspects of cyber risk char-
acteristics, see further detailed discussion on this aspect in McShane et al. (2021).

Data description and attributes

There is an ongoing exploration on the various ways to classify and taxonomise 
cyber risk loss events, see discussions in Shevchenko et  al. (2023), Rea-Guaman 
et al. (2017) and Elnagdy et al. (2016). In this study the focus has been on the U.S. 
cyber risk experience as it is generally the environment where the largest commer-
cial cyber loss data collection effort has been instigated, both in terms of breadth of 
industry and loss type as well as in terms of duration of collection and reporting. 
In this regard, the paper will focus on the Advisen Cyber Loss Data. This data set 
provides a historical view of more than 132,126 cyber events from 2008 to 2020, 
affecting 49,495 organisations across the world. Advisen is a U.S.-based for-profit 
organisation which collects and processes cyber reports form reliable and pub-
licly verifiable sources such as news media, governmental and regulatory sources, 
state data breach notification sites, and third-party vendors. Given that the interest 
in cyber risk is on the rise, many recent studies on cyber risk have made use of 
Advisen Cyber Loss Data (Romanosky 2016; Cyentia 2020). The understanding and 
classification of the array of cyber loss event and risk types is diverse and can differ 
by sector and industry as well as over time.

More than the 80% of the events recorded affect organisations residing in the U.S. 
and for each event accident timeline, i.e. first notice date, accident date, loss start 
date, and loss end date, a detailed explanation is reported. One of the key advan-
tages with respect to other commonly used data sets, such as the Chronology of Data 
Breaches provided by the Privacy Rights Clearinghouse (PRC), is that the Advisen 
data set gives direct information of monetary losses linked to cyber risk event, pro-
viding an empirical measurement of financial losses that can be then used for mod-
elling purposes.
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Following Eling and Loperfido (2017) and Edwards et al. (2016) we remove all 
the observations that do not give information on the monetary losses, and restrict 
the analysis to the observation for which complete information on company specific 
characteristics, such as yearly revenue and number of employees are available, leav-
ing the total number of observations considered in this study to 3792, corresponding 
to roughly the 2.6% of the total. A detailed analysis of the basic attributes, non-
statistical in nature, is provided in the industry white paper (Shevchenko et al. 2021) 
and an overview of how events are classified according to Advisen’s own classifica-
tion, based on the type of cyber threat, is provided in a detailed overview in Mala-
vasi et al. (2022, Sect. 3).

Other possible classifications of cyber risk events are available in the literature; 
see Eling and Wirfs (2019) who suggest to divide cyber risk events into categories, 
according to operational risk classification: Actions by People, System and Techni-
cal Failure, Failed Internal Process, External Events. On the other hand, Romanosky 
(2016) provides cyber risk driven categories, such as Data Breach, Security Inci-
dent, Privacy Violation, Phishing Skimming, and Other.

In this work we will instead work with industry-related partitions based on the 
U.S. NAIC Sector decompositions widely used in insurance practice. The sector-
level organisation of NAICs produces 24 unique sector/subsector combinations 
in which to partition the loss data according to a wide variety of industry types. 
This classification is one that is widely used in the U.S. industry and provided by 
the Advisen data providers; in personal correspondence with Advisen’s chief data 
officer it was advised that industry widely utilises this partitioning of the data and 
so we opted to study the data from a perspective that would also benefit industry 
practitioners. Such a cyber risk analysis has not previously been undertaken and we 
believe this will shed some interesting insight into how different sectors are coping 
with cyber threats a digital environment.

Basic empirical data description and attributes

In this section we first provide a basic summary of the Advisen data, first by risk 
type and then secondly by NAIC sectors. The NAIC sector codes are provided 
at https://​www.​naics.​com/​search/ and at the level 1 categorisation those used by 
Advisen correspond to: 11 ‘Agriculture, Forestry, Fishing and Hunting’; 21 ‘Min-
ing, Quarrying, and Oil and Gas Extraction’; 22 ‘Utilities’; 23 ‘Construction’; 
31 ‘Manufacturing Part A’; 32 ‘Manufacturing Part B’; 33 ‘Manufacturing Part 
C’; 42 ‘Wholesale Trade’; 44 ‘Retail Trade Part A’; 45 ‘Retail Trade Part B’; 48 
‘Transportation and Warehousing Part A’; 49 ‘Transportation and Warehousing 
Part B’; 51 ‘Information’; 52 ‘Finance and Insurance’; 53 ‘Real Estate and Rental 
and Leasing’; 54 ‘Professional, Scientific, and Technical Services’; 55 ‘Manage-
ment of Companies and Enterprises’; 56 ‘Administration/Support/Waste Man-
agement/Remediation Services’; 61 ‘Educational Services’; 62 ‘Health Care and 
Social Assistance’; 71 ‘Arts, Entertainment, and Recreation’; 72 ‘Accommodation 
and Food Services’; 81 ‘Other Services (except Public Administration)’; and 92 
‘Public Administration’.

https://www.naics.com/search/
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To ensure that records are related to the recent history of cyber risk data, we have 
excluded from analysis Advisen data that goes back to the 1950s as we are not con-
fident on its accuracy or on its ability to reflect realistic cyber threat environments 
faced by modern corporations. In this regard we have selected a time window in 
which we take the earliest reported accident date as 01/01/1990 00:00 through to 
the most recent accident date of 20/09/2020 00:00. Furthermore, we focus on the 
analysis of loss records that satisfy that the total loss amount was positive, ignoring 
many records that register empty or zero cells due to incompletion of the claim or 
non-settlement or payout. Below in Tables 2 and 3 we show the summary statistics 
of the data used under each decomposition.

It will also be insightful to see equivalent summary statistics for the total losses 
also partitioned according to the Advisen risk type classifications, as shown in 
Table 3.

Having explored the basic empirical statistics to summarise the NAIC sec-
tor data, we will also now provide some empirical statistical analysis of the data 
based around three interesting statistical quantities: the smoothed Hill plots of 
Resnick and Stărică (1997), power law Pareto−based Quantile-Quantile plots, 
and an extremogram time series analysis of Davis and Mikosch (2009). It is worth 
noting that previous studies (Maillart and Sornette (2010) and Wheatley et  al. 
(2016)) explored cyber risk modelling using extreme value theory and Pareto 
type models. However, the focus is on the Catalogue of the Open Security Foun-
dation which provides a representative sample of the overall activity of ID thefts 
occurring on the Internet and especially for the U.S. for the most important events 
in terms of the number of ID thefts. This is not a study however on the actual loss 
amounts, rather it studies the losses of records. This is an important distinction, 
see the empirical results on this from the Advisen data set in the “Significance of 
cyber risk losses and cyber insurance markets” section where it is shown empiri-
cally in Fig.  2 that monetary losses and the number of records affected vary 
across business sectors. Business sectors in the top right corner of the graph in 
Fig. 2 share some common features: they exhibit high average loss and high num-
ber of events, and a high average number of records affected (the bubbles have 
larger sizes than the sector in the top left corner of the graph). This seems to indi-
cate that depending on the intrinsic nature of the business sector, for some sectors 
there is a connection between a high number of records stolen which translates 
into high losses. However, for other sectors, a larger number of records does not 
necessarily translate into greater losses. In our work we focus on the study of the 
actual loss amounts and the heavy-tailed models associated. Furthermore, we also 
focus on challenges with the data and how perspectives on trimming and robust 
estimation of such Pareto tail index estimates can influence perspectives on the 
insurability of cyber risk losses.

For an ordered independent and identically distributed (i.i.d.) sequence 
of n losses, we will define the increasing sequence of order statistics by 
0 < X(1,n) ≤ X(2,n) ≤ ⋯ ≤ X(n,n) and the decreasing sequence of order statistics 
by X(1,n) ≥ X(2,n) ≥ ⋯ ≥ X(n,n) > 0 , such that X(1,n) = X(n,n) and X(n,n) = X(1,n) , the 
Hill (1975) estimator, discussed in the “Quantifying heavy tails in cyber risk loss 
models” section, using k order statistics is given by
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which is the pseudo-likelihood estimator ( ̂� = H(k,n) ) of reciprocal of the tail index 
𝜉 = 1∕𝛼 > 0 for regularly varying tails (e.g. Pareto distribution). Note, when k is too 
small, only a few observations influence �̂ and the variance of the estimator, given 
asymptotically by �2∕k is too large. When k is too large, the assumption underlying 
the derivation of the estimator typically degrades and bias increases.

Recall a few basic facts, where a positive measurable function f is called regu-
larly varying (at infinity) with index � ∈ ℝ if it is defined on some neighbourhood 
[x0,∞) of infinity and

An example of such a distributional law that satisfies the resulting power-law tail 
behaviour is the Pareto distribution which is given by

(1)Hk,n =
1

k

k∑
i=1

ln

(
X(i,n)

X(k,n)

)
,

lim
x→∞

f (tx)

f (x)
= t𝛼 , ∀t > 0.

