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Abstract
This paper investigates the existence of systematic extreme risks at a multi-country 
level that leads to gains and losses spillover. A measure of systematic risk that quan-
tifies both the downside risk and the upside potential in the extreme is introduced. 
This measure is based on the Conditional-Value-at-Risk (CoVaR) measure and 
copulas to capture dependencies. Using our approach, we study the contagion effect 
between different financial markets in the extreme. We show that there is an asym-
metric contagion effect from the US stock market to other international markets. The 
impact is higher when the US market is extremely bear than when it is extremely 
bull. This paper adds novel findings on the asymmetry between extreme losses and 
extreme gains and the differences among different countries’ reactions to shocks.

Keywords Systematic risks · Extreme co-movements · Potential gains · Downside 
risks · CoVaR risk measures · Tail dependence

Introduction

The risk-return trade-off is one of the fundamental topics in finance. It is more chal-
lenging to address this trade-off in the presence of the contagion effect between dif-
ferent financial markets. This paper analyzes the spillover effect of a given market 
on other markets in extreme good and extreme bad states. This analysis is based on 
an appropriate risk measure to evaluate extreme risks and an accurate model to cap-
ture dependencies between risks.
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Traditionally, a rational investor maximizes their return while the risk is set at an 
acceptable level. Different models and frameworks were introduced to deal with the 
risk-return trade-off in the context of portfolio selection, asset allocation, and risk 
management. For instance, the mean-variance portfolio optimization suggested by 
Markowitz (1952) uses the variance as a risk measure, but such a measure does not 
provide enough information on the downside risk.

Based on Markowitz portfolio theory, other risk measures were introduced in 
finance, for example, Sharpe Ratio (Sharpe 1966), Sortino Ratio (Sortino and Price 
1994), and the betas in the CAPM framework (Sharpe 1964). All these measures 
display some limitations in measuring extreme risks, and a new generation of risk 
measures was developed to quantify the tail behavior of financial risks starting with 
the introduction of the Value-at-Risk (VaR) and VaR-related measures such as the 
Tail-Value-at-Risk (TVaR).

A significant milestone in risk measures was presented by Artzner et al. (1997) 
through the concept of coherent risk measures that gives four axioms to follow by 
a given risk measure to feature some economic properties. In the past two decades, 
more research was dedicated to risk measurements, especially in the context of mul-
tivariate and dependent risks. In the context of portfolio allocation, rational inves-
tors are more sensitive to downside losses than upside gains, and an accurate risk 
measure should quantify this asymmetric behavior. Systematic and systemic risks 
attracted a lot of interest in the past few years, and many papers addressed measur-
ing such risks. For instance, Rodriguez-Moreno and Pena (2013) estimate and com-
pare macro and micro high-frequency market-based systemic risk measures using 
European and US interbank rates, stock prices, and credit derivatives. Puzanova 
and Dullmann (2013) assume that the banking system is modeled as a portfolio and 
measure systemic risk in terms of the expected shortfall of this portfolio.

This paper investigates the link between the downside risk and investment oppor-
tunities in the financial markets using a model that allows dependence between 
risks. Our framework is based on two main ideas: the presence of co-movements 
in the financial markets and the existence of systematic global risk. Equivalently, it 
is assumed that multiple risks are dependent, which leads to a co-movement in the 
extremes, i.e., the presence of both upper and lower dependencies. The idea of co-
movements in the financial market means that the evolution of asset returns is sub-
ject to positive or negative dependence across assets and markets. Such movements 
are observed at different levels during crisis periods, during the pre-crisis, and post-
crisis periods. Due to the co-movement phenomenon, an investor would consider 
an appropriate risk measure to evaluate both downside risk and the potential gain. 
The existence of these co-movements risks implicitly implies that the assets are sup-
posed to be dependent, and any model should consider this dependence structure. 
On the other hand, systematic risk is the risk that one institution, sector, or a market 
would generate movement for the other assets, sectors, and markets.

