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Abstract
From a theoretical point of view, the selection of thresholds is a critical issue in the 
framework of the Peaks Over Threshold (POT) approach, which is why in the last 
decade numerous methodologies have been proposed for its selection. In this paper, 
we address this subject from an empirical point of view by assessing to what extent 
the selection of the threshold is decisive in quantifying the market risk. For measur‑
ing market risk, we use the Value at Risk (VaR) and the Expected Shortfall (ES) 
measures. The results obtained indicate that there is a large set of thresholds that 
provide similar Generalized Pareto Distribution (GPD) quantiles estimators and as a 
consequence similar market risk measures. Just only, for large thresholds, those cor‑
responding to the 98th and 99th percentile of the GPD some differences are found. It 
means that the choice of threshold in the framework of the POT method may not be 
relevant in quantifying market risk when we use the VaR and ES measures for this 
task.

Keywords  Extreme value theory · Peaks over threshold · Value at risk · Expected 
shortfall · Generalized Pareto distribution

Introduction

Extreme value analysis has wide applications in many fields, such as civil engineer‑
ing (Wu and Qiu 2018), climatology (Davison and Smith 1990; Kharin et al. 2013), 
seismology (Beirlant et al. 2018), hydrology (Katz et al. 2002; Carreau et al. 2017; 
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Bader et al. 2018), insurance (Reiss and Thomas 2007) and finance (Embrechts et al. 
1997; Fontnouvelle et al. 2007; Abad and Benito 2013, among others). For instance, 
the extreme value of vehicle load plays an important role in bridge design and risk 
assessment (Wu and Qiu 2018). In seismology and climatology, extreme value anal‑
ysis is used to study earthquakes (Beirlant et  al. 2018) and extreme precipitation 
(Bader et  al. 2018). In hydrology, extreme value analysis is an important tool for 
studying coastal flood risk (Haigh et  al. 2010; McMillan et  al. 2011). In the field 
of finance, extreme value modelling is important to quantify large financial losses 
from different sources of risk: operational, credit and market risk (see Cruz 2002; 
Moscadelli 2004; Fontnouvelle et al. 2007; Ergün and Jun 2010; Žiković and Aktan 
2009; Abad and Benito 2013).

Traditionally, the study of the extreme values of fat tail distributions has been 
carried out through the extreme value theory (EVT). EVT comprises mainly two 
approaches—the block maximum method (BMM) and the POT approach-. In the 
former, the data set is divided into blocks and a generalized extreme value dis‑
tribution is fitted to the sample of maximums or minimums extracted from these 
blocks. In the context of the POT method, a threshold is determined above which the 
excesses are fitted with the GPD (Queensley et al. 2019).

Although the BMM and POT approaches should lead asymptotically to the same 
results, in practice the POT provides more suitable extreme quantile estimations due 
to the more efficient use of the data for the extreme values, see Cunnane (1973) 
and Madsen et al. (1997a). These authors show that POT approach performs better 
than BMM, independently of the estimation method used. Similar results have been 
reported by Wang (1991), Madsen et al. (1997b).

From a theoretical point of view, threshold selection is a critical issue in the 
framework of the POT approach. The choice of threshold must be a balance between 
bias and variation. A threshold being too low is likely to violate the asymptotic basis 
of the model which leads to bias. However, a threshold being too high will generate 
few excesses leading to an increase in the variance of the estimators (Davison and 
Smith 1990; Coles 2001; MacDonald et al. 2011; Papalexiou et al. 2013; Wyncoll 
and Gouldby 2013).

That is why, within the framework of POT method, different methods have been 
developed for the selection of the suitable threshold. Those methods can be divided 
into two groups: (i) graphical approaches, based on a visual inspection of plots, such 
as the mean excess plot (Davison and Smith 1990), stability parameters plot (Coles 
2001) and Hill plot (Drees et al. 2000) among others and (ii) numerical approaches 
(Ferreira et al. 2003; Thompson et al. 2009; Northrop and Coleman 2014; Li et al. 
2014; Wadsworh and Tawn 2012; Naveau et  al. 2016) which are more objective 
methods. Recently, new methods have been developed with the aim of automating 
some of the existing proposals, especially those based on visual data inspection, see 
for instance Wu and Qiu (2018), Bader et al. (2018), Caballero-Megido et al. (2018) 
and Queensley et al. (2019) among others.

The aforementioned papers focus on studying new methods for the selection of 
the optimal threshold, assuming that the estimates of the quantiles of the general‑
ized Pareto are highly sensitive to the threshold choice in which case such efforts 
would be fully justified (Langousis et al. 2016). In the field of finance, the existing 
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literature on this issue is quite scarce, especially in the area of market risk manage‑
ment. As far as we know in this field, there are no studies on this subject. To cover 
this gap, we carry out an empirical analysis with a double aim. First, to analyse the 
sensibility of the GPD quantiles to the threshold choice and second, to study the sen‑
sibility of the market risk measure to this choice. For measuring market risk, we use 
the value at risk (VaR)1 measure and the expected shortfall (ES)2 measure. To last, 
we calculate the market risk capital requirements and evaluate their sensitive to the 
threshold choice.

This study is in accordance with Langousis et  al. (2016) who remarked that 
“the variety of existing methods for threshold chosen, the fundamental differences 
in their theoretical underpinnings, and their relative performance when dealing 
with different types of data, make threshold detection an open question that can 
be addressed solely on the basis of a specific application”. With regard to this, we 
think, that in the area of market risk management, where daily data and large sam‑
ples are used could give rise to different results from those obtained in other areas of 
science where the periodicity of the data is annual and consequently the size of the 
samples is reduced.

Thus, in this paper, we analyse in detail the case of the S&P500 and later 
extend that study to a set of 14 assets from alternative markets: seven stock indexes 
(CAC40, DAX30, FTSE100, HangSeng, IBEX35, Merval and Nikkei), four com‑
modities (Copper, Gold, Crude Oil Brent and Silver) and three rates exchange (₤/€, 
$/€ and ¥/€). The results obtained indicate that there is a large set of thresholds that 
provide similar GPD quantiles estimators and as a consequence similar market risk 
measures. Just only, for large thresholds, those corresponding to the 98th and 99th 
percentile of the GPD some differences are found. It means that the choice of thresh‑
old in the framework of the POT method may not be relevant in quantifying market 
risk when we use the VaR and ES measures for this task. With regard to the market 
risk capital requirement, we find that these charges do not differ much among the 
thresholds. Nevertheless, if the objective of the financial institutions is to minimize 
these charges, they might be interested in the selection of a specific threshold.

The remainder of the paper is organized as follows. In “Methodology” section, 
we show the methodology used for the study. In “Case study” section, we submit the 
data and the results obtained for the particular case of the S&P500 index. “Robust‑
ness analysis” section displays a robustness analysis. The main conclusions are pre‑
sented in “Conclusions” section.

1  The VaR of a portfolio is defined as the worst expected loss over a given horizon under normal market 
conditions at a given level of confidence. Formally speaking, the VaR(�) of a portfolio at ( 1 − �)% confi‑
dence level is the percentile �% of the return portfolio distribution.
2  The ES is defined as the average of all losses that are greater than or equal to VaR, i.e. the average loss 
in the worst � % cases. In other words, this measure provides the expected value of an investment in the 
worst � % of the cases.
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Methodology

Extreme value theory

The Extreme Value Theory (EVT) studies the asymptotic behaviour of extreme val‑
ues of a random variable. This theory has wide applications in many fields, such as, 
civil engineering (Wu and Qiu 2018), climatology (Davison and Smith 1990; Kharin 
et  al. 2013), seismology (Beirlant et  al. 2018), hydrology (Katz et  al. 2002; Car‑
reau et al. 2017; Bader et al. 2018), insurance (Reiss and Thomas 2007) and finance 
(Embrechts et al. 1997), among others.

