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Abstract
Gun violence significantly threatens tens of thousands of people annually in the 
United States. This paper proposes a multidisciplinary approach to address this 
issue. Specifically, we bridge the gap between criminology and computer vision by 
exploring the applicability of firearm object detection algorithms to the criminal 
justice system. By situating firearm object detection algorithms in situational crime 
prevention, we outline how they could enhance the current use of closed-circuit tel-
evision (CCTV) systems to mitigate gun violence. We elucidate our approach to 
training a firearm object detection algorithm and describe why its results are mean-
ingful to scholars beyond the realm of computer vision. Lastly, we discuss limita-
tions associated with object detection algorithms and why they are valuable to crim-
inal justice practices.

Keywords Gun violence · CCTV · Situational crime prevention · Deep learning · 
Automated firearm detection

Introduction

Gun violence is a significant and growing problem in the United States. In 2021, 
firearm-related homicides accounted for approximately 20,966 deaths in the United 
States (Simon et  al. 2022). The firearm-related homicide estimates represent an 
8.3% increase from 2020, which was a 34% increase from 2019 and a 75% increase 
over the last decade (CDC 2022). Furthermore, gun violence disproportionately 

 * Tyler E. Houser 
 thouser@gmu.edu

1 Department of Criminology, Law and Society, George Mason University, Enterprise Hall, 4400 
University Drive, MS 4F4, Fairfax, VA 22030, USA

2 Department of Radiology, School of Medicine and Public Health, University of Wisconsin, 
1111 Highland Avenue, Madison, WI 53705, USA

3 Department of Criminology, Law and Society, George Mason University, 354 Enterprise Hall, 
4400 University Drive, MS 4F4, Fairfax, VA 22030, USA

http://orcid.org/0009-0002-7687-4516
http://crossmark.crossref.org/dialog/?doi=10.1057/s41284-024-00423-7&domain=pdf


 T. E. Houser et al.

affects specific groups in the United States. African Americans experienced an 
increase of roughly 39% in firearm-related homicides from 2019 to 2020 and expe-
rienced the highest firearm homicide rate by race/ethnicity in 2021 (CDC 2022; 
Simon et al. 2022). Additionally, the second leading cause of death among individu-
als aged 12–19 is now homicide, in which firearms account for 87% of cases (Kolbe 
2020). Lastly, active shooter and mass shooting events are also rising in the United 
States. The FBI found that only three active shooter events occurred in 2000, but 61 
occurred in 2021, representing a 1933.33% increase (Blaire and Schweit 2014; Fed-
eral Bureau of Investigation 2022).

Criminology and other social science scholars have dominated the literature in 
proposing gun violence solutions and implications in the past (e.g., Rosenfeld et al. 
2014; Sherman and Rogan, 1995; Makarios and Pratt 2012; Braga et al. 2008; Koper 
et al. 2015). More recently, given the considerable threat to public safety and public 
health in the United States, other disciplines have begun to offer solutions to prevent 
gun violence, most notably computer vision scholars. In the past five years, a grow-
ing body of literature has focused on using artificial intelligence to curb gun vio-
lence. Computer vision scholars have used artificial intelligence to train algorithms 
to detect firearms in real time, which can be implemented in closed-circuit television 
(CCTV) systems (Ashraf et  al., 2022; Narejo et  al. 2021; Garza and Vega 2021; 
Bhatti et al. 2021; Ahmed et al. 2022).

Despite the application of such algorithms concerning the criminal justice sys-
tem, to our knowledge, very few criminology scholars have explored object detec-
tion algorithms to mitigate gun violence (e.g., Idrees et al. 2018). Not only does this 
leave a significant gap in the literature in most social science journals, but it also 
reduces the likelihood of optimal implementation in real-world settings. Although 
computer vision scholars are more formally trained in these artificial intelligence 
techniques, criminologists can guide how, when, and where implementations will be 
most effective. Thus, the disciplines must collaborate to optimally implement state-
of-the-art security technologies to enhance public safety.

Therefore, in this work, we demonstrate how artificial intelligence can assist the 
criminal justice system in preventing and mitigating the consequences of gun vio-
lence. We provide a conceptual overview of a multidisciplinary approach integrating 
criminological frameworks and computer vision techniques to help curb the gun vio-
lence epidemic in the United States. Specifically, we put forth a theoretical frame-
work, situational crime prevention, that explains how implementing firearm detec-
tion algorithms can improve current CCTV limitations related to gun violence. We 
also provide a general description of object detection and discuss relevant work on 
automated firearm detection. We then demonstrate our data collection methods and 
how we trained a firearm object detection algorithm. Additionally, we explain why 
our algorithm’s results are meaningful to the criminal justice system and why they 
should transfer to real-world settings. Lastly, we describe limitations associated with 
detection algorithms and future research directions.
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Theoretical justification for automated firearm detection algorithms

Situational crime prevention and CCTV

Although research on artificial intelligence-based firearm detection algorithms is 
vastly growing, little empirical testing has been done to examine firearm detection 
algorithms in the real world. The state of the literature is largely conceptual. Addi-
tionally, to our knowledge, the literature has not incorporated a theoretical frame-
work to explain why firearm object detection algorithms would reduce and prevent 
gun violence in the real world, limiting confidence that the algorithms would be suc-
cessful. Although this work does not add empirical results (e.g., showing the success 
or failure of real-life applications of the algorithms), it does provide a theoretical 
mechanism, situational crime prevention, to explain why firearm object detection 
algorithms should prevent and mitigate gun violence in real-world settings.