ℙ[X ≤ x] = 1 −
(xm
x

)�

Table 3   This table reports some descriptive statistics of cyber risk related losses aggregated by category, 
expressed in USD million

The losses exhibit great variability in terms of median and first four moments across the risk types. IT—
Configuration/Implementation Error, Privacy—Unauthorised Data Collection, and Industrial Controls 
have the highest average loss amongst all the cyber risk categories

Risk Type N Mean Median St. Dev. Skew Kurt

Privacy—Unauthorised Contact or Disclosure 2237 3.698 0.033 25.844 25.197 799.476
Privacy—Unauthorised Data Collection 157 40.283 0.84 401.093 12.171 150.848
Data—Physically Lost or Stolen 93 24.974 0.212 207.490 9.424 90.201
Identity—Fraudulent Use/Account Access 914 1.035 0.028 6.146 10.562 131.617
Data—Malicious Breach 768 20.975 0.5 176.715 17.591 361.688
Phishing, Spoofing, Social Engineering 161 9.219 0.516 59.273 10.726 124.611
IT—Configuration/Implementation Errors 44 6.065 0.804 22.852 5.890 37.472
Data—Unintentional Disclosure 131 2.612 0.250 11.601 9.147 94.133
Cyber Extortion 105 0.634 0.010 3.177 5.998 39.287
Network/Website Disruption 207 7.933 0.090 46.196 7.731 63.533
Skimming, Physical Tampering 87 1.471 0.051 5.930 6.855 54.070
IT—Processing Errors 33 48.872 0.925 120.700 2.826 9.733
Industrial Controls & Operations 5 2.247 0.040 4.359 1.457 3.187
Undetermined/Other 17 1.890 1.500 2.647 3.014 11.627
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and which admits a heavy-tailed power law tail in which the tail index � determines 
the degree of heavy-tailedness. See a detailed discussion on heavy-tailed loss mod-
els in Peters and Shevchenko (2015) and the references therein.

The Hill estimator is defined on orders k > 2 , as when k = 1 the H(1,n) = 0 . Once 
a sufficiently low order statistic is reached the Hill estimator will be constant, up to 
sample uncertainty, for regularly varying tails. The Hill plot is a plot of H(k,n) against 
k . Symmetric asymptotic normal confidence intervals assuming Pareto tails are pro-
vided. To avoid well known challenges with interpreting the Hill plot, we have opted 
for the log scale smoothed Hill plot of Resnick and Stărică (1997):

where r is the smoothing factor and the order is also on a log scale which is equiva-
lent to plotting the points (�,H(⌈n�⌉,n)) for 0 ≤ � ≤ 1.

In Fig.  4 we present the results for the NAIC sectors with the top five largest 
loss count records corresponding, in order from highest to lowest, to: NAIC = 52 
‘Finance and Insurance’; NAIC = 56 ‘Administrative and Support, and Waste Man-
agement and Remediation Services’; NAIC = 51 ‘Information’; NAIC = 54 ‘Profes-
sional, Scientific and Technical Services’; and NAIC = 92 ‘Public Administration’. 
We focus in the studies subsequently undertaken on the top five largest loss count 
records as, apart from providing sufficient data for model estimation and analysis to 
be meaningfully applied, they also provided a case study rich enough to illustrate the 
intended context of the studies undertaken with regard to model risk. Other NAIC 
category data analysis can be obtained from the corresponding author upon request, 
but is omitted as a result of space considerations.

The tail estimation methods proceeding this section will be based on statistical 
assumptions that relate to heavy-tailed estimation of tail index based on a power 
law, a regular variation assumption or explicitly a Pareto law or asymptotic Pareto 
tail behaviour assumptions. Therefore, we also analyse the cyber loss data based on 
NAIC sectors for Pareto law type behaviour. We will do this in two ways, via Pareto 
Quantile–Quantile plots as shown in Fig. 5 and following analysis via a hypothesis 
test.

To conclude this empirical analysis of the leading NAIC categories by total loss 
amounts, we will explore the extremal correlations as captured by the extremogram. 
This empirical estimator allows us to capture intertemporal characteristics of the 
cyber risk loss data categorised by NAIC sector and aggregated over quarterly peri-
ods from 1990 to 2021. The extremogram can be considered as a correlogram for 
extreme events and was introduced originally in works (Davis and Mikosch 2009) 
as a tool to measure the extremal dependence in ℝd-valued time series (Xt) . The 
extremogram is defined as a limiting sequence given by

with sequences (an) suitably chosen as normalisation sequences and A,  B are two 
fixed sets bounded away from zero. A popular choice for intervals A and B is to set 

(2)H̃k,n =
1

(r − 1)k

rk∑
j=k+1

Hj,n,

(3)�AB(h) = lim
n→∞

cov(I{a−1
n
X0∈A}

, I{a−1
n
Xh∈B}

), h ≥ 0,
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Fig. 4   Smoothed Hill plots which show the log scale version of Eq. 2, plotting the points (�,H(⌈n�⌉,n)) for 
0 ≤ � ≤ 1. Top subplot: NAIC Sector 52. Middle Left subplot: NAIC Sector 56. Middle Right subplot: 
NAIC Sector 51. Bottom left subplot: NAIC Sector 54. Bottom right subplot: NAIC Sector 92
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A = B = [q� ,∞) with q� being the �-percentile of (Xt) . An example of selection for 
A, B that is familiar to the actuarial audience will be to select A = B = (1,∞) which 
will reproduce the so-called upper tail dependence coefficient of the vector (X0,Xh) 
given as the limit

In the context used in this work to study cyber risk we will plot a sequence of 
extremograms marginally for each NAIC sector. Since this method requires regular 
time series and not an event−driven time record set, we have aggregated the losses 
into quarterly time series of total losses between 1990 to 2020. For each NAIC sec-
tor we produce results for univariate extremograms. We will focus on indexed 
choices of A = B ∈

{
q0.01,… , q0.99

}
 corresponding to quantile levels 

� ∈ {0.01,… , 0.99} . Under this construction, as � ↑ 1 the events {X0 ∈ anA} and 
{Xh ∈ anB} are increasingly considered as extreme ones and �AB(h) measures the 
influence of the time zero extremal event {X0 ∈ an A} on the extremal event 
{Xh ∈ an B} , h lags apart, i.e. h quarters later. This will result in construction of a 
matrix of values denoted by Γ , whose i,  jth element is given by Γij ∶= �Ai=Bi=q�i

(j) 

(4)𝜌(h) = lim
x→∞

ℙ(Xh > x ∣ X0 > x) .
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Fig. 5   Pareto quantile–quantile plots. Top left subplot: NAIC Sector 51. Top right subplot: NAIC Sector 
54. Bottom subplot: NAIC Sector 92
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for jth quarter from 1990 such that j ∈ {1, 2,… , 124} and for quantile thresholds 
qi ∈ {0.01, 0.02,… , 0.99}.

We note that in presenting these extremograms in matrix Γ , whilst the finite 
quantile sequences for each row i always exist for finite �i , the limit as �i ↑ 1 need 
not exist. As studied in Davis and Mikosch (2009), it is sufficient for existence 
of the limits �AB(h) to assume a regularly varying sequence of quarterly loss ran-
dom variables (Xt) , which has power law tails for every lagged vector (X1,… ,Xh) , 
h ≥ 1 . This assumption, whilst not required to study finite sample extremogram 
profiles, is required if one wanted to look for extremal asymptotic tail dependence 
within NAIC sector losses using this methodology. The results of the extremo-
gram analysis for the current selection of NAIC sectors, selected according to the 
top five largest loss counts, is provided in Fig. 6

Quantifying heavy tails in cyber risk loss models

In this work we seek to study loss processes which admit heavy-tailed annual 
loss distribution profiles in the context of cyber risk losses. We are interested in 
classifying cyber risk losses annually by risk type and business sector. It will be 
valuable to first explain some basic background on how we will seek to quantify 
heavy-tailed loss data, both non-parametrically and parametrically with a severity 
model. We will assume throughout that losses will take a positive support and as 
such the right tail of the loss distribution is of interest when quantifying heavy-
tailed loss behaviour.

There is no unique way to characterise universally the notion of a heavy-tailed 
distribution, and as such numerous definitions and characterisations have been 
proposed. We will explore a few key characterisations in this section, starting 
with a widely used concept that a heavy-tailed loss model is characterised via 
the existence of moments. Under this characterisation, a heavy-tailed loss model 
F will not have finite moments of some order, and the heavier the tail, the fewer 
moments will exist. A simple condition that shows this relationship is stated in 
the following Lemma 4.1.

Lemma 4.1  The distribution F possesses an absolute moment of order 𝛼 > 0 if and 
only if (iff) |x|�−1[1 − F(x) + F(−x)] is integrable over (0,∞).

Another way to characterise heavy-tailed models that is also often explored in 
risk modelling theory, is to state that heavy-tailed distributions are probability 
distributions whose tails are not exponentially bounded: that is, they have heavier 
tails than the exponential distribution. Under this characterisation, one considers 
those distributions for which the moment-generating function does not exist on 
the positive real line such that
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In other words, take the standard Markov’s inequality with � a monotonically 
increasing non-negative function for the non-negative reals, X is a random variable, 
a ≥ 0 , and 𝜓(a) > 0 , then applying

∫ esxdF(x) = ∞, ∀s > 0.
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Fig. 6   Extremogram plots that show Eq.  3 where points of (h, �AB(h)) are plotted for the choices 
A = B ∈

{
q0.01,… , q0.99

}
 corresponding to quantile levels � ∈ {0.01,… , 0.99} . Top left subplot: NAIC 

Sector 52. Top middle subplot: NAIC Sector 56. Top right subplot: NAIC Sector 51. Bottom left subplot: 
NAIC Sector 54. Bottom right subplot: NAIC Sector 92
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for the exponentially decaying ‘light’ tail behaviour of a loss distribution

does not apply.
In addition to multiple characterisations, there are also numerous ways to repre-

sent and study a heavy-tailed loss distribution, beyond just the distribution function, 
that will be useful to briefly recall.

Definition 4.1  (Hazard Function and Hazard Rate) For a loss distribution F on ℝ+ , 
the hazard function is given by

If the loss distribution F has a loss density f, then such a distribution’s tail behaviour 
can be characterised also by the hazard rate, given by

Lemma 4.2  (Hazard Rate of a Loss Distribution)  following three right limiting 
possibilities of the hazard rate function of a loss distribution to characterise its tail 
behaviour: 

1	 If limx→∞ r(x) = 0 , then the loss distribution F will be a heavy-tailed distribution 
function.

2	 If limx→∞ r(x) > 0 , then the loss distribution F is not heavy-tailed and the expo-
nential moments will exist up to lim infx→∞ r(x) > 𝜆 > 0

3	 If limx→∞ r(x) does not exist but one has lim infx→∞ r(x) = 0 , then the distribu-
tion F can be either heavy or light tailed, and one needs further information to 
determine the characteristics.