Within the EVT context, there are two approaches that study extreme events. The 
first one, based on the Generalized Extreme Value (GEV) distribution, models the 
distribution of the minimum or maximum realizations and it is known as the Block 
Maxima (Minima) Method (BMM). The second one is the Peaks Over Threshold 
(POT) approach based on the Generalized Pareto distribution (GPD) (Pickands 
1975) which models the exceedances over a particular threshold. In the next lines, 
we introduce these approaches.

Fisher–Tippett theorem

Suppose that X1,X2,… ,Xn is a sequence of independently and identically distrib‑
uted random variables with a distribution function  F(x) = Pr

(
Xt ≤ x

)
 and denote 

M
n
= max

(
X1,X2,… ,Xn

)
 as a sample of maxima of this series, the distribution 

function (CDF) of Mn is represented as

Although F(x) is unknown, Fisher and Tippet theorem establishes an asymptotic 
approach for Fn(x) . This theorem establishes that given a sequence of bn > 0 , 
an ∈ R , the maximum normalized value Zn =

Mn−an

bn
 converges to a non-degenerated 

distribution H , and this distribution is the generalized extreme value (GEV) distri‑
bution, lim

n→∞
Pr

(
Mn−an

bn
≤ x

)
→ H(x).

The algebraic expression for such generalized distribution is as follows:

defined on 
(
1 +

𝜉(x−𝜇)

𝜎

)
> 0 , where 𝜎 > 0 is the scale parameter, −∞ < 𝜇 < ∞ is the 

mean, and  −∞ < 𝜉 < ∞ is known as the shape parameter of the GEV distribution 
and characterizes the tail behaviour of the distribution. The prior distribution is a 
generalization of the three types of distributions, depending on the value taken by �:

•	 Gumbel ( � = 0) type I family. It has light extremes, not heavy extremes

(1)P
(
Mn ≤ x

)
= P

(
X1 ≤ x,… .,Xn ≤ x

)
=

n∏
i=1

F(x) = Fn(x)

(2)GEV�,�, �(x) = e
−
[
1+�

(x−�)

�

]− 1
�
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•	 Fréchet ( � > 0) type II family. This distribution is particularly useful for pattern‑

ing financial returns as it has very heavy tails.

	 
•	 Weibull ( � < 0) type III family. This distribution is used when the extremes are 

lighter (softer) than those from the normal distribution, and thus, it is not par‑
ticularly useful for applications related to financial yields (returns).

	 

Peaks over threshold approach (POT)

In general, we are not only interested in the maxima of observations, but also in 
the behaviour of large observations which exceed a high threshold. One method of 
extracting extremes from a sample of observations, Xt, t = 1, 2,… n with a distri‑
bution function F(x) = Pr

(
Xt ≤ x

)
 is to take the exceedances over a predetermined 

high threshold u . An exceedance of a threshold u occurs when Xt > u for any t in 
t = 1, 2,… , n . Thus, an excess over u is defined as y = Xt − u . This approach is 
known as POT.

Although the BMM and POT approaches should lead asymptotically to the same 
results, in practice the POT provides more suitable extreme quantile estimations due 
to the more efficient use of the data for the extreme values, see Cunnane (1973) and 
Madsen et al. (1997a). These studies show that the POT approach performs better 
than BMM, independently of the estimation method used. Similar results have been 
reported by Wang (1991), Madsen et  al. (1997b), and Tanaka and Takara (2002) 
among others.

Let x0 be the finite or infinite right endpoint of the distribution F . That is to say, 
x0 = sup{x ∈ R ∶ F(x) < 1} ≤ ∞ . The distribution function of the excesses (y) over 
the threshold u is given by Fu(y) = P((X − u) ≤ y|X > u) for 0 ≤ x ≤ x0 − u . Thus, 
Fu(y) is the probability that the value of X exceeds the threshold u by no more than 
an amount y , given that the threshold is exceeded. This probability can be written as

This distribution can be approximated by the generalized Pareto distribution 
(GPD) which is usually expressed as a two-parameter distribution3:

Λ(x) = ee
−
x−�
�

∀x ∈ ℜ

Φ𝜉,𝜇,𝜎(x) =

{
0 x ≤ 𝜇

e
−
(

x−𝜇

𝜎

)−
1
𝜉

x > 𝜇

Ψ𝜉,𝜇,𝜎(x) =

{
e
−
(
−

x−𝜇

𝜎

) −1
𝜉

x ≤ 𝜇

1 x > 𝜇

(3)Fu(y) =
F(y + u) − F(u)

1 − F(u)

3  The study of Jobst (2007) provides favourable evidence in favour of this approach.
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where ξ and 𝜎 > 0 are the shape parameter and the scale parameter, respectively.4 
Note that if the distribution of M∗

n
 converges to a GEV distribution for block maxima 

with parameter ξ, then the distribution of exceedances over threshold converges to 
the GPD with the same parameter ξ (Rodríguez 2017).

Using this approximation, the distribution function of X will be given by 
F(x) = (1 − F(u))Fu(y) + F(u) . Replacing Fu(y) by GPD and F(u) by its empirical 
estimator 

(
n − Nu

)
∕n , where n is the total number of observations and Nu the num‑

ber of observations above the threshold u, we have

For a given probability 𝛼 > F(u) , the quantile �, which is denoted by q� , is calcu‑
lated by inverting the tail estimation formula to obtain

The distributional choice is motivated by a theorem (Balkema and de Haan 1974; 
Pickands 1975) which states that, for a certain class of distributions, the GPD is the 
limiting distribution for the distribution of the excesses, as the threshold tends to the 
right endpoint:

This theorem is fulfilled if and only if F is in the maximum domain of attraction 
of the generalized extreme value distribution H� , 

(
F ∈ MDA

(
H�

))
 . It means that if, 

for a given distribution F , an appropriately normalized maximum sample converges 
to a non-degenerated distribution H� , then this is equivalent to say H� is the MDA 
for F for some value of �.

(4)Gk.�(y) =

⎧
⎪⎨⎪⎩

1 −
�
1 +

�

�
y
�−

1

�

if � ≠ 0

1 − exp
�
−

y

�

�
if � = 0

(5)F(x) = 1 −
Nu

n

(
1 +

�

�
(x − u)

)−
1

�

(6)q� = u +
�

�

((
n

Nu

(1 − �)

)−�

− 1

)

lim
u→x0

sup
|||Fn(y) − GPD�,�(y)

||| = 0

4  The traditional extreme value theory (EVT) assumes that the data are stationarity. When stationar‑
ity is assumed, parameters that determine the distribution function (generalized Pareto and generalized 
extreme value distribution) are independent of time. However, in practice, it is often the case that sta‑
tionarity assumptions (such as independence and identical distribution) for time series extremes are vio‑
lated. If the process is non-stationary, the parameters of distributions are time-dependent, and the proper‑
ties of the distribution vary with time. To capture the non-stationarity of extreme data, new approaches 
have been developed in the framework of the extreme value theory. Some applications of these new 
approaches can be found in Cheng and AghaKouchak (2014), Cheng et al. (2014), Ruggiero et al. (2010), 
Chavez-Demoulin and Embrechts (2004) among others.
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The class of distribution F for which the condition F ∈ MDA
(
H�

)
 holds is large; 

essentially all commonly encountered continuous distributions show the kind of reg‑
ular behaviour for sample maximum described by Eq. (1).

Threshold selection method

The approaches developed for selecting the suitable threshold can be divided into 
two groups: (i) subjective approaches based on graphical analysis, such as the mean 
excess plot, stability parameters plot and Hill plot among others and (ii) numerical 
approaches. In its turn, the latter can be divided into various categories: (a) non-par‑
ametric approach; (b) approaches based on goodness-of-fit test; (iii) mixture models; 
(iv) simple naïve methods; (v) computational approaches and (vi) other approaches. 
In the following lines, we describe briefly these methods (see Scarrot and McDonald 
2012 and Langousis et al. 2016 for a more detailed review of these methods).