Many criminology perspectives focus on distal issues that lead to crime, such 
as childhood factors, strain, or peers (Gottfredson and Hirschi 2019; Agnew 1992; 
Akers 1999; Snipes et al. 2019). However, when attempting to prevent crime in the 
present or immediate future, perspectives focused on distal factors do not provide a 
theoretical basis for crime prevention. Unlike most criminology theories, situational 
crime prevention focuses on the immediate environment where crime will occur 
(Clarke 2017). Essentially, situational crime prevention seeks to alter a vulnerable 
environment to reduce the number of criminal opportunities available or increase 
the perceived risks of apprehension for offenders, preventing or reducing crime.

Although various situational crime prevention strategies exist (Clarke 2017), we 
focus on one technique: closed-circuit television (CCTV). CCTV is a surveillance 
technology often used by law enforcement organizations (as well as other public and 
private entities). CCTV is “a system in which a number of video cameras are con-
nected in a closed circuit or loop, with the images produced being sent to a central 
television monitor or are recorded” via a wireless, remote network (Goold 2004, p. 
12; Ratcliffe and Rosenthal 2021). The use of CCTV is vastly growing across the 
United States. Nearly all law enforcement agencies that serve large populations use 
CCTV for various crime-reduction interventions (Reaves 2015).

Relevant to this work, CCTV reduces crime by strengthening the formal sur-
veillance of potential crime settings, which increases the likelihood of offender 
apprehension and allows law enforcement (or other place managers) to respond 
to incidents more efficiently and effectively (Clarke 2017; Piza et al. 2019). How-
ever, the existing literature suggests that CCTVs do not reduce violent crime. In a 
meta-analysis and systematic review of 80 evaluations of CCTV, only drug, prop-
erty, and vehicle crimes were found to be meaningfully reduced by CCTV inter-
ventions (Piza et al. 2019). Nonetheless, there is reason to believe that artificial 
intelligence can augment current CCTV practices  (Skogan 2019). Specifically, 
CCTV systems embedded with automated firearm detection algorithms should 
help combat the gun violence epidemic through several mechanisms.

First, automated firearm detection algorithms create active CCTV monitoring 
with or without a human present. In their 80-study meta-analysis and systematic 
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review, Piza et al. (2019) found that actively monitored systems are significantly 
more likely to prevent crime than passive systems. Active systems require live-
feed CCTV footage to be monitored at all times, whereas passive systems only 
record and store footage. Relevant to this work, a firearm will not be detected in 
real time if a system is not actively monitored. Thus, by embedding a CCTV sys-
tem with real-time detection powered by a computer vision algorithm, the system 
will be actively monitored for firearm-related incidents at all times, increasing the 
efficacy of CCTV in preventing gun crimes.

Second, actively monitored systems by humans only sometimes allow for real-
time detection. Idrees et  al. (2018) illustrate that human operators generally have 
numerous camera systems to monitor at any given time. Thus, even when a firearm 
is on live-feed CCTV (and the system is actively monitored), a human operator may 
miss it as they could be distracted by other footage or simply did not notice it (Idrees 
et  al. 2018; Ratcliffe and Rosenthal 2021). Although object detection algorithms 
are not perfect (discussed in the limitations section), they can still augment current 
practices to reduce human errors and improve detection capabilities. By situating a 
firearm detection algorithm within a CCTV system, human operators are provided 
with a “second pair of eyes,” and the likelihood of detecting a firearm is significantly 
increased, helping to mitigate gun violence (Rigano 2019, p. 3).

Third, ordinary CCTV systems are typically not tailored to prevent firearm-
related crime, which is why most crime-reduction effects are seen in property crimes 
(Piza et al. 2019). A core tenet of situational crime prevention is that an interven-
tion must be specific to the desired crime type (Clarke 2017). Thus, an intervention 
focused on property crime might not apply to gun crime. However, if practitioners 
tailor CCTV systems to gun violence using firearm detection algorithms, it is more 
likely that a gun will be detected, and the intended crime will be prevented.

Lastly, earlier firearm detection will allow police to respond more quickly to a 
potentially dangerous incident. Although evaluations of situational crime preven-
tion demonstrate the theory’s effectiveness in combating varying crime problems 
(Guerette 2009; Guerette and Bowers 2009; Clarke 2017), like all criminology inter-
ventions, situational crime prevention cannot prevent every crime from occurring. 
Nonetheless, even if a situational crime prevention intervention does not prevent its 
targeted crime, it can still be beneficial. Freilich et al. (2020) argue that situational 
crime prevention can reduce the total number of casualties stemming from public 
mass violence through varying mechanisms; most notable to this study is improved 
response times. By timely notifying law enforcement of a firearm-related incident, 
police can quickly arrive at the scene and neutralize the threat, limiting the number 
of casualties. Furthermore, a timelier notification will also reduce the response time 
of emergency medical services and result in quicker transport to trauma care, which 
might help to save the lives of wounded victims (Hatten and Wolff 2020). Thus, 
immediately detecting a firearm in live-feed CCTV footage is critical to responding 
to and mitigating gun violence efficiently and effectively.