One can summarise the relationship between different representations of a heavy-
tailed loss distribution as follows [Foss et al. (2011), Theorem 2.6]:

Theorem 1  For any distribution F, the following assertions are equivalent:

•	 F is a heavy-tailed distribution.
•	 F survival function is heavy tailed.
•	 Corresponding hazard function R satisfies liminfx→∞R(x)∕x = 0.
•	 For some fixed T > 0 , the function F on interval (x, x + T] is heavy tailed.

ℙ(|X| ≥ a) ≤ 𝔼(�(|X|))
�(a)

F(x) ≤ exp(−sx)�
[
exp(sX)

]
, ∀x > 0

R(x) = − lnF(x).

r(x) ∶=
dR(x)

dx
=

f (x)

1 − F(x)
=

f (x)

F(x)
= −

FX(x)
�

FX(x)
.
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•	 If distribution F is absolutely continuous with density function f then if F is heavy 
tailed, the density f is also heavy tailed.

There are numerous more refined categorisations of heavy-tailed distributions, 
we will recall an important class of heavy-tailed loss models, those that correspond 
to the regularly varying tail behaviour characterisation.

Definition 4.2  (Regularly Varying Tail) A probability distribution F has regularly 
varying tails, F ∈ R iff for some � ≥ 0 and any y > 0 , it holds that

We say a function L(x) is slowly varying if L ∈ R and � = 0.
If we consider the characteristic function of loss random variable X, or of F, is � , 

defined for all t by

then another way to characterise the heavy-tailed nature of the loss random variable 
is through the relationship between the value of F(x) for large x and the value of �(t) 
for small t in the neighborhood of the origin. We will briefly rewrite the characteris-
tic function as follows:

Now, we will consider the distribution function re-expressed in terms of the tail sum 
H(x) = 1 − F(x) + F(−x) which in the case of loss distribution models in which the 
support is positive reduces to H(x) = F(x).

To proceed, we will assume F(x) is regularly varying at infinity, i.e.

where 𝛼 > 0 and L(x) is slowly varying at infinity. Now consider the characteristic 
function of X for all real t split into real and imaginary components and integrate by 
parts to obtain

which means that the behaviour of the tail sum depends only on U(t), the real part of 
the characteristic function. To see this proceed as follows:

lim
x→∞

F(xy)

F(x)
= y−� .

�(t) = ∫
∞

−∞

exp (itx)dF(x),

�(t) = ∫
∞

−∞

cos(tx)dF(x) + i∫
∞

−∞

sin(tx)dF(x) = U(t) + iV(t).

F(x) = x−�L(x), as x → ∞,

1 − U(t) = t ∫
∞

0

sin(tx)F(x)dx.
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Integrating by parts gives

which then allows one to obtain for the real component of the characteristic function 
�(t) the identity

This result was a critical part of the work of Pitman (1968) who went on to show 
that for infinite variance loss random variables with tail sum function H(x), of index 
of regular variation 0 < 𝛼 < 2 , that as x → ∞ , one has the following relationship 
between the real part of the characteristic function near the origin and the regularly 
varying tail function

with

with s(u) finite for any u not an even positive integer. Other cases for � = 2 and 
𝛼 > 2 were studied but are not directly of relevance to the work in this paper where 
we concentrate to heavy-tailed models with non-finite variance or non-finite mean.

Hence in summary, as t ↓ 0 , depending on value of tail index parameter � one 
can obtain the relationship

�(t) = ∫
0

−∞

eitxdF(x) + ∫
∞

0

eitxd[F(x) − 1]

= ∫
0

−∞

cos(tx)dF(x) + ∫
∞

0

cos(tx)d[F(x) − 1]

+ i

{
∫

0

−∞

sin(tx)dF(x) + ∫
∞

0

sin(tx)d[F(x) − 1]

}
.

�(t) = F(0) + t ∫
0

−∞

sin(tx)F(x)dx

− (F(0) − 1) + t ∫
∞

0

[F(x) − 1] sin(tx)dx

− it

{
∫

0

−∞

cos(tx)F(x)dx + ∫
∞

0

cos(tx)[F(x) − 1]dx

}

U(t) − 1 = t ∫
0

−∞

sin(tx)F(x)dx + t ∫
∞

0

[F(x) − 1] sin(tx)dx

= −t ∫
∞

0

sin(tx)F(−x)dx + t ∫
∞

0

[F(x) − 1] sin(tx)dx

= −t ∫
∞

0

sin(tx)H(x)dx.

1 − U(t) ∼ s(�)H(1∕t) = s(�)L(1∕t)t� , as t ↓ 0,

s(u) =

{
𝜋∕2

Γ(u) sin(u𝜋∕2)
, if u > 0

1, if u = 0,
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This identity is the precursor to tail estimators such as Hill estimators, which we 
will use to study in the non-parametric analysis of cyber risk loss data in the “Quan-
tifying heavy tails in cyber risk loss models” section. To understand this, consider 
taking loss data and estimating the real part of the empirical characteristic function 
using the observed cyber risk loss samples 

{
X1,… ,Xn

}
 assumed i.i.d. from F to 

produce

and therefore the empirical estimator for the real component is 
Un(t) =

1

n

∑n

j=1
cos

�
tXj

�
 . From this one can then define the empirical quantity for a 

grid of values t1,… , tN around the origin which produce tuples 
{(

ti, ln
[
1 − Un(ti)

])}
 

which can be regressed given a general assumption about the slowly varying tail 
function L to produce an estimator for the tail index �̂n based on linear regression 
obtained in the general form

where one can assume that this looks like a simple linear regression with 
yi = ln

(
1 − Un(tj)

)
 , Zj = ln tj and error �j = ln

1−Un(tj)

1−U(tj)
 which then admits a least 

squares estimator for � . This method is interesting as it is basically non-parametric 
and relies upon an estimator formed from the empirical characteristic function 
around the origin. Note that in such estimators for the tail index � , the bias in the 
estimation will be directly related to the assumption regarding the model for L(x) 
which clearly enters through U.

Other methods of similar nature make more specific assumption about H(x) and L(x) 
or at least about the asymptotic functional form of these quantities as x → ∞ . This nat-
urally then leads to classes of estimators such as the Hill estimator (Hill 1975) and gen-
eralisations such as those discussed in an excellent work exploring aspects of tail index 
estimation by Hall (1982). This basic observation of using an asymptotic relationship 
and a simple linear regression to estimate the tail index can be studied in a plethora 
of other related approaches, we will not review all of these in this work. Our focus in 
this work will be on two classes of general estimator for tail index consistent with a 
regular variation assumption, those based on characteristic function asymptotics and 
those based on maximum likelihood principle. Within these two categories there are in 
fact more than 100 currently known estimators for the tail index based various different 
assumptions about H(x) and its tail behaviour, see a comprehensive account of many of 

(5)ln (1 − U(t)) =

⎧
⎪⎪⎨⎪⎪⎩

ln (s(𝛼)L(1∕t)) + 𝛼 ln t, if 0 < 𝛼 < 2

ln

�
1∕t∫
0

xH(x)dx

�
+ 2 ln t, if 𝛼 = 2

ln
�

𝜇2

2

�
, if 𝛼 > 2.

�n(t) =
1

n

n∑
j=1

exp
(
itXj

)

(6)ln
(
1 − Un(tj)

)
∼ lnC + � ln tj + ln

1 − Un(tj)

1 − U(tj)
, j = 1, 2,… ,m,
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these estimators in Fedotenkov (2020), a very comprehensive and well written review 
of univariate Pareto-type tail index estimators for i.i.d. non-truncated data. With regard 
to the maximum likelihood based approaches, the classic approach most widely used 
by practitioners is known as the Hill estimator. We discuss in this paper a few different 
variants of this estimator that can treat bias in the cyber risk data collection and robust-
ness considerations.

In both contexts we will consider application of extensions that build upon the 
work of Hall (1982) where it was proposed to consider particular types of tail sum 
generic functional forms of the slowly varying function L(x) that will parametrise 
F(x) = x−�L(x) as x → ∞ in the regularly varying tail function class,

for C > 0 , 𝛼 > 0 , 𝛽 > 0 and D is a non-zero real number, which gives tail sum 
function

Note this type of parametric form captures:

•	 Stable distributions with stability index � ∈ (1, 2) by setting 𝛽∕2 < 𝛼 ≤ 𝛽,
•	 Extreme value distributions with F(x) = exp (−x−�) for x > 0 and � = �,
•	 Powers of “smooth” distributions of loss X where if X = Y−1∕� then Y’s distribution 

admits a Taylor series expansion of at least three terms about the origin.

In the following sections we will explore in detail working with the choice of regularly 
varying model assumptions consistent with the power-law type severity models such 
as stable Pareto-Levy or Pareto type heavy-tailed loss models. To achieve this we will 
work with estimators of the tail index � for loss data based on empirical regression 
based estimators in one of two forms, either based on empirical characteristic function 
regressions near the origin or on assumptions on the likelihood used to derive MLE 
based estimators like Hill estimators. Furthermore, we will also consider some robust 
versions of the Hill estimator recently developed that extend the classical Hill type esti-
mators aforementioned to accommodate removal of potentially biased or misreported 
massive losses, subject to significant uncertainty, rounding error, non-actual payment, 
reporting error and more.