(i) Graphical approaches

Due to its simplicity, the graphic method most commonly used for selecting thresh‑
old is the mean excess plot (MEP) also called mean residual life plot (MRLP) intro‑
duced by Davison and Smith (1990). This instrument is a graphical tool based on the 
sample means of the excesses function (SMEF), which is defined as

The sample means excess function is an estimate of the excess mean function 
(MEF), e(u) = E[(X − u)|X > u] . For the GPD, the excess mean function is given by 
a linear function in u5:

This finding means that for 0 < 𝜉 < 1 and 𝜎 + u𝜉 > 0, the mean excess plot 
should resemble a straight line with a positive slope. Empirical estimates of the sam‑
ple mean excesses are typically plotted against a range of thresholds. Thus, the gen‑
eral rule for the choice of the optimal threshold will be to choose a value of u for 
which the resulting line has a positive slope. An application of this method can be 
found in Beirlant et al. (2004).

The main problem associated with the sample mean excess plot is subjectivity. As 
Queensley et al. (2019) remark, “judging from where the graph is approximately lin‑
ear using only the eyeball inspection approach, is a rather subjective choice so that 
different thresholds may be selected by different viewers of the plot”.

SMEF(u) =

∑Nu

i
(ri − u){ri>u}

Nu

(7)e(u) =
�

1 − �
+

�

1 − �
u

5  If a distribution function is subexponential, the mean excess function tends to infinity, if it is an expo‑
nential distribution the mean excess function is a constant and for the normal distribution the mean 
excess function tends to zero.
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The second type of plot is the parameter stability plot (Coles 2001) (shape and 
scale) created by fitting the GPD using a range of thresholds. This method involves 
plotting 𝜎̂ and 𝜉 together with confidence intervals and selecting the value of u from 
which the estimates are no longer stable (see Coles 2001). This type of plot may 
present some inconsistencies, showing different flat sections for different ranges of 
threshold (Scarrot and McDonald 2012).

Other graphic approaches are these based on quantile plots and plots compar‑
ing the empirical cumulative distribution function and the cumulative GPD. Accord‑
ing to quantile plots, the proper threshold is selected as the lowest threshold above 
which the plot shows a linear trend. When we compare the empirical with the theo‑
retical distribution function, the proper threshold is selected as the lowest thresh‑
old above which the differences between the empirical and the theoretical distribu‑
tion function seem minimum. Hill plot, explored by Drees et al. (2000) can also be 
included in this group. The Hill plot plots the Hill estimator of the tail index for a set 
of thresholds. According to this plot, the optimal threshold is the lowest threshold at 
which the Hill estimator is stabilised. This tool suffers from many of the same ben‑
efits and drawbacks that the MEP, and has been referred to as the Hill horror plot by 
Resnick (1997).

(ii) Numerical approaches
The approaches aforementioned are based on judgement (Caballero-Megido et al. 

2018) so they can be rather subjective and require substantial expertise to interpret 
these diagnostics as a method of threshold selection (Davison and Smith 1990; 
Coles 2001; Solari and Losada 2012). To overcome these limitations, some numeri‑
cal approaches have been developed which lead to a more objective decision. The 
numerical approaches are numerous and can be classified into different categories: 
(a) non-parametric approach; (b) approaches based on goodness-of-fit test; (c) sim‑
ple naïve methods; (d) mixture models; (e) computational approaches and (e) other 
approaches. In the following lines, we resume each one of these categories.

(a)	 Nonparametric methods that are intended to locate the changing point between 
extreme and nonextreme regions of the data (see e.g. Gerstengarbe and Werner 
1989, 1991; Werner and Gerstengarbe 1997; Domonkos and Piotrowicz 1998; 
Lasch et al. 1999; Cebrián et al. 2003; Cebrián and Abaurrea 2006; Karpouzos 
et al. 2010, among others).

(b)	 Approaches based on the Goodness of fit test where the threshold is selected as 
the lowest level above which the GPD provides an adequate fit to the exceed‑
ances. To analyse the goodness of fit of the GPD, Kolmogorov–Smirnov test and 
Anderson–Darling test can be used. Applications of this method can be found 
in Davison and Smith (1990), Dupuis (1999), Choulakian and Stephens (2001), 
Northrop and Coleman (2014), Langousis et al. (2016) among others. 

	   In this category, we also include the method based on the Root Mean Error 
(RMSE) proposed by Li et al.(2014). The RMSE measures the difference 
between analytical and observed CDFs of exceedances for different thresholds. 
The threshold with the lowest RMSE is considered the best one.

(c)	 Simple naïve methods Given the general order statistic convergence properties, 
various rules of thumb have been derived from the literature. Simple fixed quan‑
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tile rules, like the upper 10% rule of DuMouchel (1983). Ferreira et al. (2003) 
use the square root of the number of data (n) to specify the number of exceed‑
ances ( Nu ). Ho and Wan (2002) and Omran and McKenzie (2010) use the rule 
Nu =

n2∕3

log(log(n))
 proposed by Loretan and Philips (1994) to determine the optimal 

number of exceedances. Neftci (2000), followed by Bekiros and Georgoutsos 
(2005), proposes the estimation of the threshold as 1.176�0 , where �0 is the 
standard deviation of the sample. In other studies, these methods are classified 
as ad hoc methods or rules of thumb.

(d)	 Methods in the other category are based on mixtures of a GPD for the tail and 
another distribution for the “bulk” joined at the threshold (e.g. MacDonald et al. 
2011; Wadsworh and Tawn 2012; Naveau et al. 2016). Treating the threshold 
as a parameter to estimate, these methods can account for the uncertainty from 
threshold selection in inferences. The major drawback of such models is their 
ad hoc heuristic definitions, the asymptotic properties of which are still little 
understood. They have also not had time to be well used in practice and currently 
there is no readily available software implementation to allow practitioners to 
gain wider experience (Scarrot and McDonald 2012).

(e)	 Computational approaches Other researchers have suggested using techniques 
that provide an optimal trade-off between bias and variance. This method 
involves using bootstrap simulations to numerically calculate the optimal thresh‑
old considering the trade-off between bias and variance. Applications of this 
method can be found in Danielsson et al. (2001), Drees et al. (2000), Ferreira 
et al. (2003), Hall (1990) and Beirlant et al. (2004). In general, the restrictive 
assumptions underlying these approaches hinder their wide applicability.

(f)	 Other approaches Other approaches different from the aforementioned are pro‑
posed by Dupuis (1999), Thompson et al. (2009) and De Zea Bermudez et al. 
(2001). See Scarrot and McDonald (2012) for a detailed review of these methods.

Recently, new methods have been developed to automate some of the existing 
proposals, especially those based on visual data inspection, see for instance Wu and 
Qiu (2018), Bader et al. (2018), Caballero-Megido et al. (2018) and Queensley et al. 
(2019), Schneider et al. (2021) among others. Wu and Qiu (2018) propose a method 
to select the suitable threshold based on multiple criteria decision analysis (MCDA). 
In MCDA, Chi Square test, Kolmogorov–Smirnov (K-S) test and Root Mean Square 
Error (RMSE) are combined as the test criteria and the weight of these criteria is 
calculated using the entropy method. Thus, the MCDA can integrate results obtained 
from the goodness-of-fit test under different criteria into a comprehensive one, 
which makes the selection more scientific and objective (Wang et al. 2009). Bader 
et al. (2018) develop an efficient technique to evaluate and apply the Anderson–Dar‑
ling test to the sample of exceedances above a fixed threshold. In order to auto‑
mate threshold selection, this test is used in conjunction with a recently developed 
stopping rule that controls the false discovery rate in ordered hypothesis testing. 
Caballero-Megido et al. (2018) propose a new automated method that mimics the 
enduringly popular visual inspection method. The purpose of the automated graphic 
threshold selection (AGTS) method, in the absence of a priori threshold value, is to 
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guide in the choice of the threshold which requires judgement and expertise, making 
the process simple and approachable, whilst being reproducible and less subjective. 
Queensley et al. (2019) propose an alternative way of selecting the threshold where, 
instead of choosing individual thresholds in isolation and testing their fit, they make 
use of the bootstrap aggregate of these individual thresholds which are formulated 
in terms of quantiles. The method incorporates the visual technique and is aimed at 
reducing the subjectivity associated with solely using the eye inspection approach 
(EIA). Schneider et al. (2021) suggest a couple of automated methods for threshold 
selection. The first one consists in estimating and minimizing the integrated square 
error (ISE) between the exponential density and its parametric estimator employing 
the Hill estimator. This is based on the null hypothesis that the log-spacings between 
a sample of thresholds are indeed exponentially distributed. The error function that 
obtains is called the inverse Hill statistic (IHS). This method exhibits high fluctua‑
tions for small thresholds, which might make the automated selection of the mini‑
mum highly variable. To control this problem, the authors propose a smooth IHS. 
The second method consists in look for a sample fraction of optimal thresholds that 
minimise the asymptotic mean squared error (AMSE) of the Hill estimator.