Ultimately, situational crime prevention and relevant CCTV literature provide 
automated firearm detection algorithms with a theoretical framework to help explain 
a causal mechanism for gun violence reduction and mitigation. Automated firearm 
detection technologies are tailored explicitly to gun violence and increase formal 
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surveillance of potential crime settings (Clarke 2017). Additionally, automated fire-
arm detection algorithms should increase the likelihood that firearms are detected in 
real-time footage by assisting human operators and creating an actively monitored 
system (Idrees et al. 2018). Lastly, automated firearm detection algorithms might not 
prevent all shootings, but they can assist law enforcement and emergency medical 
services with responding to incidents more efficiently and effectively (Freilich et al. 
2020). Although the present research is conceptual, the current theoretical frame-
work provides confidence that firearm detection algorithms would succeed in real-
world applications.

Object detection

Deep learning is a form of machine learning that uses neural networks to discover 
patterns in visual data by examining large amounts of data (LeCune et al. 2015). A 
subset of deep learning includes object detection, which typically uses convolutional 
neural networks (CNN) to analyze visual data (e.g., photographs). CNNs allow 
object detection algorithms to learn and recognize patterns of data, including clas-
sification and localization of objects of interest within images or videos. Although 
various object detection algorithms are publicly available, we use the You Only 
Look Once (YOLO) algorithm. YOLO is a state-of-the-art object detection algo-
rithm due to its speed and accuracy of detection, making it effective and practical 
for automated firearm detection tasks (Wang et al. 2022). Because YOLO has been 
found to be state-of-the-art and is employed in this work, the next portion of the 
literature review focuses on experiments that used a YOLO algorithm to detect fire-
arms in visual data.

Ashraf et al. (2022) trained their experiment using a YOLO-v5s approach and a 
custom CNN to compare the performance of the two for firearm detection in images 
and videos. The authors trained their approach on a 15,873-image dataset (focus-
ing solely on handguns). The authors’ YOLO-v5s approach yielded a precision and 
recall of 99% and 81% on images and a precision and recall of 94% and 93% on 
videos, outperforming the other tested CNN. Furthermore, YOLO’s detection speed 
was 19 times faster than their custom CNN, providing evidence that it is suitable to 
detect firearms quickly in live-feed CCTV footage.

Narejo et al. (2021) trained their experiment using the YOLOv3 algorithm and 
compared it to three other object detection algorithms available for public use (i.e., 
Alexnet + SVM, Faster RCNN, CNN VGG-16). The authors trained their approach 
on an original dataset derived from open sources. Their results demonstrated that 
YOLOv3 outperformed the other algorithms with an accuracy of 98.89%, providing 
confidence in its reliability in detecting firearms in CCTV applications. The authors 
also note that YOLOv3 was computationally less expensive than other algorithms.

Like Narejo et al. (2021), Garza and Vega (2021) used YOLOv3 to detect fire-
arms in video frames. The authors’ dataset included 18,000 (augmented) images 
from CCTV camera video frames containing firearms. The authors’ approach 
reached a precision of 85%, a recall of 81%, an F1-score of 83%, and a mean aver-
age precision of 85% at the 0.5 IoU threshold. Furthermore, the algorithm detected 
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firearms in varying conditions, including worsened image qualities and occluded 
gun positions. Additionally, in another experiment, Rosales et al. (2021) also illus-
trate that the YOLO algorithm can detect armed individuals in various settings (i.e., 
low light, different backgrounds, varying image qualities) with a relatively high 
degree of precision and recall, making it suitable for CCTV systems that monitor 
unfavorable environments.

Bhatti et al. (2021) trained varying object detection algorithms (including YOLO) 
on multiple custom datasets to determine the best-performing approach. The data-
sets ranged in size from 1732 to 8327 images. The authors’ testing revealed that 
the YOLOv4 algorithm had the highest performance (compared to the other pub-
licly available detectors) with a mean average precision and F1-score of 91.73% 
and 91%. The YOLOv4 algorithm also yielded a 99% detection confidence in most 
cases and provided the fewest false positives and negatives, illustrating its ability to 
perform within real-world security settings. Lastly, Ahmed et  al. (2022) trained a 
scaled YOLOv4 algorithm on a roughly 8000-image dataset derived from various 
open sources. The authors’ approach resulted in a 92.1% mean average precision. 
The authors also found success using high-performance and low-cost GPUs (simi-
lar to Narejo et al. 2021), providing confidence that YOLO is suitable for resource-
depleted organizations.

The aforementioned studies demonstrate the effectiveness of object detec-
tion algorithms, specifically YOLO. Most work exceeded a precision of 90%, and 
all work exceeded a recall of 80%. Thus, the algorithms correctly identified and 
detected firearms in most instances throughout the various experiments. Although 
the algorithms were not perfect in any study, they still provide an advantage to cur-
rent uses of CCTV. Implementing object detection algorithms to assist human oper-
ators will help increase the likelihood of real-time firearm detection, especially con-
sidering CCTV’s previously outlined limitations. One must also consider that the 
capabilities of object detectors will only improve in the future, furthering the case 
for their application in the criminal justice system. Taken together, the current litera-
ture suggests that YOLO is a state-of-the-art object detection algorithm and should 
be reliable for real-time firearm detection in real-world applications.