Tail index estimators for cyber risk based on empirical characteristic function 
asymptotic regressions

If one makes the assumption of Hall in Eq. 7 then it was shown by Pitman (1968) and 
Welsh (1986) that if Eq. 8 is assumed then as x → ∞ one can express the resulting 
asymptotic real component of the power-law distributions characteristic function as fol-
lows near the origin as t ↓ 0:

(7)L(x) = C
[
1 + Dx−� + o(x−�)

]

(8)H(x) = Cx−�
[
1 + Dx−� + o(x−�)

]
as x → ∞.

(9)1 − U(t) = Cs(�)t� + D1t
� + o(t� ),
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where � ∈ (0, 2) and it satisfies for a non-negative integer p the constraint 
2p < 𝛼 + 𝛽 < 2p + 2 , with � = min {� + �, 2} and constant D1 = CDs(� + �) if 
𝛼 + 𝛽 < 2 , see discussion in Jia (2014) for more general characterisations that 
extend the representations for arbitrary real �.

If one then substitutes this representation based on Eq. 7 for � ∈ [0, 2] then as 
t ↓ 0 one obtains a resulting refinement to the asymptotic relationship in Eq.  6, 
derived in Jia (2014, Sect. 2.2) given for y = ln(1 − U(t)) by:

where C� is treated as the constant of the regression and the estimator of the tail 
index given by simple least squares produces:

with aj = Zj − Z = ln tj −
1

m

∑m

k=1
ln tk and Szz =

∑m

i=1

�
Zi − Z

�2

=
∑m

i=1
a2
i
 . For fur-

ther properties of this estimator including its mean squared error, guidance on opti-
mal selection of points for the regression around the origin see details in Jia (2014, 
Sect. 2.3). We will use these properties in forming the analysis of the Advisen data 
and we therefore provide briefly a few key properties for practitioners below.

Theorem 2  Suppose that H(x) the tail sum for the loss distribution characterizing 
the cyber loss severity distribution satisfies the assumptions of Hall (Hall 1982), 
such that

For the heavy-tailed case of � ∈ (0, 2) and estimators given by Eq.  11, with 
tj = j∕

√
n for j = 1,… ,m = n� with � ∈ (0, 1∕2) . Then as n → ∞ the bias of this 

regression based tail index estimator is given by

and the variance of the estimator is given by

where the exponent power for the variance is always less than 0.

The proof for these results is provided in Jia (2014).

(10)
y = C� + � ln t + ln

1 − Un(t)

1 − U(t)
,

C� = ln [Cs(�)] +
D1

Cs(�)
t�−� + o(t�−�),

(11)
�̂ =

∑m

j=1
ajyj

Szz
,

Ĉ� = y − �̂Z,

(12)H(x) = Cx−�
[
1 + Dx−� + o(x−�)

]
as x → ∞.

(13)�
[
�̂
]
− � =

D1(� − �)

Cs(�)(� − � + 1)2
n(�−1∕2)(�−�){1 + o(1)},

(14)Var
(
�̂
)
= O

(
n�∕2−1−��

)
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Tail index estimators for cyber risk based on Hill‑type estimators

A second popular approach to tail index estimation that we will explore for cyber 
risk data, applicable when one is willing to assume an additive tail function H(x) 
which is Pareto in law, is the class of Hill estimators. There are many variations 
on the Hill estimator; we will first show the basic form of the estimator and then 
discuss briefly important variations that make the estimator more statistically 
robust. Numerous authors have contributed to authors have contributed to the 
development of this class of estimators, see for instance influential works by Hill 
(1975), Pickands (1975), Hall (1982), Embrechts et al. (2013) and the references 
therein.

Suppose that X1,… ,Xn is an i.i.d. sample from a heavy-tailed distribution F. 
Namely,

for some 𝜉 > 0 and a slowly varying function � ∶ (0,∞) → (0,∞) , i.e. 
�(�x)∕�(x) → 1, x → ∞, for all 𝜆 > 0 . The parameter � is also often referred to as 
the tail index of F and it is typically treated in this context as equivalent to � in pre-
vious sections being represented as � = 1∕� . It will be convenient in this cyber risk 
study to use both tail index notations: with � to refer to the regression type estima-
tor based on the characteristic function, derived above; and � to refer to the class of 
Hill estimators based on maximum likelihood estimation under an asymptotic Pareto 
power law assumption for the observed losses. At this point it will be informative to 
also recall the classic Hill estimator given by the below, which is the estimator of 
tail index � , which is the inverse of the tail exponent �:

Fortunately, Munasinghe et al. (2022) has produced a useful R package that imple-
ments a range of tail index estimators of Hill “type” which we will loosely refer 
to as the variety of related estimators based on the asymptotic Pareto power law 
assumptions for cyber risk losses. In all estimation methods based on extremal order 
statistics, one must determine a threshold to begin using the order statistics in the 
estimator since the tail index working under the assumption of Pareto distributed 
data either exactly or asymptotically. Therefore, to apply these methods for the gen-
eral power law form, we would look to identify where tail behaviour starts, which 
is not a precise or easy task, the interested reader is referred to Hill (1975), Hubert 
et al. (2013), Vandewalle et al. (2007) for further detail and Fedotenkov (2020) for a 
catalogue of Pareto-tail index estimation techniques.

The different Hill type estimators we will consider to use will be: 

1.	 Maximum Likelihood Estimation (MLE) the MLE formula gives an estimator for 
inverse 𝜉 : 

(15)ℙ(X1 > x) ≡ 1 − F(x) ∼ �(x)x−1∕𝜉 as x → ∞,

(16)�̂k,n ∶= Ĥk,n =
1

k

k∑
i=1

ln

(
x(i,n)

x(k,n)

)
= �̂−1.
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where xi represents the data point for i = 1,… , n . The minimum value, 
xmin = x(1,n) , is estimated from the data set and hence denoted x̂min . As noted in 
Newman (2005) this leads to a biased estimator, however this estimate (17) can 
be converted to an unbiased version �∗ as follows (Rizzo 2009): 

2.	 Weighted variants of Least Squares Estimation (WLS) This method is based on 
the order statistics, assumed sorted in increasing order. Then for each value i (of n 
data points) one calculates yi the number of points greater than the ith data point. 
This method seeks to minimise the sum of the squared errors between the rank 
plot and the logarithm of the cdf. The estimator is given by Nair (2013): 

 There is also a popular weighted variant where the sum of squared errors crite-
rion from the LS method above is developed with a weight function. A common 
choice of weight function is given by 

which gives a WLS solution closely related to the first estimator based on the 
MLE where each has the same asymptotic limiting results. Under this weight 
function the WLS tail index estimate is then given, assuming no ties in the 
sorted losses, by 

3.	 Percentile Method (PM): this method develops an estimator for the tail index 
based on percentiles, typically based on a robust dispersion measure such as the 
inter-quartile range, producing estimators such as (see Bhatti et al. 2018): 

 Here P∗
q
 is the qth percentile of the data set.

(17)𝛼̂ = N

[
n∑
i=1

xi

x̂min

]−1

,

(18)𝛼∗ =
n − 2

n
𝛼̂.

(19)𝛼̂ =

∑n

i=1

�
ŷi −

1

n

∑n

i=1
ŷi

��
ln xi −

1

n

∑n

i=1
ln xi

�

∑n

i=1

�
ln xi −

1

n

∑n

i=1
ln xi

�2
.

(20)wi =

[
ln

(
xi

x̂min

)]−1

(21)𝛼̂ = −

∑n

i=1
ln
�
(n + 1 − i)∕n

�
∑n

i=1
ln
�
xi∕x̂min

� .

(22)𝛼̂ =
ln 3

ln(P∗
75
) − ln(P∗

25
)
.
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We begin the results analysis by looking at the basic Hill estimator obtained for 
a sequence of order statistic thresholds k. The results are presented in Fig. 7 and 
Table 4.

We note that for the empirical characteristic function regression estimator, 
we utilised the results in Theorem  2 to select the values for t1,… , tm such that 
tj = j∕

√
n for m = n� with � = 1∕2 which was adaptive for each NAIC sector as 

they have differing numbers of realised cyber losses. It is evident from this analy-
sis firstly that there is significant variation in the estimators across the various 
methods of tail index estimation. The Method of Moments (MoM) failed in all 
cases due to the sample size requirements and the Empirical Characteristic Func-
tion Regression methods were also seemingly unable to produce reliable results in 
numerous NAIC examples and in those in which it did produce estimator results, 
the uncertainty associated with the estimators under this method in this cyber risk 
application were very large. The MLE, PM, MPM, GPM and WLS were seem-
ingly better at capturing estimators that were more comparable with each other 
across each NAIC dataset. These estimators indicated the presence of very heavy-
tailed loss distributions for the majority of NAICs. This type of finding is consist-
ent with other studies of tail behaviour in cyber risk loss data. In the following 
section, we will question and explore the validity of these findings, which if taken 
at face value, would indicate a difficulty with insurability due to the heavy-tailed 
nature of the loss processes that would result in exorbitant premiums. We will 
therefore explore if the situation is as bad as it looks by taking a more practical 
perspective on the analysis and by exploring assumptions regarding the loss data 
recording and the impact they may have on such conclusions regarding heavy-
tailed behaviour of cyber loss processes.
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Dealing with real world cyber data: inaccurate, rounded, truncated, 
partially settled unreliable massive reported cyber total losses

In real cyber risk loss data, the total loss may be subject to a range of issues in 
the reporting. The attribution of all loss components to the total loss may be diffi-
cult when it concerns a combination of both direct and indirect loss aggregations. 
General reporting of cyber risk, in the financial sector for instance, falls under 
two broad classifications of loss type: direct and indirect losses.

•	 Direct losses: Resulting from the event itself, such as reparation, time lost, cli-
ent compensation, regulatory fines, money lost in wrongful transactions.

•	 Indirect losses: Resulting from the consequences of the event such as loss of 
customers resulting from damage to image or reputation, low morale amongst 
employees, regulatory scrutiny, increased insurance premiums. Indirect losses 
are often linked to reputation damage!