Risk measure

According to Jorion (2001), “VaR measure is defined as the worst expected loss over 
a given horizon under normal market conditions at a given level of confidence”. 
Thus, VaR is a conditional quantile of the asset return loss distribution.

Let X1,X2,… ,Xn be identically distributed independent random variables repre‑
senting the financial returns. Using F(x) to denote the cumulative distribution func‑
tion, F(x) = Pr

(
Xt ≤ x||Ωt−1

)
 conditioned to the information available at t − 1 ( Ωt−1) . 

Assume that { Xt } follows the stochastic process given by

where 𝜎̃2
t
 = E(z2

t
||Ωt−1 ) and zt has the conditional distribution function G(z), 

G(z) = P
(
zt < z|Ωt−1

)
. The VaR with a given probability � ∈ (0, 1), denoted by 

VaR(�), is defined as the α quantile of the probability distribution of financial 
returns F

(
VaRt(𝛼)

)
= Pr

(
Xt < VaRt(𝛼)

)
 = � . In this paper, we use POT approach to 

estimate the tail of the distribution of the standardized residuals and thus later esti‑
mate the risks measure. As the GPD is only defined for positive values, we multiply 
our data by (− 1) and thus move the left tail to the right side. Therefore, the VaR of a 
portfolio at �% probability will be calculated as

where  �t and 𝜎̃t represent the conditional mean and the conditional standard devia‑
tion of the returns6 and  q1−� is the quantile ( 1 − �) of the GPD (Eq. 6).

(8)Xt = 𝜇t + 𝜎̃tzt zt ∼ iid(0, 1)

(9)VaRt(𝛼) = 𝜇t + 𝜎̃tq1−𝛼

6  For estimating the volatility of the return, we use an APARCH model, which is given by the next 
expression: ��

t
= �0 + �1

(||�t−1|| − ��
t−1

)�
+ ���

t−1
 , 𝛼0, 𝛽, 𝛿 > 0, 𝛼1 ≥ 0,−1 < 𝛾 < 1 . In this model, the � 

parameter captures the leverage effect (Black 1976), which means that volatility tends to be higher after 
negative returns.
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The ES with a given probability � ∈ (0, 1), denoted by ES(�), is defined as the 
average of all losses that are greater than or equal to VaR, i.e. the average loss in the 
worst � % cases:

It can be demonstrated7 that the mean of the excess distribution Fq1−�
(y) over the 

threshold q1−� is given by

Replacing (11) in (10) we obtain the ES measure under the conditional EVT.

Backtesting

Backtesting VaR

To evaluate the accuracy of the VaR estimates, several tests have been used. All 
of these tests are based on the indicator variable. We have an exception when 
rt+1 < VaR𝛼 ; then, the exception indicator variable (It+1) is equal to one (zero in 
other cases).

To check the accuracy of the VaR estimates, we have used four standard tests: 
unconditional (LRuc), independent and conditional coverage (LRind and LRcc) and 
dynamic quantile (DQ) tests.

Kupiec (1995) shows that if we assume that the probability of obtaining an excep‑
tion is constant, the number of exceptions x =

∑
It+1 follows a binomial distribution 

B(N, �) , where N represents the number of observations. An accurate measure VaR� 
should produce an unconditional coverage 

�
𝛼̂ =

∑
It+1

N

�
 equal to � percent. The 

unconditional coverage test has a null hypothesis 𝛼̂ = 𝛼, with a likelihood ratio 
statistic:

which follows an asymptotic �2(1) distribution. The conditional coverage test, devel‑
oped by Christoffersen (1998), jointly examines whether the percentage of excep‑
tions is statistically equal to the one expected (𝛼̂ = 𝛼) and the serial independence 

(10)ESt(𝛼) = E[X|X ≥ VaR(𝛼)] = 𝜇t + 𝜎̃tE
[
z|z ≥ q1−𝛼

]

(11)E
(
z|z ≥ q1−�

)
=

q1−�

1 − �
+

� − �u

1 − �

(12)ESt(𝛼) = E[X|X ≥ VaR(𝛼)] = 𝜇t + 𝜎̃t

[
q1−𝛼

1 − 𝜉
+

𝜎 − 𝜉u

1 − 𝜉

]

(13)LRuc = 2
[
log

(
𝛼̂x(1 − 𝛼̂)N−x

)
− log

(
𝛼x(1 − 𝛼)N−x

)]

7  A more detailed theoretical development can be found in McNeil et al. (2005), Chapter 7.
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of the exception indicator. The likelihood ratio statistic of this test is given by 
LRcc = LRuc + LRind , which is asymptotically distributed as �2(2) , and the LRind 
statistic is the likelihood ratio statistic for the hypothesis of the serial independence 
against first-order Markov dependence.8 Finally, the dynamic quantile test proposed 
by Engle and Manganelli (2004) examines if the exception indicator is uncorrelated 
with any variable that belongs to the information set Ωt−1 , available when the VaR 
is calculated. This test is a Wald test of the hypothesis that all slopes are zero in the 
regression:

where Xt−j are the explanatory variables contained in Ωt−1 . This statistic is intro‑
duced as five explanatory variable lags of VaR. Under the null hypothesis, the 
exception indicator cannot be explained by the level of VaR, i.e. VaR(�) is usually 
an explanatory variable to test if the probability of an exception depends on the level 
of the VaR.

Backtesting ES

In this paper, we use McNeil and Frey (2000) test for the conditional expected short‑
fall. This test is likely the most successful in the literature. These authors develop a 
test to verify that a model provides much better estimates of the conditional expected 
shortfall than any other. The authors are interested in the size of the discrepancy 
between the return rt+1 and the conditional expected shortfall forecast ESt(�) in the 
event of quantile violation. The authors define the residuals as follows:

Replacing Eqs. (8) and (12) in Eq. (15), we have the next expression:

It is clear that, under model (5), these residuals are i.i.d. and that, conditional on  {
rt+1 < VaRt+1(𝛼)

}
 or equivalent 

{
zt+1 < q𝛼

}
 , they have an expected value of zero. 

Suppose we again backtest on days in the set T  . We can form empirical versions of 
these residuals on those specific days on which violations have occurred, i.e. days in 
which 

{
rt+1 < VaRt+1(𝛼)

}
 . The authors call these residuals exceedances and denote 

them by {ŷt+1 ∶ t 𝜖 T .rt+1 < VaRt+1(𝛼)}   where ŷt+1 = rt+1−
�ESt+1(𝛼)

𝜎̂t+1
 and  ÊSt+1(�) is an 

estimation of the conditional expected shortfall.