Training a firearm detection algorithm

Algorithm: YOLO

Computer vision scholars and practitioners have released several ready-to-use detec-
tion algorithms for public consumption (e.g., Wang et al. 2022). The ready-to-use 
algorithms provide criminologists and social science scholars opportunities to train 
automated firearm detectors and produce state-of-the-art results (without being 
experienced coders or computer scientists). The following sections demonstrate a 
ready-to-use object detection algorithm that we trained to detect various firearms. 
The experiment should help illustrate to scholars outside of the computer vision 
field how such algorithms function and what their results mean for public safety and 
security applications.
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We leveraged the YOLOv7x CNN to train our firearm object detection algorithm. 
Wang et al. (2022) developed and implemented YOLOv7 for public use. As previ-
ously mentioned, YOLO is a state-of-the-art object detection algorithm that stands 
for: You Only Look Once (Wang et al. 2022). YOLO detects objects using multiple 
techniques that are reduced to a single computation. The algorithm divides an image 
into grid cells to detect any objects of interest (Redmon et al. 2015). If the algorithm 
detects an object of interest in any grid cells, the algorithm calculates a predicted 
bounding box (detailing where an object is in the image) and locates the center of 
the object of interest. After predicting where an object of interest is in the image, the 
algorithm calculates an intersection over union (IoU) score to determine whether 
the labeled bounding box (ground truth data) overlaps with the predicted bounding 
box. This score explains how well the algorithm predicted where an object was in 
an image. In addition to the IoU score, the algorithm provides a confidence score 
of the class probability. Thus, how confident is the algorithm that a detected object 
is the predicted class (e.g., is the object a firearm)? Because YOLO completes the 
previous steps simultaneously, it provides an increased speed in detection, making it 
practical for real-time weapon detection in CCTV systems.

Data

Our firearm detection algorithm is trained on still images. Despite training the algo-
rithm on still images (like most prior work), the algorithm can then be used for real-
time video detection. Thus, the trained algorithm applies to CCTV technologies. 
Furthermore, the algorithm might see an increase in performance when exposed to 
video data (compared to still images used in this experiment). Rather than being 
assessed on single still frames, live-feed video provides numerous frames per sec-
ond. Given YOLO’s high speed of detection and ability to handle large amounts of 
data (i.e., numerous video frames), the additional opportunities to identify an object 
as a firearm might reduce false negatives (or missed detections) and increase overall 
efficacy (Ashraf et al., 2022).

We derived the bulk of our data from publicly available data sources. Although 
many firearm object detection datasets exist, most are not publicly available or do 
not contain appropriate labeling. Nonetheless, we located four firearm object detec-
tion datasets to help satisfy the requirements for training. Gu et  al.’s (2022) data-
set accounts for slightly less than half of our data, which includes 5000 challenging 
images and labels of people and firearms with rich background features (i.e., real-
world data). We also used data from Kaya et al. (2021), Qi et al. (2021), and Duran-
Vega et al. (2021), which included various images of different firearms. In addition 
to publicly available datasets, we supplemented our data with images from surveil-
lance footage (via Google Images), publicly available photographs on social media 
and news media, and movies and TV shows.

Although the publicly available datasets already included labels (i.e., where 
a firearm or person is located in an image), the data from other open sources did 
not. Thus, we had to label the open-source data (i.e., place bounding boxes around 
objects of interest) to fit the requirements of the YOLO algorithm (and create ground 
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truth data). We fed the unlabeled data into a YOLOv5 algorithm already trained to 
detect firearms and people. The algorithm detected objects of interest in each image, 
providing labeled data as output. Thus, instead of manually annotating each firearm 
or person by hand, the algorithm labeled the data to meet YOLO’s requirements. 
Each labeled prediction was manually analyzed to ensure accuracy and precision in 
detecting and labeling a firearm or person. Accurate predictions were added to the 
final dataset to train our final approach using YOLOv7x. The final dataset included 
over 11,000 images divided into training, validation, and testing sets (approximately 
80%, 10%, and 10%).

Evaluation

We evaluated our approach by examining its precision, recall, F1-score, average pre-
cision, and mean average precision. Precision assesses the ability to make positive 
predictions (Shah 2022), that is, how many predictions were true positives out of the 
total number of positive predictions made. Recall assesses how many true positives 
were detected out of the total number of objects (i.e., firearms, persons) in a dataset. 
The F1-score is a weighted average between the precision and recall metrics, rang-
ing from 0 (lowest accuracy) to 1 (highest accuracy).