We adopted the Advisen data set categorisations of each loss event into direct 
and indirect losses. In the Advisen data studied in this paper the total cyber loss 
per event is actually a composition of many direct and indirect loss components 
including: injury loss payouts awarded, loss of wages, loss of business income, 
loss of assets, property first-party payouts, financial damages, loss of life expense 
payouts, defence costs for legal and regulatory, other expenses, punitive exem-
plary damages, other fines and penalties, pain and suffering awarded amounts, 
other costs, plaintiff legal fees and plaintiff fees. It is observed across the different 
cyber risk types that the proportion of direct and indirect losses is highly hetero-
geneous, see an overview available from the Advisen data in Table 5 and further 
discussion and analysis in Shevchenko et al. (2023).

Through correspondence with Advisen on data veracity and providence, they 
as the data provider acknowledged that all these losses are difficult to accurately 
measure, record and obtain information on over multiple events that make up a 
total loss event for a given accident trigger. As such we conclude that this can make 
it likely that when losses of one billion. or more are recorded for total loss, they 
are often less specific and rounded compared to those losses observed in the thou-
sands and millions. In addition, it is also the case that not all total losses are set-
tled—they may be awarded but in practice if they are in the billions they will likely 
not ever be completely settled. This causes uncertainty in the extreme losses used 
to estimate the Hill estimator, which are the most critical losses for accurate tail 
index estimation. In this section we will explore how to overcome this challenge. In 
practice, if the largest few order statistics are corrupted or unreliable or uncertain 
as just discussed, this may lead to severe bias in the estimation of � . In the worst 
case scenarios one may find that the computed estimate of � may be completely 
constructed from a small number of corrupted observations. To reduce the effect 
of such observations that may corrupt the sample one may introduce a class of Hill 
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estimators based on trimming and weighting that produces a class of robust tail 
index estimators.

Robust trimmed Hill estimators for cyber losses

To reduce this bias several authors have looked at how to robustify the Hill esti-
mator, see Brazauskas and Serfling (2000), Zou et  al. (2020), Goegebeur et  al. 
(2014), Peng and Welsh (2001) and Peng and Welsh (2001). The objective of 
these methods was to robustify the estimator of � by trimming or reducing the 
reliance on the potentially corrupted extreme losses; this can be done through a 
hard truncation, weighting or a soft truncation weighted trimming method. We 
note that since such methods are often data driven, when selecting the degree 
of trimming, rather than utilising a cyber specific input, such methods outlined 
below are also suitable for other areas of severe loss insurance modelling such as 
in natural catastrophe modelling.

The trimmed Hill estimator, denoted Hk0,k,n
 below, is based on a weighted ver-

sion of the classical Hill estimator, for some selection of weights 
{
wk0,k

(i)
}
 for the 

order statistics between i ∈
{
k0,… , n

}
 . The selection of the weighting rule will 

clearly influence the statistical properties of the estimator obtained, generically 
given by:

It is worthy to remark that when k0 < k < n then one has set the weight contribu-
tions from the potentially corrupted higher order statistic losses through to zero con-
tribution after adjusting for the intermediate order statistics from k0 onwards, which 
are incorporated in the estimation with a weighting rule. The consequence of this 
approach is to improve the breakdown point of the robust estimator. However, the 
selection of k0 is a delicate matter and cannot be readily determined apriori. There-
fore it is proposed to consider utilising a trimmed Hill plot to help select the choice 
of the trimming parameter k0 which is of key importance in practice. One can uti-
lise a method of the trimmed Hill plot to visually determine k0 . Then, by exploiting 
the elegant joint distribution structure of the optimal trimmed Hill estimators, Bhat-
tacharya et al. (2017) devised a weighted sequential testing method for the identifi-
cation of k0 . This leads to a new adaptive trimmed Hill estimator, which works well 
even if the degree of contamination in the top order statistics is largely unknown.

Inference for the truncated Pareto model has been developed in the seminal work 
of Aban and Meerschaert (2004) and recently in Beirlant et al. (2016). In contrast to 
this, Bhattacharya et al. (2017) studied a soft truncation approach based on weighted 
trimming in which the class of weights that would be optimal in the sense of being 
the Best Unbiased Linear Estimator (BLUE) for the class of loss models given by a 

(23)�𝜉trim
k0,k,n

∶= Hk0,k,n
=

k∑
i=k0+1

wk0,k
(i) ln

(
X(n−i+1,n)

X(n−k,n)

)
, 0 ≤ k0 < k < n − 1.
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regularly varying Pareto law and were able to obtain a closed form representation for 
the weighting functions.

It was demonstrated in Bhattacharya et  al. (2017) that in the ideal Pareto set-
ting, it turns out that our trimmed Hill estimator is essentially finite–sample optimal 
among the class of all unbiased estimators of � with a fixed strong upper breakdown 
point. Furthermore, they established the following properties of the estimator for �:

•	 Asymptotic normality of the trimmed Hill estimator in the semiparametric regime 
(15), under second order conditions on the regularly varying function � as in Beir-
lant et al. (2004).

•	 Rate of convergence of the estimator being the same as the classic Hill as long as 
k0 = o(k).

The optimal BLUE trimmed weights, wk0,k
(i) for which the estimator in (23) is unbi-

ased for � and also has the minimum variance produces the tail index estimator given 
by

see Bhattacharya et al. (2017) for details. Furthermore, Bhattacharya et al. (2017) 
proposed a data driven parameter selection procedure for the threshold k0 selection.

The potential uncertainty regarding the validity of extreme losses reported not only 
causes bias in the estimation of the tail parameter � , it is also reasonable to assume 
that such uncertainty could translate into premium mispricing. Basing insurance pre-
mium calculations on the trimmed Hill estimators should reduce the impact of uncer-
tainty and provide for more robust premium estimates. When the trimmed Hill esti-
mates show some consistency, perhaps suggesting values of the tail parameter greater 
than 1, one could then conclude that the heavy tails of cyber risk are mainly caused 
by a few extreme losses that may be inaccurately reported or recorded or suffer from a 
great degree of uncertainty in their assessment, that could be corrupted or even never 
settled, and therefore there should be little to no variation in the corresponding insur-
ance premiums when trimming these noisy records. On the other hand, if the values of 
the trimmed Hill estimates still showed no consistency, then one should conclude that 
the effect of uncertainty in the cyber-related losses is not mitigated by the trimming 
procedure, implying presence of further model risk in the case of cyber risk related to 
inconsistency of the cyber loss process with the statistical assumptions underlying the 
tail index estimators. To investigate this, we consider a simple insurance premium cal-
culation, including in our analysis the trimmed Hill estimator.

Consider a one-year insurance policy protecting against each of X1,… ,Xn random 
losses, with n following a Poisson distribution, up to an aggregate top cover limit equiv-
alent to a percentage c of the total company wealth. According to the zero utility prin-
ciple, the maximum premium P a non-satiable and risk averse decision maker, with 

(24)

�𝜉
trim opt

k0,k,n
∶=Hk0,k,n

=
k0 + 1

k − k0
ln

(
X(n−k0,n)

X(n−k,n)

)

+
1

k − k0

k∑
i=k0+2

ln

(
X(n−i+1,n)

X(n−k,n)

)
, 0 ≤ k0 < k < n − 1
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total wealth w is willing to pay, corresponds to the solution of the following non linear 
equation:

where u(x) = ũ(max(x, 1)) and ũ(⋅) is a concave, non-decreasing utility function. We 
consider a company with USD 1 billion of total wealth, wishing to insure 10% of its 
total capital. For k = 1,… , 20 , and k0 = 15,… , 60 with step size of 5, we estimate 
the tail parameter using the trimmed Hill estimator in 24, and fit quarterly frequency 
on a Poisson distribution for each NAIC. Then, we proceed with insurance premium 
calculations using a simulation framework under this illustrative example.

We present the results for the leading NAIC by total cyber losses in Fig. 8. The 
remaining 4 NAICs that are in focus have similar results which are presented in 
Appendix 1, see Fig. 13. These plots show the trimmed Hill estimates for various 
values of k and k0 (a) and the corresponding insurance premiums (b), of the top five 
NAIC sectors in terms of cyber event frequency.

(25)�

[
u

(
w −

n∑
i=1

Xi

)]
= �

[
u

(
w − P −

n∑
i=1

Xi +

n∑
i=1

min(Xi, cw)

)]
,
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Fig. 8   Trimmed tail index estimator �̂trim opt

k0,k,n
 obtained by trimmed Hill estimators (on the top) and cor-

responding insurance premiums (on the bottom) for varying trimming parameters (k0, k) for NAIC 52. 
Premiums are computed on a quarterly basis using 1000,000 Monte Carlo draws. The variation in the 
trimmed Hill estimates translates into significant variation in the resulting insurance premium calcula-
tions
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All the considered NAICs exhibit a variation in the estimates of the trimmed 
tail index, and we see that critically, this variation indeed then translates into varia-
tion in the insurance premiums required. This shows that depending on what model 
assumptions one is willing to make regarding the quality of the data used in tail 
index estimation, these assumptions have a consequential influence on insurance 
pricing. This manifests as a form of model risk in dealing with cyber risk data, given 
that the effect of uncertainty cannot be filtered out by trimming procedures.