(14)It = �0 +

p∑
i=1

�iIt−i +

q∑
j=1

�jXt−j

(15)Yt+1 =
rt+1 − ESt+1(�)

�t+1

(16)yt+1 = zt+1 − E
(
z|z < q𝛼

)

8  The LRind statistic is LRind = 2[log L
A
− log L0]  and has an asymptotic χ2 (1) distribution. 

The likelihood function under the alternative hypothesis is L
A
= (1 − �01)

N00�
N01

01
(1 − �11)

N10�
N11

11
 , 

where Nij denotes the number of observations in state j after having been in state i in the previous 
period,�01 = N01∕(N00 + N01) and �11 = N11∕(N10 + N11) . The likelihood function under the null hypoth‑
esis (�01 = �11 = � = (N11 + N01)∕N)  is L0 = (1 − �)N00+N01�N01+N11.
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Under the null hypothesis, in which we correctly estimate the dynamic of the 
process �t+1 and �t+1 and the first moment of the truncated innovation distribution 
E
(
z|z < q𝛼

)
, these residuals should behave such as an i.i.d sample with a mean of 

zero. Thus, for testing whether the estimates of the expected shortfall are correct, we 
must test if the sample mean of the residual is equal to zero against the alternative 
that the mean of y is negative. Indeed, given a sample 

{
yt+1

}
 of size N (where N is 

the number of violations in the T  period), the sample mean y converges in distribu‑
tion to standard normality, as N tends to ∞ by the central limit theorem. In other 
words, given mean �y and variance �y of population

By applying the central limit theorem, the statistics for testing the null hypothesis 
are given by

where y and Sy are the sample mean and the sample standard deviation, respectively, 
of the exceedance residuals.

Forecasting daily market risk capital charges

Basel II Accord required financial institutions to meet daily capital requirements 
based on VaR estimates (BCBS 1996, 2006). The Basel II Accord specified that 
daily capital charges (DCC) must be set at the higher of the previous day’s VaR or 
the average VaR over the last 60 business days, multiplied by a value between 3 and 
4 depending on the number of violations (see Table 1) that occurred in the 250 days 
prior to the estimation of capital charges DCCt = sup

{
−k × VaR60,−VaRt−1

}
.

Recently, the Basel Committee for Banking Supervision (BCBS) has promoted 
a change in international financial regulation. Under the new regulation based on 
the Basel solvency framework (BCBS 2012, 2016, 2017, 2019), known as Basel III, 
financial institutions must calculate the market risk capital requirements based on 
the Expected Shortfall (ES) measure, replacing the Value at Risk (VaR) measure.

Following Chang et al. (2019), we evaluate the market risk capital requirement 
based on ES measure, which is the market risk benchmark according to Basel III. 
Thus, the forecasting daily market risk capital requirement (DCR) at time t can be 
calculated as follows:

(17)
√
N

�
y − �y

�y

�
→ N(0, 1)

(18)t =
y

Sy√
N

∼ tN−1

(19)DCRt = sup
{
−k × ES60,−ESt−1

}
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Case study

Dataset overview

The data consist of the S&P500 stock index extracted from the Thomson-Reuters-Eikon 
database. The index is transformed into returns by taking the logarithmic differences of 
the closing daily price (in percentage). We use daily data for the period January 3rd, 
2000, through December 30th, 2021. The sample size is 5534. Figure 1 shows the evo‑
lution of the daily index and returns of the S&P500. The index shows a sawtooth profile 
alternating periods with an upward slope with a period of sudden decreases.

In addition, we can observe that the range fluctuation of daily returns is not con‑
stant, which means that the variance of the returns changes over time. The volatil‑
ity of S&P500 was particularly high from 2008 to 2009, coinciding with the period 
known as the Global Financial Crisis, and in the first quarter of 2020, coinciding 
with the beginning of the COVID-19 pandemic. The basis descriptive statistics 
are provided in Table 2. The unconditional mean daily return is very close to zero 

Table 1   Basel accord penalty 
zones

The number of exceptions is given for 250 trading days

Zone Number of exceptions k

Green 0 to 4 3
Yellow 5 3.4

6 3.5
7 3.65
8 3.75
9 3.85

Red 10 or more 4

Fig. 1   S&P500
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(0.021%) which is typical of daily returns. The skewness statistic is negative, imply‑
ing that the distribution of daily returns is skewed to the left. The kurtosis coefficient 
shows that the distribution has much thicker tails than the normal distribution. Simi‑
larly, the Jarque-Bera statistic is statistically significant, rejecting the assumption of 
normality. All this evidence shows that the empirical distribution of daily returns 
cannot be fit by a normal distribution, as it exhibits a significant excess of kurtosis 
and asymmetry (fat tails and peakness).

Before continuing, we briefly summarize the steps performed in this study. For 
each of the thresholds selected, first of all, we evaluate the fit of the GPD, second, 
we analysed the stability of the GPD parameters. In the third place, the sensitiv‑
ity of the high quantiles of the GPD to the threshold choice is evaluated (“Fitting 
the GPD” section). Later, we evaluate the sensitivity of the risk market measure to 
the threshold choice (“Sensitivity of the risk measures to changes in the threshold” 
section). Fifth, we assess the accuracy of the estimated risk measures (“Analysing 
the quality of the risk estimates” section). Finally, for each selected threshold, we 
calculate the capital charges based on the ES measure (“Analysing the sensitivity of 
forecasting daily capital charges to the selected threshold” section). The objective is 
to evaluate how sensitive the capital requirements are to the choice of the threshold.

Fitting the GPD

In this section, we fit GPD to the data for a set of 20 thresholds. This section aims 
to evaluate the sensitivity of the parameters and quantiles of the generalized Pareto 
distribution (GPD) to changes in the threshold. The thresholds were chosen from a 
quantile range between the 80th and the 99th percentile at 1% increments. As the 
size of the sample is 5534 daily returns, the percentile 80th gives 1107 exceedances, 
whilst the 99th percentile gives 56 exceedances. As the threshold increases by one 
unit, the number of exceedances decreases by 55 units. According to the theory, the 
distribution of the exceedances defined as Fn(X − u) for X ≥ u may be approximated 
by the GPD denoted by G�,�(y) . Thus, for each threshold, we fit a GPD and check 
that the sample of the excesses above the threshold follows a G�,�(y) . Examples of 
this fit can be seen in Fig. 2 for the 5534 returns with thresholds set at 0.74% and 
2.76%. These thresholds give 1107 and 56 exceedances, respectively. Parameters are 
estimated by maximum likelihood and the resulting GPD curves are superimposed 

Table 2   Descriptive statistics

This table presents the descriptive statistics of the daily returns of S&P500. The sample period is from 
January 3rd, 2000 to December 30th, 2021. The index return is calculated as Rt = 100(ln(Pt)−ln(Pt-1)) 
where Pt is the index level for period t. Standard errors of the skewness and excess kurtosis are calcu‑
lated as 

√
6∕n and 

√
24∕n, respectively. The JB statistic is distributed as the Chi square with two degrees 

of freedom
*Significance at the 5% level

Mean Median Maximum Minimum SD Skewness Kurtosis Jarque Bera

S&P 500 0.0214 0.0639 10.957 − 12.765 1.2391 − 0.401*
(0.033)

11.067*
(0.066)

28,334
(0.000)
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on the empirical estimate of the distribution function of the exceedances. As we can 
see, GPD seems to fit pretty well the exceedances samples. In concordance with this, 
the Kolmogorov–Smirnov test used to test if the sample of exceedances follows a 
GPD cannot be rejected in any case (see Table 3).

Let u1, u2, …, un be the set of thresholds selected ( n = 20) . For j = 1,… , n , let 𝜉uj 
and 𝜎̂uj be the estimators of the shape and scale parameters based on the exceedances 
over the threshold uj . Figure 3 displays the estimation of � and � , respectively, as a 
function of the threshold u.

We observe that as the threshold increases, the value of � increases. In the case of 
the scale parameter, the opposite occurs; as the threshold increases, the value of � is 
reduced. As we expected, in both cases, the accuracy of the estimations decreases as 
the threshold increases.