Average precision is the area under the precision-recall curve (Shah 2022). A 
larger area under the precision–recall curve indicates a higher average precision. 
Essentially, higher precision and recall scores result in a greater average preci-
sion. Each class has a corresponding average precision. Mean average precision is 
the average of the average precision of all classes. Thus, the mean average preci-
sion considers the average precisions of the gun and person classes and produces a 
single score. We evaluate average precision and mean average precision at the 0.5 
IoU threshold. Again, IoU examines the overlap between the ground truth bound-
ing box (object labels) and the bounding box predicted by the algorithm. An IoU 
score greater than 0.5 is a positive match (or true positive), and anything less than 
0.5 results in a false positive. The mean average precision provides insight into the 
approach’s overall ability regarding classification (i.e., predicting a gun or person) 
and localization (i.e., predicted bounding box relative to ground truth labels). The 
higher the mean average precision, the more accurate the model detects firearms and 
people.

Experiment

We conducted all experiments using Google Colaboratory Pro in 2022. We used 
the YOLOv7x algorithm and initial weights to train our firearm detection algorithm 
(https:// github. com/ WongK inYiu/ yolov7) (Wang et  al. 2022). We set our experi-
ment parameters to 16-batch size, 50 epochs, and 640 image size. We also applied 
YOLO’s ready-to-use p6 hyperparameter settings, which were observed to improve 
model performance. We trained our approach on two classes, person and gun, and 
most training images contained at least one of those classes. We trained the algo-
rithm on varying firearms, including handguns, rifles, and shotguns, all mapping to 

https://github.com/WongKinYiu/yolov7
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the single class of gun. Although the focus of this experiment and its implications is 
the gun class, the included person class provides importance to training. The person 
class helps to provide context of how firearms are used in gun violence events (and 
who uses them). Therefore, the inclusion of the person class provided additional 
information to the algorithm when learning to identify firearms in the data (Gu et al. 
2022).

Results

The overall precision of our approach was 96%, the precision for the person class 
was 97.3%, and the precision for the gun class was 94.6%. The overall recall was 
90.2%, the person class’s recall was 94.7%, and the gun class’s recall was 85.6%. 
The overall F1-score was 93%, the person class’s F1-score was 96%, and the gun 
class’s F1-score was 89.9%. The average precision of the person and gun classes 
were 97.4% and 92%. Lastly, the mean average precision of the gun and person 
classes was 94.7%. Table 1 illustrates the experiment’s results.

The figures below illustrate how the algorithm detects an object of interest for 
scholars outside the computer vision field. The figures are stills from security cam-
era footage of school shooting incidents. Specifically, the algorithm successfully 
detected the firearms used by one of the Columbine shooters, the Parkland High 
School shooter, and the Uvalde Elementary School shooter. Although we trained our 
approach to detect persons and guns, the examples below only display detections for 
the gun class to highlight its ability to perform within a security setting. Figures 1, 2, 
and 3 illustrate successful detection examples.

Discussion of results and applicability to the criminal justice system

The gun violence epidemic is a significant and growing threat to the safety of 
the United States. Not only is ordinary or general gun violence on the rise in the 
United States, but mass shootings are also rising with each passing year (Simon 
et  al. 2022; Blaire and Schweit 2014; Federal Bureau of Investigation 2022). 
Despite the dire risk to tens of thousands yearly in the United States, much gun 
violence research lacks multidisciplinary implications and solutions to solve 
the problem. Scholars and practitioners from various fields must combine their 
efforts to create a holistic response to gun violence. We set out to bridge the gap 
between computer vision and criminology. In doing so, we present a theoretical 

Table 1  Experiment results Class P (%) R (%) F1 (%) AP@0.5 (%) mAP@0.5 (%)

All 96.0 90.2 93.0 – 94.7
Person 97.3 94.7 96.0 97.4 –
Gun 94.6 85.6 89.9 92.0 –



 T. E. Houser et al.

framework, situational crime prevention, and provide an overview of object 
detection algorithms to criminologists and other social science scholars.

The various metrics in the above experiment provide important implications 
for criminal justice. For instance, the precision of the firearm class reached 
94.6%, demonstrating that our approach can effectively identify firearms. If an 
algorithm can identify objects of interest with higher precision, the algorithm 
will produce fewer false positives (Shah 2022; Ahmed et al. 2022), which is criti-
cal for implementations in the criminal justice system. If a detection algorithm 
has low precision, it will more often incorrectly identify non-firearm objects as 
firearms, possibly sending law enforcement to a location deemed ‘dangerous’ 

Fig. 1  Columbine High School 
Shooting, 1999

Fig. 2  Parkland High School Shooting, 2018
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when it is not. By sending police to a dangerous event (that is not actually dan-
gerous), there is an increased risk that law enforcement officers will use force on 
undeserving people.

The recall of the firearm class neared 85%. Thus, our approach correctly detected 
when a firearm was present 85% of the time during the experiment. As Idrees et al. 
(2018) note, human operators often face challenges in monitoring live-feed CCTV 
footage effectively. The ability to supplement human operators with a “second pair 
of eyes” will inevitably increase the likelihood that a firearm is detected (Rigano 
2019, p. 3; Idrees et al. 2018). Thus, an 85% recall rate will assist human operators 
in detecting when a firearm is present in live-feed footage (in most cases). Addition-
ally, as previously mentioned, exposing the algorithm to live-feed footage (versus 
single photographs) might also result in a higher recall rate as there are more oppor-
tunities to detect an object as a firearm, increasing its applicability to the criminal 
justice system.