Importantly, we see that business sectors NAIC52 and NAIC56 both show 
trimmed inverse tail parameter estimates which now appear substantially lower 
than 1, suggesting that the extreme tail behaviour reported in Fig. 7 and Table 4 
is mainly driven by a few extreme losses. According to the assumptions underpin-
ning the application of the trimming methodology, outlined previously, one can 
see that according to the application of this technique, it yields a switch from a 
heavy-tailed model to a lighter-tailed loss model. In other words, by changing the 
assumptions on the cyber risk loss data, one goes from a non-trimmed class of 
estimates which produces heavy-tailed loss models for insurance pricing through 
to the trimmed estimates which produced lighter-tailed loss models and the result-
ing consequences on the insurance premiums is substantial. We see for NAIC52 
that this results in a difference in premiums in which the premium reduces by up 
to 86% under the trimmed model assumptions compared to the non-trimmed. For 
NAIC56 (results presented in Appendix 1) there is also a substantial premium 
change as trimming is applied, and in this case it also results in a shift from heavy-
tailed loss model to light-tailed loss model that subsequently results in a reduction 
in premium of up to 93%, a very substantial difference in premium pricing. We 
note that in the case of these two NAIC examples, we state that the model has 
shifted from heavy-tailed to light tailed, since the results shift for any initial k0 
immediately from a heavy-tailed to a light tailed model as soon as any trimming is 
applied and the inverse tail index continues to decrease as increasing trimming is 
applied. Importantly in both cases, it is seen that after a certain point of trimming, 
for a lower threshold k0 , the trimmed estimates stabilise indicating that one can 
reliably fit a model to this data once problematic, noisy, inaccurate or corrupted 
data is removed.

The results for NAIC51, NAIC54 and NAIC92 are presented in Appendix 1, and 
whilst these models still have heavy-tailed loss models after trimming is applied, 
the resulting premium reductions from applying the trimmed results compared to 
the non-trimmed results is also substantial. The maximum premium reduction pro-
duced for NAIC51 was a 99.3%, for NAIC 54 it was 99.5% and for NAIC92 it was 
of 99.6%. These are so substantial that they clearly indicate the need to consider this 
source of model risk and the potential impact on pricing coming from the underly-
ing modelling assumption and subsequent model risk.

Tail index estimates for business sectors NAIC51, NAIC54 and NAIC92 still sug-
gest that the corresponding severity distributions are heavy-tailed. Nevertheless, this 
is not consistent for every value of k and k0 , implying that the estimates are highly 
sensitive to the choice of k and k0 . The sensitivity of the tail index estimates directly 
translates into insurance premiums. For business sectors NAIC52 and NAIC56, 
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insurance premiums computed using a log-utility function appear to be lower than 
those for business sectors NAIC51, NAIC54 and NAIC92. However, all business 
sectors present great variability in insurance premiums, showing how uncertainty in 
the tail index ultimately affects premium mispricing and cyber risk insurability.

Dependence and tail behaviour estimation on Advisen NAIC cyber 
losses

In this section we will illustrate that in addition to model risk and parameter uncer-
tainty on the marginal loss processes, manifesting in insurance pricing uncertainty, 
one can also find in the setting of cyber risk data significant model risk and param-
eter uncertainty in the joint dependence model between cyber loss processes, which 
again we will study across the NAIC industry sectors.
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Analogously to the analysis in the previous section that studied marginal tail 
behaviours under different data and model assumptions, in this section we will 
repeat this type of analysis but for the dependence structures between NAIC cyber 
loss processes. This will be performed in a sequence of stages, starting with a com-
parison between simple linear correlation estimates and various robust correlation 
estimators. Then we will develop this further to account for copula models under 
various assumptions and we will select optimal copula dependence structures. In 
terms of how these various studies of dependence manifest in an insurance context 
for cyber risk, we will explore the impact that parameter uncertainty, model mis-
specification and model risk in the dependence structures may have on risk diver-
sification for insurers that may hold insurance portfolios for cyber risk across many 
industry sectors as captured by the NAIC codes.

We begin this section by comparing standard linear correlation estimates 
between the loss data for each NAIC in the Advisen data. We will then go on 
to demonstrate how the correlation estimation may be effected by robust esti-
mators that make different assumptions on the data when calculating the linear 
or rank correlations. In Fig.  9 we present the basic linear correlations between 
NAIC industry sectors. Note, throughout this section we will need to convert 
the loss data from event time series data where losses have time stamps on the 
days of loss event, to a regular time series in order to compare dependence struc-
tures between NAICs. To achieve this we have decided after analysis of the data 
records that a reasonable time stratification is to perform a quarterly aggregation 
for the dependence analysis.

The Pearson linear correlation coefficient is given as follows

which in this analysis uses all loss events in the quarterly aggregates. This includes 
the indirect and direct loss events that for the extreme loss records were highly likely 
to suffer from different forms of inaccuracy, ranging from noisy reporting due to 
approximations, inaccurate records and rounding, misreporting or incomplete 
reporting, partially settled or unsettled and corrupted records, which is particularly 
relevant for the extreme loss in the Advisen data, as discussed in the “Dealing with 
real world cyber data: inaccurate, rounded, truncated, partially settled unreliable 
massive reported cyber total losses” section.

To determine how such issues may result in model uncertainty or model risk 
in this analysis, we will once again compare the standard linear Pearson correla-
tion coefficient estimators, ignoring these problems with the extreme loss records 
to estimators for dependence that are robust and can remove the influence of 
such problematic large loss records to various degrees, depending on the class 
of robust estimator. We will explore three robust methods of dependence estima-
tion for correlation based on SSD Median, Quadrant (sign) correlation coefficient 
methods and MCD estimators, each outlined below. In developing the analysis 
for the robust correlation estimation, we once again focus on the most important 

(26)r =

∑
(xi − x)(yi − y)

�∑
(xi − x)2

∑
(yi − y)2

�1∕2 ,
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NAICs, studied in previous sections, that have the top five number of loss events 
reported: NAICs 52, 56, 51, 54, 92.

As discussed in Shevlyakov and Smirnov (2011) one can robustify the sample 
correlation coefficient by replacing the linear procedures of averaging by the cor-
responding non-linear robust counterparts according to

where x̂, ŷ are robust estimators of location such as the median that are used to 
replace the mean. This is particularly important in the case of infinite mean loss 
models. The function Ψ(⋅) is a monotonic function such as Huber’s Ψ-function given 
by

and 
∑

� is a robust version of the data summation that can trim values as follows

with [⋅] the integer component. Note, when � = 0 one recovers the stand-
ard summation and no trimming of order statistics is applied. If one wishes to 
recover the classical correlation median estimators of Falk (1998) one can select 
� = 0.5, x̂ = med(x), ŷ = med(y) and Ψ(z) = z , where med(z) = z([n∕2],n) and we will 
study a version of this with trimming of extremes.

Furthermore, we will utilise a non-parametric measure for robust correlation 
of Blomqvist (1950) known as the quadrant (sign) correlation coefficient given by 
� = 0 , x̂ = med(x), ŷ = med(y) and Ψ(z) = sgn(z) to produce estimator

The final robust correlation estimator we will explore will be the Minimum Covari-
ance Determination (MCD) estimator. This is obtained for a finite sample of obser-
vations 

{
x1,… , xn

}
 in ℝp by selecting that subset 

{
xi1 ,… , xih

}
 of size h, with 

1 ≤ h ≤ n , which minimises the generalised variance given by the determinant of the 
covariance matrix computed from the subset among all possible subsets of size h. 
The resulting robust location and scale estimators are then defined as

where cp is a consistency factor. The location estimator can also be replaced with 
a robust M-Estimator such as the median estimator for the trimmed sample. The 

(27)r�(Ψ) =

∑
� Ψ(xi − x̂)Ψ(yi − ŷ)

�∑
� Ψ

2(xi − x̂)
∑

� Ψ
2(yi − ŷ)

�1∕2 ,

(28)Ψ(z, k) = max{−k, min(z, k)}

(29)
∑
�

zi = nT�(z) = n(n − 2r)−1
n−r∑
i=r+1

z(i,n), 0 ≤ � ≤ 0.5, r = [�(n − 1)],

(30)rQ = n−1
∑

sgn(xi −med(x))sgn(yi −med(y)).

(31)

x̂ =
1

h

h∑
j=1

xij,

Σ̂ = cp
1

h

h∑
j=1

(xij − x̂)(xij − x̂)T ,
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choice h = [(n + p + 1)∕2] is commonly preferred since it yields the highest possible 
breakdown point, see Lopuhaa et  al. (1991). As these authors observed, setting it 
atleast as high as h ≈ n∕2 when the number of observations is much higher than the 
dimension means the breakdown point of the resulting multivariate scale estimator 
is defined as the smallest fraction of observations that you need to replace to arbi-
trary position before the estimated scatter explodes such that its largest eigenvalue 
tends to infinity or implodes such that its smallest eigenvalue tends to zero.
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Fig. 10   This figure shows the correlation matrices of NAIC52, NAIC51, NAIC56, NAIC54, and 
NAIC92. Estimates for correlation varies between the different estimators suggesting model risk also 
affects the dependence structure of cyber event severity
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Figure 10 shows the correlation matrices for cyber event severity occurring in the 
top five NAICs in terms of number of events. Looking at the correlation estimates, 
the linear correlation case presents lower coefficients than the other robust estima-
tors. This suggests that linear correlation might underestimate the strength of the 
dependence structure in cyber event severity. Moreover, the observed high degree 
of variation between the robust correlation estimates might suggest that cyber event 
severity dependence structure is also affected by parameter uncertainty.