The estimation of the shape parameter, which determines the weight of the tail in 
the distribution, is very sensitive to changes in the threshold. For instance, the value 
of � increases by 2233% when the threshold moves from the 80th percentile to the 
90th percentile. From the 90th percentile to the 99th percentile, the increase is equal 
to 227%. The value of the scale parameter is also sensitive to changes in the thresh‑
old; however, in this case, the changes are not that striking. Thus, in accordance 
with the literature, we find that the parameter estimations are very sensitive to the 
threshold selected for estimating GPD. But, what about the GPD quantiles? Do they 
depend on the threshold choice? To answer this question, we analyse the sensitiv‑
ity of the high quantiles generalized Pareto distribution to changes in the threshold. 
For this analysis, we just only focus on the high quantiles (95%, 96%, 97%, 98% and 
99%) as they are the only relevant quantiles in quantifying market risk. The quantile 
of the GPD is calculated using the Eq. (6).

Fig. 2   GPD. In the left plot, GPD is fitted to 1107 exceedances over the threshold of 0.74%. In the right 
plot, GPD is fitted to 56 exceedances over the threshold of 2.76%
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Table 3   Maximum likelihood estimations (GPD)

� Shape parameter, � scale parameter. The standard deviation is given in parenthesis. KS test is the Kol‑
mogorov–Smirnov test. The critical value at 95% of confidence level is calculated as 1.36/√(n). In the 
cases denoted with (*), we cannot reject the null hypothesis at 1%. The critical value at 99% of confi‑
dence level is calculated as 1.63/√(n)

Percentiles Threshold return Exceedances � � KS test Critical value

80th 0.74 1107 0.003 (0.024) 0.722 (0.028) 0.047 0.041*
81th 0.78 1052 0.006 (0.025) 0.718 (0.028) 0.048 0.042*
82th 0.82 996 0.009 (0.025) 0.714 (0.029) 0.050 0.043*
83th 0.87 941 0.013 (0.026) 0.706 (0.029) 0.051 0.044*
84th 0.92 886 0.020 (0.028) 0.695 (0.030) 0.048 0.046*
85th 0.98 830 0.042 (0.031) 0.660 (0.030) 0.033 0.047
86th 1.04 775 0.063 (0.034) 0.633 (0.031) 0.019 0.049
87th 1.10 720 0.079 (0.037) 0.614 (0.032) 0.023 0.051
88th 1.15 664 0.075 (0.038) 0.623 (0.033) 0.024 0.053
89th 1.20 609 0.080 (0.040) 0.621 (0.035) 0.026 0.055
90th 1.26 554 0.070 (0.040) 0.639 (0.037) 0.030 0.058
91th 1.32 498 0.073 (0.042) 0.641 (0.039) 0.034 0.061
92th 1.41 443 0.087 (0.046) 0.626 (0.041) 0.031 0.065
93th 1.51 388 0.105 (0.051) 0.611 (0.043) 0.028 0.070
94th 1.62 332 0.135 (0.058) 0.585 (0.046) 0.039 0.075
95th 1.72 277 0.124 (0.061) 0.613 (0.052) 0.046 0.082
96th 1.88 222 0.173 (0.075) 0.572 (0.057) 0.058 0.091
97th 2.07 166 0.206 (0.091) 0.567 (0.067) 0.072 0.106
98th 2.28 111 0.207 (0.115) 0.628 (0.093) 0.045 0.129
99th 2.76 56 0.229 (0.171) 0.696 (0.149) 0.071 0.182

Fig. 3   Maximum Likelihood Estimations GPD
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Figure 4 displays these quantiles as a function of the threshold u . What pays our 
attention is that the line representing the quantiles as a function of the threshold is 
completely flat, which means that the high quantile of the GPD does not depend on 
the threshold choice, at least in the range of threshold considered in this paper. This 
result is pretty striking. Table 4 displays the differences in � quantiles obtained for 
all thresholds considered against the threshold benchmark. Panel (a) displays these 
differences regard to the threshold corresponding to percentile 90th, which is in the 
middle point of the considered range vector and has been used successfully in many 
empirical papers in VaR estimate (see Abad and Benito 2013; Benito et al. 2017). 
Panel (b) displays these differences with regard to the threshold corresponding to 
percentile 97th, which is the optimal threshold according to the excess mean plot.9 
In Panel (a), we observe that for a large set of thresholds, from a return correspond‑
ing to the 81st percentile to a return corresponding to the 97th percentile, the dif‑
ferences in quantile estimation do not exceed the 7 basis points. Even more, from 
a return corresponding to the 85th percentile to a return corresponding to the 94th 
percentile, the differences in quantile estimation {95.0th to 98th} do not exceed the 
2 basis points. As regards Panel (b), although the differences in quantile estimation 

Table 4   Differences in quantiles

In the left plot the GPD quantiles at 95%, 96% 97%, 98%, and 99% probability are displayed as a func‑
tion of the thresholds. The tables capture the differences in quantiles related to the 90th (Panel (a)) and 
97th percentile (Panel (b)). We shaded the differences that oscillate between 3 and 4 basis points in light 
gray. Differences greater than 4 basis points are shaded in dark gray

9  We do not present this plot for reason of space.
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{95.0th to 98th} are larger compared with Panel (a), they do not exceed 8 basis 
points from a return corresponding to the 80th percentile to a return corresponding 
to the 99th percentile. Just only in the case of the 99th quantile, the differences are 
somewhat higher.

As the estimation of the market risk depends on the quantile of the GPD, this pre‑
liminary analysis may suggest that the choice of the threshold in the framework of 
the POT method may not be very relevant in quantifying market risk.

Sensitivity of the risk measures to changes in the threshold

We can say that the analysis presented in the previous section is in accordance with 
the literature; we observe that the estimates of the parameters that describe the gen‑
eralized Pareto distribution depend significantly on the threshold selected for the 
estimation. However, surprisingly the high quantiles of the GPD keep approximately 
constant. In this section, we want to go a step further by assessing to what extent the 
selection of the threshold affects the quantification of financial risk. With this objec‑
tive, a set of 20 thresholds has been selected. The parametric estimates correspond‑
ing to these thresholds were presented in the previous section.

To quantify the risk, we use VaR and ES measures, which were presented in 
“Risk measure” section. The expression for these measures is given by

(19)VaRt(𝛼) = 𝜇t + 𝜎̃tq1−𝛼 ESt(𝛼) = 𝜇t + 𝜎̃t

[
q1−𝛼

1 − 𝜉
+

𝜎 + 𝜉u

1 − 𝜉

]

Fig. 4   GPD quantiles. GPD quantiles at 95%, 96% 97%, 98% and 99% probability are displayed as a 
function of the thresholds
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where �t is the conditional mean return that is assumed constant ( �t = �) , 𝜎̃t rep‑
resents the conditional standard deviation of the return; q1−� is the percentile 1 − � 
of the GPD and  � and �  are the shape and scale parameters of the GPD. For the 
estimation of the conditional standard deviation of the returns, we use an APARCH 
model.

The sample period is divided into a learning sample from January 3rd, 2000, to 
December 30th, 2016, and a forecast sample from January 3rd, 2017, to the end of 
December 2021. For each day of the forecast period, we will generate estimations 
of VaR and ES measures. These forecasting measures are obtained one day ahead 
at the 95% and 99% confidence levels. Table 5 presents the descriptive statistics of 
the differences between the market risk estimates obtained from the threshold cor‑
responding to th 90th percentile and the market risk estimates obtained from the 
remaining selected thresholds. For VaR estimates at the 95% confidence level, from 
a return corresponding to the 80th percentile to a return corresponding to the 96th 
percentile, the mean of the differences does not exceed the 3 basis points with a 
standard deviation between 1 and 3 basis points. For the thresholds corresponding 
to the 97th and 99th percentiles, the mean of the differences in the VaR estimate at 
95% confidence level increases moving between 6 and 9 basis points.