Furthermore, our approach yielded a relatively high F1-score. Again, the F1-
score indicates the weighted mean between the precision and recall metrics (Shah 
2022). An F1-score of nearly 90% reiterates that this approach can successfully 
identify firearms and support human operators in detecting guns in overwhelming 
live-feed footage.

Lastly, the average precisions of the gun and person classes were 92% and 97.4%, 
yielding a mean average precision of 94.7% at the 0.5 IoU threshold. A mean aver-
age precision of nearly 95% indicates high accuracy in localization (i.e., a predicted 
bounded box relative to the ground truth label) and classification (i.e., predicting 
that an object is a gun). Thus, the model can successfully predict whether an object 
is a firearm and accurately determine where a gun is located within visual data (in 
the vast majority of cases), furthering its applicability to CCTV interventions.

Our approach also performed well compared to the existing YOLO firearm detec-
tion literature. For instance, our gun class’s precision (94.6%), recall (85%), and F1-
score (89.9%) exceeded that of Garza and Vega’s (2021) YOLOv3 approach, which 

Fig. 3  Uvalde Elementary School Shooting, 2022



 T. E. Houser et al.

achieved a precision of 85%, a recall of 81%, and a F1-score of 83%. Additionally, 
our recall metric for the gun class exceeded that of Ashraf et al.’s (2022) experiment 
(84.6%), but our precision metric for the gun class did not reach theirs (99%). It is 
worth noting that Ashraf et al.’s (2022) approach employed images solely focused 
on handguns and images derived from movies, which might result in higher pre-
cision than the real-world images of various firearms used in our experiment. Our 
approach’s mean average precision was similar to Ahmed et  al.’s (2021) scaled 
YOLOv4 algorithm (94.7% and 92.1%). However, Ahmed et al.’s (2021) experiment 
trained a firearm class and a non-firearm class (where our classes were firearm and 
person), potentially differentiating the mean average precisions. Taken together, this 
approach (compared with the existing literature) demonstrates that scholars outside 
the computer vision field can produce state-of-the-art firearm detection algorithms 
that can increase the efficacy of CCTV technologies.

Despite the many successful experiments of firearm detection algorithms on vari-
ous data, it is still unknown of their true efficacy in the real world (as there is no 
empirical test). However, again, situational crime prevention provides confidence 
that the algorithms will be successful through several mechanisms. First, CCTVs 
embedded with firearm detection algorithms are tailored explicitly to gun violence 
compared to CCTVs without detection capabilities, increasing the likelihood of suc-
cess (Clarke 2017). Second, implementing detection algorithms improves current 
CCTV capabilities to provide formal surveillance of potentially violent settings by 
creating continuously, actively monitored systems, which is critical for crime reduc-
tion (Piza et al. 2015, 2019). Furthermore, fewer human errors will occur with the 
assistance of detection algorithms, which increases the level of formal surveillance 
of crime settings and the number of potential firearm detections (Idrees et al. 2018). 
Lastly, the use of firearm detection algorithms will result in the earlier detection of a 
firearm. Early firearm detection will dispatch police (and other emergency services) 
to a scene more quickly, mitigating the consequences of a gun violence event (Freil-
ich et  al. 2020). Ultimately, CCTVs embedded with firearm detection algorithms 
should reduce or mitigate gun violence in real-world applications through varying 
mechanisms provided by situational crime prevention.

Other applications of object detection algorithms to situational crime prevention

Although this paper solely focuses on gun violence, it must be mentioned that schol-
ars can situate object detection algorithms in situational crime prevention to com-
bat other criminal justice problems. For instance, some work has trained detection 
algorithms to detect other dangerous objects besides firearms (i.e., knives and other 
bladed weapons) (Buckchash and Raman 2017; Kibria and Hasan 2017; Berardini 
et al. 2023). Two arenas that might specifically benefit from knife and blade detec-
tors are schools and correctional facilities.

Although active shooter events in schools have increased over the past couple 
of decades in the United States (Katsiyannis et al. 2023), schools must also guard 
against bladed violence, which accounts for a relatively large portion of school 
violence in America (National Threat Assessment Center 2019). Additionally, 
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state and federal prisons have experienced increased violence, especially homi-
cide, in the past two decades (Carson 2021). Although it is unlikely that inmates 
can obtain a firearm while incarcerated, they might be more likely to make (or 
potentially acquire) a knife or other bladed weapons (e.g., Seiden 2022). Thus, 
not only should algorithms be trained to detect firearms (most notably in schools), 
but they should also be able to detect knives and bladed weapons to prevent other 
types of violence.

Knife and blade detection algorithms will help to prevent violence in schools 
and correctional facilities through the exact mechanisms presented for firearm 
detectors. First, embedding knife and blade detection algorithms in CCTV sys-
tems tailors the intervention to the type of violence seen in schools and cor-
rectional facilities (Clarke 2017). Second, using detectors in schools and cor-
rectional facilities provides a “second pair of eyes” when monitoring live-feed 
CCTV (Rigano 2019, p. 3), helping to strengthen formal surveillance. Lastly, 
increasing formal surveillance should reduce police (and teachers/administrators) 
and correctional officers’ response times when responding to relevant incidents at 
schools and correctional facilities, limiting harm to potential victims.