We further investigate the impact of uncertainty in cyber event severity depend-
ence parameters on insurance pricing, using a zero utility principle. In this case 
study, we consider a hypothetical insurance company with multiple lines of busi-
ness for their cyber risk insurance policies. Each line of business corresponds to 
insurance policies issued to companies in the U.S. categorised under a given NAIC 
industry sector. This insurance company will then have a portfolio of insured cyber 
risks across various industry sectors. We will be interested in assessing in this sec-
tion the influence on such an insurance portfolio of the model risk and parameter 
uncertainty associated with estimation of the dependence structure between the dif-
ferent cyber risk loss processes by line of business or NAIC. To continue the work-
ing illustration, we will focus on an insurance portfolio corresponding to the five 
NAICs studied in previous sections: NAIC52, NAIC 51, NAIC 56, NAIC54 and 
NAIC92. We will then modify the zero utility equation in (25) as follows to accom-
modate this insurance portfolio context, accounting for the dependence structures 
present between the NAICs, as shown in Eq. 32,

where �i corresponds to the weight of each NAIC i. Note, we use notation Ni here 
to denote the fact that it is a random variable for the number of losses in a given 
year. In order to numerically solve Eq. 32 one needs to know the joint distribution of 
cyber event frequency and severity occurring in the five considered NAICs. While 
it’s possible to employ copulas to approximate the multivariate compound process, 
in case of insurance premium calculations this might pose some challenges, given 
the presence of the top cover limit. Moreover, correlation estimates in Fig. 10 refer 
to quarterly aggregated losses. A possible solution is to implement an extension to 
more dimensions of the algorithm in Cruz et al. (2015, Chap. 12), where losses are 
drawn from a distribution of correlated aggregated losses. We will outline a sum-
mary of this approach as follows.

Consider a d-dimensional compound loss process Z =
[
Z1,… , Zd

]
 , with each 

component a compound loss given by Zi =
∑Ni

n=1
Xi
n
 , where Ni ∼ FNi and Xi

n
∼ FXi , 

n = 1,… ,Ni are random variables corresponding to the frequency and severity of the 
cyber event occurring in NAIC i. The joint distribution of Z , F

Z
 can then be uniquely 

expressed using a copula C and the marginal distributions of each component, FZi as 
follows:

(32)

�
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)
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Then, the copula C can be used to draw dependent variates for each compound loss 
Zi∗ , and subsequently the insurance premiums can be computed on the correspond-
ing random vector of losses Xi∗ =

[
Xi∗
1
,… ,Xi∗

Ni∗

]
 . The steps of the algorithm in Cruz 

et al. (2015) are summarised in the following pseudocode.

We will now be particularly interested in the effect on diversification of this insur-
ance portfolio coming from different dependence estimates arising from various 
assumptions about the extreme losses in the Advisen cyber risk data and how they 
manifest in parameter uncertainty and model risk that we conjecture also translates into 
impact on an actuarie’s perspective of the diversification of the insurance portfolio.

When the loss distributions exhibit extreme dependence, such as comonotonicty, 
and extreme tail behaviour, even well diversified positions fail to produce diversifica-
tion benefits (Wang and Dhaene 1998; Dahen and Dionne 2010; Ibragimov et al. 2011). 
According to Nešlehová et al. (2006), in the case of infinite mean distribution, the value 
at risk cannot be considered a coherent risk measure anymore, since subadditivity 

Table 6   This table shows the insurance premiums and the diversification measure for an equally 
weighted portfolio of NAIC52, NAIC51, NAIC56, NAIC54 and NAIC92

The estimator is reported along with the parameter standard error in brackets

Correlation estimator Quarterly premium Quarterly diver-
sification

Yearly premium Yearly 
diversifi-
cation

Pearson correlation 2157.723 1.754 7647.262 1.406
(59.014) (0.191) (43.951) (0.268)

SSD median 2059.880 1.867 7482.660 1.269
(59.540) (0.295) (44.215) (0.215)

Quadrant (sign) 2018.442 1.547 7389.340 1.296
(59.963) (0.1883) (43.069) (0.177)

MCD 1989.372 1.643 7313.716 1.419
(59.662) (0.1910) (43.833) (0.194)
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doesn’t hold. In particular, when independent Pareto-type heavy-tailed risk sources are 
pooled together, the resulting value at risk becomes superadditive:

To show how this affects the diversification benefit we consider the standard diver-
sification measure given by the ratio of the value at risk of the position, and the 
weighted average of the value at risk of each NAIC:

In ideal conditions, D(Z) is bounded in [0, 1], however we will show that this is not 
the case for cyber risk related losses in the Advisen data.

Table  6 shows quarterly and yearly premium and diversification values for 
a company holding an equally weighted position in the five NAICs and a total 
wealth of USD 10 billion dollars. For each robust correlation estimator, we allow 
for a Gaussian copula as the dependence structure and generate the random losses 
using the algorithm in Eq. 1.

Yearly and quarterly premiums in Table 6 can be rearranged into a decreasing 
order starting with those corresponding to liner Pearson correlation and followed 
by SSD, quadrant (sign) correlation, and MCD correlation estimators. Combin-
ing these results with the correlation estimates in Fig. 10, where robust correla-
tion estimators give higher estimates than the linear Pearson correlation, it can 
be inferred that under the combination of heavy-tailed loss model marginals, 
combined with an elliptical copula with no tail dependence, such as the Gauss-
ian copula model specification, then insurance premiums are negatively related 
with correlation estimates: ceteris paribas, as dependence strengthens, insurance 
premiums reduce.

Moreover, the variability among the various robust correlation estimates also 
translates into insurance premium uncertainty that can be interpreted as potential 
mispricing if the data records for extreme losses that drive these model risk and 
parameter uncertainties identified are not adequately accounted for in the pricing 
calculations. In such cases the resulting premiums are shown to vary according to 
the underlying assumptions about the data and model used in making an estimate 
of the dependence structure based on the correlations between the cyber risk loss 
processes.

One can also observe that the diversification measure returns values greater 
than 1, both on a quarterly and a yearly basis. Given that the portfolio evaluated 
in this case is formed by heavy-tailed risks, this is in agreement with the litera-
ture on diversification traps (Ibragimov et al. 2011). In instances where the under-
lying risks are heavy-tailed, the value at risk cannot be considered a subadditive 
risk measure any longer and therefore, the resulting diversification measure is not 
bounded in the interval [0, 1]. Moreover, the diversification measure defined in 

(33)VaR𝛼

(
I∑

i=1

Zi

)
>

I∑
i=1

VaR𝛼(Z
i).

(34)D(Z) =
VaR�(

∑I

i=1
�iZ

i)
∑I

i=1
�iVaR�(Z

i)
.
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Eq. 34 is in general not consistent with majorisation orderings and in particular 
with the first order of stochastic dominance. Therefore, while insurance premi-
ums are consistent with the riskiness of the position, this is not true in the case 
of the diversification measure. This is also confirmed by the values taken by the 
diversification measure in the various setting not following the ordering structure 
of the insurance premiums. Nevertheless we present these results for this measure 
of risk diversification as it is widely used in practice and so should be informative 
for practitioners.

The premiums in Table  6 reflect how the uncertainty in correlation estimates 
affect the net exposure of a portfolio of five sources of cyber risk. To evaluate how 
the dependence structure affects the exposure of each individual NAIC we consider 
performing a sequence of conditional premium calculations. For each NAIC and 
each correlation estimator, the insurance premiums are computed using the zero util-
ity principle and solving the following non-linear equation modified to find the con-
ditional cases:

We compute the conditional distribution for each case from the joint distribution 
generated by Algorithm  1. Table  7 shows the insurance premium computed on a 
quarterly basis, using the conditional equivalent principle of Eq. 35, for a represent-
ative company with USD 10 billion of wealth. The responsiveness of each NAIC 
to losses greater than 75% in the other business sectors can then be assessed in the 
subsequent results in Table 7.

(35)

�

�
u
�
w − Zi

����Z
s ≥ F−1

ZS (u), s ≠ i
�

= �

⎡⎢⎢⎣
u

⎛⎜⎜⎝
w − P − Zi +

Ni�
n=1

min(Xi
n
, cw)

⎞⎟⎟⎠

�������
Zs ≥ F−1

ZS (u), s ≠ i

⎤⎥⎥⎦
.

Table 7   This table shows 
conditional insurance premiums 
and their bootstrapped standard 
errors, for the five NAICs

Each premium is computed assuming losses greater than 75% in the 
other NAICs, a company wealth of USD 10 billion, and the relevant 
correlation structure

NAIC Corr SSD Quadrant MCD

NAIC52 7219.310 6607.928 6359.669 5820.162
(175.775) (176.543) (162.363) (163.646)

NAIC51 9521.399 9348.967 9202.159 8802.254
(45.075) (54.860) (59.063) (79.150)

NAIC56 5017.681 5189.146 4768.389 4982.309
(213.505) (195.435) (189.904) (184.620)

NAIC54 8692.571 8499.866 7889.639 7994.849
(102.66) (104.930) (120.323) (111.253)

NAIC92 2151.384 1971.347 1655.238 1617.179
(211.624) (183.206) (154.234) (147.890)
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The insurance premiums in Table 7 follow the same structure of the Hill estimates 
in Fig. 7, with NAIC51 reaching the highest values in all the considered dependence 
structures, suggesting that individual tail behaviour is still the main driver affecting 
insurance premium calculation, even when dependence structure is considered in the 
modelling. Comparing the premium sizes with Table 6 it can be seen that for each 
NAIC the highest conditional premium is achieved in the linear Pearson correlation 
case, while MCD and quadrant (sign) correlation return respectively the lowest esti-
mates. Moreover, except in the case of NAIC92 based on MCD and quadrant (sign) 
correlation, conditional premiums are greater than net premiums, which is consist-
ent with the increased risk of the positions analysed.

Insurance premiums from Tables  6 and  7 show the risk of a combination of 
NAICs and how pronounced the effect of parameter uncertainty on insurance pric-
ing is. Nonetheless, the two approaches can be used in different situations. The port-
folio approach can be used to quantify how exposed a company is on the cyber risk 
front, and how variation in positions could improve the risk profile. In this context, 
parameter uncertainty externally affects the enterprises under investigation, in the 
sense that among other things, the insurability of a company’s cyber risk profile and 
stakeholder evaluation can be affected. The conditional calculation instead can be 
used internally to evaluate strategically which risk management and mitigation strat-
egies are best suited for the given company’s cyber risk profile. Here the effect of 
parameter uncertainty has the potential to be more catastrophic since it could ulti-
mately lead to suboptimal or wrong decisions in the risk management department, 
or by the chief financial officer, where funds get misallocated to prevent or reduce 
the risk of catastrophic cyber events. Furthermore, there is a clear risk of mispricing 
insurance premiums associated with the misspecified risk profile of the insurance 
portfolio, which could result in loss of competition, customers or even regulatory 
scrutiny and fines.