The standard deviation of these differences also increases, moving between 4 
and 28 basis points. For these thresholds, the minimum difference becomes 45 basis 
points (99th percentile), whilst the maximum difference becomes 229 basis points 
(99th percentile). For VaR estimates at the 99% confidence level, we find similar 
results. For a large set of thresholds (from the 82nd percentile to the 96th percentile), 
the mean and standard deviation of the differences are very small, not exceeding 5 
basis points. Only in the case of the threshold corresponding to 99th percentiles, 

Table 5   Differences between VaR and ES estimates

Descriptive statistics. Optimal threshold 90%
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the differences are higher. In summary, we find that for a large set of thresholds (the 
return corresponding to the 80th percentile to the 96th percentile), the quantifica‑
tion of risk that we obtain from VaR measures is similar. The same conclusion can 
be drawn from the ES measure. At the 95% confidence level and from the 82nd 
percentile to the 98th percentile, the mean and standard deviation of the differences 
do not exceed 3 basis points. At the 99% confidence level, the differences are even 
smaller and do not exceed 1 basis point (from the 80th percentile to the 99th percen‑
tile). Thus, we can conclude that in the selected range, the choice of threshold in the 
framework of the POT method may not be very relevant in quantifying market risk.

Analysing the quality of the risk estimates

In this section, we are interested in analysing the accuracy of the risk measures (VaR 
and ES) obtained from the conditional EVT. In addition, we will analyse if the qual‑
ity of these measures depends on the threshold selected for applying EVT. There‑
fore, we will use the backtesting techniques presented in “Backtesting” section.

To evaluate the accuracy of the VaR estimates, we have used four standard tests: 
unconditional (LRuc), independent (LRind), conditional coverage (LRcc) and dynamic 
quantile (DQ) tests. The results of these tests are presented in Table 6. In this table, 
we also present the number and the percentage of exceptions. The first thing that 
pays our attention when viewing Table 6 is that for a large set of thresholds (from 
the 82nd percentile to the 93rd percentile), the number of exceptions is very close to 
the expected one.10 In the cases in which the number of exceptions differs from the 
theoretical one, the differences are very small. Thus, at the 95% confidence level, 
the percentage of exceptions ranges from 4.61% to 5.56%, corresponding to the 80th 
percentile and the 99th percentile. At the 99% confidence level, the percentage of 
exceptions ranges from 1.43% to 1.59%, also very similar to the expected one (1%). 
To test statistically whether the number of exceptions is equal to the theoretical one, 
we use the aforementioned test. We cannot reject the null hypothesis “that the VaR 
estimates are accurate” for any of the thresholds selected. To test whether the ES 
estimations are correct, we use the procedure proposed by McNeil and Frey (2000) 
test. The results of these tests are displayed in Table  6. The null hypothesis that 
states that the ES(95%) estimates are correct is rejected for all thresholds at both 5% 
and 1% probability. However, the hypothesis that the ES(99%) estimates are correct 
is rejected at 5% for all thresholds, but not at 1%.

The results presented in this section indicate that the choice of threshold in the 
framework of the POT method may not be relevant in quantifying market risk when 
we use the VaR and ES measures for this task.

10  For the forecasting period considered in this study, which has 1258 observations, the expected number 
of exceptions is 63 at a 95% confidence level and 13 at a 99% confidence level.



	 S. Benito et al.6  Page 22 of 31

Analysing the sensitivity of forecasting daily capital charges to the selected 
threshold

In this section, we carry out an empirical application in which we evaluate the sensitiv‑
ity of the daily market risk capital requirement (DCR) to the threshold choice. For this 
proposal, we follow Chang et al. (2019) and calculate the DCR according to Eq. (19). 
Figure 5 shows the mean of the DRC calculated on the base of ES measure at 99% con‑
fidence level for each of the thresholds selected.

The visual inspection of this figure suggests that there is a large set of thresholds 
(85th to 95th) that provide similar results, observing some differences in the lowest 
(80th to 84th) and highest (96th to 99th) thresholds. Table 7 which shows the mean, 
standard deviation and range of daily capital requirements confirms these previous 
results. For a large set of thresholds (80th to 95th proxy), the differences in DRC are 
under 5 basis points. This implies that for investment portfolios worth 1 million euros, 
the differences do not exceed 50 thousand euros. However, for thresholds outside this 
range, the differences are somewhat greater.

Table 6   Backtesting VaR and ES for S&P500 (2017–2021)

Threshold 95% confidence level 99% confidence level

Excep‑
tions

VaR ES Excep‑
tions

VaR ES

No. % LRuc LRind LRcc DQ MF No. % LRuc LRind LRcc DQ MF

80th 58 4.61 0.67 0.38 0.62 0.01 0.01 18 1.43 0.34 0.45 0.48 0.18 0.03
81st 58 4.61 0.67 0.38 0.62 0.01 0.01 18 1.43 0.34 0.45 0.48 0.18 0.03
82nd 58 4.61 0.67 0.38 0.62 0.01 0.01 18 1.43 0.34 0.45 0.48 0.18 0.03
83rd 58 4.61 0.67 0.38 0.62 0.01 0.01 18 1.43 0.34 0.45 0.48 0.18 0.03
84th 58 4.61 0.67 0.38 0.62 0.01 0.00 18 1.43 0.34 0.45 0.48 0.18 0.03
85th 58 4.61 0.67 0.38 0.62 0.01 0.00 18 1.43 0.34 0.45 0.48 0.18 0.03
86th 58 4.61 0.67 0.38 0.62 0.01 0.00 18 1.43 0.34 0.45 0.48 0.18 0.03
87th 59 4.69 0.74 0.24 0.47 0.01 0.00 18 1.43 0.34 0.45 0.48 0.18 0.04
88th 59 4.69 0.74 0.24 0.47 0.01 0.00 18 1.43 0.34 0.45 0.48 0.18 0.03
89th 59 4.69 0.74 0.24 0.47 0.01 0.00 18 1.43 0.34 0.45 0.48 0.18 0.04
90th 59 4.69 0.74 0.24 0.47 0.01 0.00 18 1.43 0.34 0.45 0.48 0.18 0.03
91st 59 4.69 0.74 0.24 0.47 0.01 0.00 18 1.43 0.34 0.45 0.48 0.18 0.03
92nd 59 4.69 0.74 0.24 0.47 0.01 0.00 18 1.43 0.34 0.45 0.48 0.18 0.03
93rd 58 4.61 0.67 0.38 0.62 0.01 0.00 18 1.43 0.34 0.45 0.48 0.18 0.03
94th 58 4.61 0.67 0.38 0.62 0.01 0.00 19 1.51 0.26 0.48 0.42 0.23 0.05
95th 59 4.69 0.74 0.24 0.47 0.01 0.00 18 1.43 0.34 0.45 0.48 0.18 0.04
96th 58 4.61 0.67 0.38 0.62 0.01 0.00 19 1.51 0.26 0.48 0.42 0.23 0.05
97th 56 4.45 0.55 0.54 0.69 0.01 0.00 19 1.51 0.26 0.48 0.42 0.23 0.05
98th 55 4.37 0.49 0.51 0.64 0.00 0.00 19 1.51 0.26 0.48 0.42 0.23 0.05
99th 70 5.56 0.55 0.32 0.51 0.00 0.07 20 1.59 0.20 0.52 0.36 0.28 0.08
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Robustness analysis

In the above section, we show that in the framework of the POT approach, there 
is a set of thresholds that provide a similar market risk estimate. It is due to the 
fact that the GPD quantiles are not sensitive to the threshold choice. Just only for 
the threshold 99th some differences are found. To corroborate the validity of this 

Fig. 5   Mean Market Risk Capital Requirement calculated on the ES measure

Table 7   Statistics of the daily capital requirement (ES 99%)
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result, in this section, we extend the study to a set of 14 assets. In accordance 
with the performed study for the S&P500, for each of these assets, we select a 
set of 20 thresholds, from 80th percentile to 99th percentile. For each threshold 
selected, first, we apply the conditional POT approach to analyse the sensitivity 
of the GPD quantiles to the threshold choice. Second, we obtain forecast VaR and 
ES measures 1 day ahead and analyse the differences among them for the set of 
thresholds selected. To last, we analyse the sensitive of the market risk capital 
charges to the threshold choice.