Practitioners can also situate object detectors in  situational crime prevention 
to mitigate other crime problems. For instance, research has associated varying 
pre-incident behaviors and precursors with specific crime types (Piza and Sytsma 
2015; Idrees et  al. 2018;  Piza et  al. 2019; Skogan 2019). Although it might be 
more resource-intensive and challenging to train approaches to detect specific 
behaviors (e.g., hand-to-hand drug transactions in open-air drug markets, “car-
hopping”), doing so would increase formal surveillance of varying crime settings 
(Piza and Systma 2015; Idrees et al. 2018, p. 297). Again, by increasing formal 
surveillance, specifically tailoring CCTV to crime types, and reducing human 
errors, law enforcement can respond to varying crime problems more efficiently 
and effectively (Clarke 2017).

Furthermore, some work has applied object detection algorithms to TSA’s use 
of baggage scanners (e.g., Liang et  al. 2019; Sigman et  al. 2020; McKay et  al. 
2022). Like CCTV systems, algorithms can be implemented in X-ray technolo-
gies to detect when dangerous objects are present in luggage. McKay et al. (2022) 
argue that object detection algorithms might improve TSA’s efficiency and over-
all performance (regarding safety) during baggage screening. However, like our 
argument regarding firearm detectors, McKay et  al. (2022) suggest that object 
detection algorithms should not entirely supplant current practices. Thus, object 
detection algorithms offer TSA officers a “second pair of eyes” when screening 
passengers (Rigano 2019, p. 3). Regarding situational crime prevention, object 
detection algorithms in TSA screening technologies would increase the risks for 
offenders (through target hardening TSA checkpoints) and increase the surveil-
lance of all luggage, preventing a potential crime from occurring (Clarke 2017). 
Although these are just a few examples, they further show the relevance of object 
detection algorithms to situational crime prevention and why criminologists 
should leverage the artificial intelligence technique to combat various types of 
crime.
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Limitations and future research directions

Although object detection algorithms are vastly improving, they have limitations. 
First, some object detection algorithms are computationally expensive. Although 
we trained our approach using the YOLOv7x algorithm, we did not have enough 
computing power to explore larger YOLOv7 models, which might have improved 
our results. Thus, future work should continue to create computationally affordable 
algorithms for all scholars and practitioners. Furthermore, scholars and practitioners 
with more available computational power should release their trained algorithms for 
public use.

Second, object detection algorithms suffer from false positives and negatives 
(Olmos et al. 2017). The algorithms may detect when an object of interest is not pre-
sent or fail to detect when an object of interest is present. Our algorithm produced 
false positives and false negatives in some instances where firearms were occluded, 
when firearms were further away from the camera, or when image quality was poor 
(despite Garza and Vega 2021 and Rosales et al. 2021 finding success with lesser 
quality images). Other instances of false positives include the detection of objects 
that resemble firearms (e.g., phones). Future research must continue to mitigate 
false-positive and false-negative risks associated with firearm detection algorithms 
to ensure their effectiveness in real-world applications. For those scholars unfamil-
iar with computer vision, we illustrate an example of a false negative in Fig. 4 and 
examples of false positives (along with a correct detection) in Fig. 5.

Although algorithmic tweaks and advances will help reduce issues associated 
with false positives and negatives, scholars and practitioners must also focus their 
efforts on data. An object detection algorithm is only as good as the data available 

Fig. 4  False negative
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for training (McDonald 2022). Thus, researchers and practitioners must continue 
to develop challenging, real-world datasets. By training on challenging, real-world 
data, detection algorithms will be more reliable in detecting firearms in real-world 
settings.

There are also firearm detection algorithm limitations relevant to public policy. 
For instance, criminal justice practitioners can only implement object detection algo-
rithms in CCTV systems in public settings. Thus, the algorithms will not detect gun 
violence incidents on private property (e.g., homes, private businesses). Although 
this would limit firearm detectors’ capabilities to an extent, the implementations in 
public settings will still be relevant to most gun violence events in the United States 
(Abt 2019).

Other limitations of firearm detection algorithms include the inability to decipher 
whether an individual with a firearm is a threat. Many localities, cities, and states 
across the United States permit the open carrying of a firearm. Although an indi-
vidual who is legally open carrying will not break any laws or be a threat to society, 
the algorithms will still detect that firearm. Furthermore, as previously mentioned, 
the algorithms might produce false positives when objects resemble firearms. The 
threat of false positives is further compounded when the algorithms detect firearm 
replicas or toys (e.g., airsoft weapons, pellet guns). The inability to decipher who is 
a threat and the presence of false positives (especially of objects that closely resem-
ble firearms) increases the likelihood that law enforcement is dispatched to non-dan-
gerous scenes, potentially resulting in the mistaken use of force on an undeserving 
individual. Thus, practitioners must implement policies that help safeguard against 
misidentifying non-dangerous settings as dangerous (e.g., requiring a human opera-
tor to verify a firearm detection).