Table 8   Best copula, and corresponding estimated parameter � and Kendall’s � selected by the package 
VineCopula using Akaike information criterion

NAIC52 NAIC51 NAIC56 NAIC54 NAIC92

NAIC52 – Survival Joe Survival Joe Survival Joe Survival Joe
– �̂ = 4.19 , �̂ = 0.63 �̂ = 2.96 , �̂ = 0.51 �̂ = 4.09 , �̂ = 0.62 �̂ = 3.33 , �̂ = 0.55

NAIC51 – – Survival Joe Survival Joe Survival Joe
– – �̂ = 3.85, �̂ = 0.6 �̂ = 4.7, �̂ = 0.66 �̂ = 3.58, �̂ = 0.58

NAIC56 – – – Survival Joe Survival Joe
– – – �̂ = 3.47, �̂ = 0.57 �̂ = 3.11, �̂ = 0.53

NAIC54 – – – – Survival Joe
– – – – �̂ = 3.17, �̂ = 0.54

NAIC92 – – – – –
– – – – –
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Dependence structures and copula

In this section we will undertake a copula dependence study, similar in nature to that 
explored in Eling and Jung (2018) in that we also explored pairwise dependence 
relationships. However, unlike this work, which explored data breach events from 
2005 to 2016 in monthly quantisation bins in two cross-sectional settings: cross-
industry losses in four categories by breach type (hacking, lost electronic device, 
unintended disclosure and insider breach) and cross-breach type losses in five cate-
gories by industry (banking and insurance, government, medical service, retail/other 
business and educational institution), we explore quarterly quantisation and com-
pare dependence relationships across the pairs of NAIC sectors. Like Eling and Jung 
(2018) we also found evidence for significant asymmetric dependence of quarterly 
losses between NAIC business sectors.

In this last section we will explore the copula dependence structure for pairs 
of leading NAIC sectors. Fitting higher order copulas will be challenging due to 
the small sample sizes that arise from aggregating the loss data to a three-monthly 
stratification. Recall, this period was selected to ensure reasonable sample sizes over 
time, so we have therefore intentionally restricted to two dimensional copula analy-
sis as a result. Nevertheless this is still an insightful analysis to perform. Here we 
focus on the impact of selecting the right dependence structure on insurance pric-
ing and diversification measure. Given the quality and quantity of the data, instead 
of finding the best copula that fits the five NAICs jointly, we resort to variational 
approximation, where the true distribution is approximated by the combination of 
independent pair copulas that minimises the Kullback–Leibler divergence. We pro-
ceed with the following steps:
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Fig. 11   KL divergence of different copula structure ordered by tail parameter of the independent compo-
nent for different seed. The values of KL divergence remain similar for different copula structure combi-
nations. The legend reads as follows: 1: NAIC52, 2: NAIC51, 3:NAIC56, 4: NAIC54, 5: NAIC92
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•	 Step 1 we identify the best copula for each NAIC pair according to an informa-
tion criterion;

•	 Step 2 fit independence copula for each combination of pair copulas where mar-
ginals appear uniquely;

•	 Step 3 select the combination of independent pair copulas that minimises the 
Kullback–Leibler divergence.

Table 8 shows the results of the copula selection procedure according to the Akaike 
Information Criterion, the corresponding copula parameter estimated using maxi-
mum likelihood, and Kendall’s � . As shown in in the table, there appears to be not 
much variation in terms of the selected copula, copula parameter and Kendall’s � 
since the Joe copula is systematically selected as the best choice for each pair, and 
the parameters do not vary much between this model for each pair. This seems to 
suggest that when taking into account tail dependence, all five NAICs have very 
similar behaviour, showing a positive tail dependence.

Given that our analysis focused on an odd number of NAICs, we form the com-
bined five dimensional model as comprised of a product of two dimensional copulas 
in the variational approximation keeping one component independent, while allow-
ing pair copulas for the other four NAICs. Figure 11 shows the Kullback–Leibler 
divergence between all the possible combinations of pair copulas and independent 
component for different seed in the random number generator, ordered according to 
the tail index estimates of the independent component. As can be seen, the relatively 
flat structure in Table 8 affects also the KL divergence results, where the values are 
so close to each other that even the small and almost negligible variation due to the 
random number generation could affect the results.

Since selecting a best performing approximated copula structure is not possible, 
we present the results for the case where NAIC51 is left as an independent compo-
nent, NAIC52 and NAIC54 are fitted on a  Joe copula with parameter � = 4.09 , and 
NAIC56 and NAIC92 are fitted on a Joe copula with parameter � = 3.11 . Similar 
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(b) Diversification coefficient for the copula resulting from the
variational approximation and bootstrapped confidence intervals

Fig. 12   Insurance premiums based on log utility and diversification measure of an equally weighted port-
folio of five NAICs, with bootstrapped 95% confidence intervals
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results can be obtained with other combinations of independent component and pair 
copulas. Then we use the selected copula structure as a basis for the simulation in 
Algorithm 1 and compute the insurance premium of Eq. 32 in the case of an equally 
weighted portfolio of NAICs, and the corresponding diversification measure. Fig-
ure 12 compares the results with those previously obtained using the Gaussian set-
tings and the different robust correlation estimators, reporting also the bootstrapped 
95% confidence intervals. Insurance premiums computed using the approximated 
copula are statistically different from those computed using the Gaussian copula 
with the robust correlation estimators, both on a quarterly and yearly basis. This 
indicates that not only parameter uncertainty affects insurance premium calculation 
in the case of cyber risk, but model risk does as well. Nevertheless, premiums based 
on the linear correlation estimator are not statistically different from the one com-
puted using the approximated copula. This can be explained due to the presence of 
two conflicting biases. On the one hand, the assumption of a Gaussian copula as a 
joint dependence structure seem to increase the values of insurance premiums. On 
the other hand, robust correlation estimators reduce the premium values, resulting 
in a premium not statistically different than the one computed using the approxi-
mated copula structure. Looking at the diversification measure results, there appear 
not to be any statistically significant differences between the considered underlying 
dependence structures: the diversification measure fails to be bounded in the inter-
val [0, 1] due to the lack of subadditivity, and seems to have a more skewed boot-
strapped distribution with respect to the insurance premiums, having the mean not 
centred in the confidence intervals. Finally, it can be noticed how the confidence 
intervals for the diversification measure seem to be less affected by time aggregation 
than the premium counterparts. This can be explained by the lack of subadditivity 
due to the heavy tails of the considered risks: in the bootstrap procedure it’s more 
likely that extreme scenarios, violating the subadditivity, are generated more often.

Figure 12 provides statistical evidence that model risk and parameter uncertainty 
in cyber risk translate into insurance premiums and could affect the decision making 
process.

Conclusions

The paper explored the relationship between model risk and parameter uncertainty 
in insurance pricing in the setting of cyber risk. In particular the paper sought to 
explore whether the perspective previously held in the literature, that cyber risk 
losses are heavy-tailed, was consistently found in the largest industry standard loss 
database, obtained from Advisen. In this context the paper showed that ones per-
spective on the tail behaviour of cyber risk loss processes is heavily dependent on 
the ability to rely upon the properties of the data obtained for calibration. Given that 
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in the industry leading database there was evidence of some of the largest losses 
being incompletely reported, rounded, approximated and never settled or realised, 
we decided to assess what impact this may have on the actuary’s perspective of the 
tail behaviour of such cyber risk loss processes. This is particularly compounded 
by the fact that, necessarily so, the total cyber loss per event in the Advisen dataset 
is a composition of many direct and indirect loss components, where direct losses 
are from the event itself and indirect losses are from the consequences of the event. 
When the extremes of the data are contaminated, the classical Hill-type estimators 
lead to inaccuracy in utility-based cyber insurance premium calculations. Further-
more, it poses a challenge to assess the insurability of cyber risk losses.

Robust estimators were adopted rather than the standard tail index estimators 
that used all data as equally weighted and applied no trimming. To improve the 
robustness of the tail index estimator reducing the effect of such observations 
(i.e. extreme outliers), we used the trimmed Hill estimator on aggregated five 
NAICs cyber-related losses. We noticed that while it is highly sensitive to the 
choice of trimming parameters for each NAIC, the uncertainty of the trimmed 
Hill estimator ultimately affects premium mispricing. Consequently, model risk 
makes it difficult to assess the insurability of cyber risk losses. This led to the 
conclusion that significant model risk and parameter uncertainty may be pre-
sent in the analysis depending on ones perspective on assessing the quality of 
the real data. Furthermore, we showed that once this was translated into insur-
ance pricing, this led to significant mispricing potential in charged premiums.

We also investigated how uncertainty of the dependence structure of cyber event 
severity between five NAICs impacted on utility-based conditional/unconditional 
cyber insurance premium pricing and diversification benefit measures. Dependence 
between five NAICs was studied via robust dependence estimation methods, copula 
estimation methods, and a little known Monte Carlo based simulation method and 
the value-at-risk ratio was used as the diversification measure.

We provided statistical evidence that cyber premium mispricing and misleading 
diversification benefit measuring can arise from dependence model structure uncer-
tainty as well as relevant parameter uncertainty. We hope that what we have pre-
sented in this paper will provide practitioners with sensible approaches to quantify/
assess univariate/multivariate cyber losses over a range of different industry sectors 
dealing with model risk.

Appendix 1

See Fig. 13.
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