Before analysing the accuracy of the market risk measure, we evaluate the sen‑
sitivity of high quantiles from generalized Pareto distribution to changes in the 
threshold. As in the case of S&P500, for this analysis, we just only focus on the 
high quantiles (95%, 96%, 97%, 98% and 99%) as they are the only relevant quan‑
tiles in quantifying market risk. The quantile of the GPD is calculated using the 
expression (6). Figure 6 displays the GPD quantiles as a function of the threshold 
for all assets considered. Again, what pays our attention is that the line represent‑
ing the quantiles as a function of the threshold is quite flat in the threshold range 
(80th to 96th). Just in the case of the high threshold, corresponding to the 97th to 
99th percentiles, some differences are observed, especially for the threshold cor‑
responding to the 99th percentile. For this threshold, the differences are around 
25 basis points becoming 50 basis points for some assets as Merval index.

After checking that the GPD fits well the upper tail of the distribution of the 
assets for the set of thresholds considered, we calculate the market risk measure 
at the 95% and 99% confidence levels. For evaluating the accuracy of the VaR 
estimates, we use the standard tests that we presented in “Backtesting” section: 
LRuc, LRind, LRcc and DQ. For each asset, Table 8 displays the number of times 
that each of these tests is rejected for the 20 thresholds selected.

In the footnote in Table 8, we indicate the set of thresholds for which the null 
hypothesis is rejected. For instance, for CAC40 at a 95% confidence level, LRuc test 
is rejected once for the threshold corresponding to the 99th percentile. The results 
obtained for VaR are as follows. According to LRuc tests, in 7 of the 15 considered 
assets, we do not find evidence against the null hypothesis that the “VaR(5%) esti‑
mate is accurate”. This result is independent of the selected threshold, although, for 
certain indexes, this hypothesis is rejected for some tests performed over the thresh‑
old corresponding to the 99th percentile. The results found for VaR at the 99% con‑
fidence level are even more conclusive than those for VaR at the 95% confidence 
level. According to LRuc tests, in 14 of the 15 considered assets, we do not find evi‑
dence against the null hypothesis that the “VaR (1%) estimate is accurate”. In certain 
cases, the accuracy tests provide evidence against the null hypothesis; however, in 
these cases, the rejection does not depend on the threshold selected. For instance, 
for the Cooper commodity, the DQ test rejects the null hypothesis for all thresholds. 
These results suggest that the quantification of the risk through the VaR measure 
does not depend on the threshold selected for this objective.

To test whether the ES estimations are correct, we use the procedure proposed 
by McNeil and Frey (2000) test. Overall, we do not find evidence against the null 
hypothesis that the average of the discrepancy measure is equal to zero indicating 
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that all the threshold provide correct ES estimations for both 95% and 99% confi‑
dence level.

The results presented in this section corroborate those obtained for S&P500, indi‑
cating that the quantification of market risk through the VaR and ES measures does 
not depend on the threshold selected for applying the POT method.

To last, for all assets, we calculate the market risk capital requirement on the base 
of the ES at 99%. Table 9 shows the mean of these requirements. Again we find that 
in general for all assets there is a wide set of thresholds that give similar results. 
Just only the extreme thresholds provide capital requirements something different. 
If the aim of a financial institution is to minimize the market risk capital charges, 
the optimal threshold is the threshold corresponding to 90th percentile for six of the 
14 assets considered. For three indexes (IBEX35, Merval and Nikkei), the highest 

Fig. 6   GPD quantiles. GPD quantiles at 95% (black line) 96% (orange line) 97% (blue line) 98% (brown 
line) and 99% (green line) probability are displayed as a function of the thresholds
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Table 8   Backtesting VaR and ES

The table counts the number of rejections for the 20 thresholds considered. Reject for: (1) threshold cor‑
responding to 99th percentile (u = 99%); (2) thresholds corresponding to 98th and 99th percentiles; (3) 
threshold corresponding to 97th percentile; (4) thresholds corresponding to 96th and 97th percentiles; (5) 
thresholds corresponding to the interval [84th, 98th]; (6) thresholds 81st and the interval [84th, 99th]; (7) 
thresholds in the percentiles range [95th, 98th]; (8) thresholds corresponding to the interval [93rd, 96th]; 
(9) All thresholds except for that corresponding to 99th percentile; (10) All thresholds. For the case of 
ES backtesting, the acceptance level of the null hypothesis is set at 1%

95% confidence level 99% confidence level

VaR ES VaR ES

LRuc LRind LRcc DQ MF LRuc LRind LRcc DQ MF

CAC40 1(1) 0 0 1(1) 1(3) 0 0 0 0 0
DAX30 0 0 0 0 2(3) 0 0 0 0 0
FTSE100 0 0 0 0 19 0 0 0 0 0
HANG SENG 0 0 0 1(1) 0 0 0 0 0 0
IBEX35 1(1) 0 1(1) 0 1(1) 0 0 0 0 0
MERVAL 0 0 0 0 0 0 0 0 0 0
NIKKEI 2(2) 0 1(1) 0 1(1) 0 0 0 0 0
S&P500 0 0 0 20 15 0 0 0 0 0
COPPER 0 0 0 0 0 0 0 0 20 0
GOLD 1(1) 0 0 0 0 0 0 0 0 0
OIL BRENT 2(2) 0 1(1) 1(1) 4(4) 17(4) 0 4(3) 0 0
SILVER 1(1) 0 1(1) 0 1(1) 0 0 0 0 0
$/€ 1(1) 0 1(1) 0 0 0 0 0 0 0
₤/€ 2(2) 0 2(2) 0 0 0 0 0 2(2) 0
¥/€ 0 0 0 0 0 0 0 0 1(1) 0

Table 9   Forecasting daily capital charges based on ES measure (99% confidence level)
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thresholds (98th and 99th) are the best, whilst for the commodities, the thresholds 
that minimise market risk capital requirement are the lowest(80th).

Conclusions

The conditional extreme value theory has been proven to be one of the most success‑
ful in estimating market risk. The implementation of this method in the framework 
of the POT model requires choosing a threshold return for fitting the generalized 
Pareto distribution. Threshold choice involves balancing bias and variance. To deter‑
mine the optimal threshold, several techniques have been proposed such as graphic 
methods, ad hoc methods, or methods based on goodness-of-fit contrasts. However, 
none of these techniques have been proven to provide better results than others.

In this paper, we ask if the threshold choice is relevant in measuring market risk. 
In other words, in this study, we assess to what extent the selection of the threshold 
is decisive in quantifying the market risk. To measure market risk, we have used the 
value at risk (VaR) and expected shortfall (ES) measures. The study has been done 
for the S&P500index.

Previously, we analyse both, the sensitivity of the parameter estimates and GPD 
quantiles to the threshold choice. The results obtained are as follows. First, we find 
that following the literature, the parameter estimations are very sensitive to the 
selected threshold for estimating GPD. However, the quantiles of the GPD do not 
change much when the threshold changes, particularly for high quantiles (95th, 96th, 
97th, 98th and 99th), which are relevant in risk estimation. Second, for a large set of 
thresholds (from the 80th percentile to the 96th percentile), the VaR estimations are 
practically equivalent. A similar finding occurs for the ES measure. In a last applica‑
tion, we calculate the market risk capital requirements on the base of the ES(99%) 
estimations. The results reveals that there is a set of thresholds which provides the 
same results finding some differences for the higher percentiles.

The results obtained indicate that from the market risk management point of view 
there is not an optimal threshold but that there is a set of optimal thresholds which 
provide similar market risk measures. Thus, we can conclude that in market risk 
estimation, the researchers and practitioners should not focus excessively on the 
threshold choice, as a wide range of them produce the same risk estimates.

To corroborate these results, we have extended the S&P500 index study to a set 
of 14 assets (stock market indexes, commodities and exchange rates). The results 
obtained for these assets corroborate the results obtained for S&P500.

To last, although overall the quantification of the risk does not depend on the 
threshold choice, for a certain threshold, some differences are found therefore, the 
financial institution may be interested in choosing the threshold that minimises 
the market risk capital requirement.
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