Additionally, some fear that the government’s continued use of artificial intelli-
gence (and general CCTV) will lead to abuses and violations of civil liberties, cre-
ating an authoritarian surveillance state (Feldstein 2019; Ratcliffe and Rosenthal 
2021). Notwithstanding civil liberty concerns, firearm detection algorithms limit 

Fig. 5  False positive
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the risk of a surveillance state to an extent. Firearm detectors are only trained to 
detect guns. Nonetheless, although not relevant to firearm detection algorithms, it 
must be mentioned that other uses of object detection (e.g., facial recognition) might 
increase the likelihood of civil liberty intrusions and should be used carefully (and 
sparingly) (Zero Eyes n.d.).

Increased surveillance (via firearm detectors and CCTV) might also create biases 
in policing. Gun violence typically concentrates within minority and disadvantaged 
communities (Magee 2020). Thus, outside of implementations in schools or heavily 
traveled nodes, most implementations of firearm detectors (by police) might take 
place in those communities where gun violence is the deadliest. Not only will situat-
ing firearm detectors in minority and disadvantaged communities increase the sur-
veillance of those residents, but it might also lead to more contacts with the police 
under false pretenses (e.g., due to an incorrect detection), which could lead to use 
of force disparities. As seen in the growing public health literature, police use of 
force can elicit varying adverse consequences for minority individuals and commu-
nities, including death (Simckes et al. 2021). Additionally, unjustified use of force 
might stem other issues, including lower trust in law enforcement, reduced police 
legitimacy, and lack of compliance with authority (Tyler 2004). Thus, oversight and 
accountability must be at the forefront when implementing artificial intelligence 
technologies that could increase violent interactions between the police and the pub-
lic. Future work must balance the potential increase in public safety with possible 
intrusions into civil liberties to implement automated firearm detection interventions 
ethically and optimally.

Lastly, as previously mentioned, there has yet to be an empirical evaluation (to 
our knowledge) of firearm detection algorithms in a real-world setting. Despite situ-
ational crime prevention providing a theoretical mechanism to their potential effi-
cacy, an experimental evaluation of firearm detection algorithms in real-world set-
tings would provide greater confidence in their ability to prevent and mitigate gun 
violence. Although conducting a randomized controlled experiment to evaluate 
firearm detection algorithms presents practical challenges (given the statistical rar-
ity and often unpredictable nature of gun violence) and raises ethical challenges, 
researchers and practitioners can take other steps to build an evidence base to deter-
mine the potential efficacy of firearm detection algorithms in security settings.

A simple evaluation might involve law enforcement and security organizations 
measuring precision and recall of firearm detection algorithms in real-world set-
tings. For instance, embedding firearm detection algorithms in CCTV technolo-
gies in a designated area (away from the public) and exposing the CCTV viewshed 
to various negative (non-firearm) and positive (firearm) scenarios would provide 
a baseline understanding of how the technologies perform within CCTV systems 
in the real world. Future evaluations must also discern the performance disparities 
between humans and algorithms in firearm detection. Future evaluations should 
expose humans and algorithms to identical video data (ideally resembling dense 
CCTV footage) that contains various negative and positive scenarios. The compari-
son would yield data as to the differences between the algorithms’ and humans’ pre-
cision, recall, and time to detection when identifying firearms in video data. Other 
more resource-intensive evaluations might combine the previous two suggestions. 
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For example, an experiment could replicate real-world environments (e.g., crowds—
through volunteers, research and practitioner personnel; poor visibility areas) and 
create various positive and negative scenarios to test performance differences (i.e., 
precision, recall, time to detection) between humans and firearm detectors embed-
ded within CCTV systems. Although expensive, this type of experiment would pro-
vide the greatest understanding of how firearm detection algorithms can improve 
public safety and mitigate gun violence in real-world applications.

Notwithstanding associated limitations and concerns, object detection algorithms 
provide an exciting advancement to help solve the gun violence epidemic in the 
United States. Because object detection algorithms are only in their infancy (most 
advancements have come in the last 5 years), their implementation in CCTV tech-
nologies may not entirely supplant current practices. However, as mentioned above, 
detection algorithms’ current capabilities make them ideal for assisting human oper-
ators in detecting objects of interest in live CCTV footage. The criminal justice sys-
tem can better prevent or mitigate firearm-related events by embedding detection 
algorithms in CCTV systems and alerting human operators when a potential threat 
is present.

Conclusion

Gun violence takes the lives of tens of thousands of individuals in the United States 
each year. Although several fields have examined gun violence from their unique 
perspectives, less often do disciplines come together to put forth a holistic response. 
We set out to bridge the gap between the computer vision and criminology fields. In 
doing so, we present a theoretical framework that provides a causal mechanism to 
explain how and why firearm detection algorithms will work in real-world applica-
tions. Additionally, we demonstrate our approach to train an object detection algo-
rithm and how scholars not previously exposed to computer vision can do the same. 
Our approach’s results reaffirm that such algorithms can and will successfully detect 
firearms in real-world settings and assist human operators in monitoring dense 
CCTV live feeds. Although object detection algorithms are not without limitations, 
they are rapidly improving each year, and their current capabilities can more than 
improve the current uses of CCTV. Ultimately, gun violence is a multifaceted issue 
that affects public safety, and collaboration between varying disciplines is needed to 
create an effective solution.
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