Our framework aims to evaluate the impact of these co-movements due to a 
systematic risk on both the right tail, i.e., the extreme potential gain, and the left 
tail, i.e., the extreme downside risk. This proposed framework is based on a copula 
model that captures the dependencies between the risks and Conditional-Value-at-
Risk (CoVaR) to measure the co-movements in the tails. The copula theory presents 
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an exhaustive set of models to fit different types of dependence structures. These 
models gained extensive popularity in risk management and quantitative finance 
over the past few decades. For example, this theory is extensively valuable for study-
ing default correlation in credit risk models, modeling operational risk, and deter-
mining the economic capital in insurance and finance. The CoVaR measures were 
introduced by Adrian and Brunnermeier (2011) to capture the distress spreading 
across financial institutions. These types of risk measures gained a lot of interest 
both in academia and industry in recent years. This interest significantly increases 
during periods of crisis and financial distress. The CoVaR measures are similar to 
the VaR measures except that the underlying distribution is conditional on a spe-
cific event. This feature makes the CoVaR more informative than the standard VaR 
measures in capturing extreme behavior. For instance, Capponi and Rubtsov (2022) 
use the CoVaR to derive optimal portfolios in the presence of a systematic risk. The 
CoVaR is also used by Brunnermeier et al. (2020) to decompose the banking sys-
tematic risk. This risk measure is also applied in the context of cryptocurrency mar-
kets (see Borri 2019) and in assessing the financial system vulnerability to fire sales 
(see Duarte and Eisenbach 2021). In many cases, the application of the CoVaR is 
combined with a copula-based model (see Karimalis and Nomikos 2018). Inspired 
by the CoVaR risk measures, other systematic risk measuring tools are introduced in 
the literature. For example, Brownlees and Engle (2017) introduce SRISK measure 
based on the Conditional Expected Shortfall measure(CoES) and Wang et al. (2017) 
use CAViaR to study extreme risks for financial institutions. We refer the reader to 
Benoit et al. (2017) and Feinstein et al. (2017) for more on measuring the systematic 
risk. In this paper, we use the idea of the conditional risk measure to evaluate the 
downside risk, but we extend it to quantify the potential gain. Two types of CoVaR 
measures are used: an Upper CoVaR and a Lower CoVaR to evaluate the impact of 
co-movements in the upper tails and lower tails, respectively. Based on these two 
measures, we define percentages of potential expected systematic extreme loss and 
extreme gain. These percentages would evaluate the impact of the systematic risk on 
each individual risks in both extremes (left tail and right tail).

To assess the spillover effect of extreme movements between stock returns, we 
first explore the response of different financial markets to extreme movements in the 
US market. In this paper, the analysis is focused on the following countries: Brazil, 
Canada, China, Germany, India, Japan, Russia, and the UK. Our results show that 
extreme negative shocks to the US financial market have a different effect on other 
markets than extreme positive shocks. The effect is also different across countries. 
For example, we show that conditional on the US financial Market, Brazil, Cana-
dian German, India, and UK markets lose more when the US market is extremely 
bad. However, in the case of China, we observe that the Chinese market suffers both 
when the US market does extremely well or extremely bad. This observation sug-
gests that there is an asymmetric spillover effect across countries. We also find that 
the potential expected systematic extreme loss percentage change and the potential 
expected systematic extreme gain percentage change are both higher during the cri-
sis period and remain high in the post-crisis period for all countries except for the 
case of China, India, and Japan, where the gain is systematically decreasing during 
and after the crisis periods. This fact tests for the persistence of the contagion effect. 
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In addition, we show that the presumption of the fact that the contagion effect is 
stronger for extreme negative returns than for extreme positive returns is in accord-
ance with our findings. Bae et al. (2003)) find similar results. Following Kyle and 
Xiong (2001), we argue that the obtained results are the outcome of the financial 
intermediaries’ behavior. Kyle and Xiong (2001) state that ’When convergence trad-
ers1 suffer trading losses, they have a reduced capacity for bearing risks. This fact 
motivates them to liquidate positions in both markets, resulting in reduced mar-
ket liquidity, increased price volatility in both markets, and increased correlation. 
Through this mechanism, the wealth effect leads to contagion’. Yuan (2005) build a 
model of contagion and find similar results. Concerning policies, it is noteworthy to 
mention that our results provide a useful tool to predict which countries will suffer 
the most from any recession that may affect large economies in the post-Covid-19 
crisis.

The framework presented in our paper helps investors who want to construct 
optimal global portfolios to measure the inter-connectivity between global markets. 
These investors wish to determine the existing opportunities and downside risks 
in their portfolios by measuring the tail dependencies between markets. Achieving 
successful portfolio management requires understanding how shocks in financial 
markets are propagated and how different markets respond under different types of 
shocks, good or bad. This understanding is done by extracting most of the avail-
able information about the interactions between stock markets. Considering these 
interactions is very important in risk hedging and portfolio allocation in the pres-
ence of systematic risk. Equipped with this understanding of the systemic risk and 
its extreme impacts, the investors transfer their funds from one market to another 
when they adjust their portfolios. The risk measures presented in this paper provide 
a better knowledge of the level of interdependencies between different stock mar-
kets due to the systematic risk. Therefore, quantifying the impact of this systematic 
risk offers the investor information to identify the current opportunities and risks in 
holding a global portfolio. It is also worth mentioning that our framework could be 
used to show the evolution of these interdependencies over time. This constitutes 
an essential tool for investors looking for a dynamic and diversified portfolio dur-
ing stock market instability and growth. Our paper provides investors with a tool to 
identify the impact of systematic risk, which allows them to avoid extreme risks and 
benefit from extreme gains.

The rest of the paper is organized as follows. In “CoVaR risk measures” section, 
we present our extreme downside risk and the extreme upside potential measures. 
In “Split copulas” section, we define the new copula family used in the depend-
ence modeling of returns. The formulas of our extreme risk and extreme potential 
measures are given in “CoVaR for split copulas” section. In “Specification of the 
marginal distributions and the copula” section, we specify the model of the mar-
ginal distributions of returns and the parametric copula family that we use in our 
illustration example. In Section 6, we provide an empirical application to illustrate 
the importance of our measures for modeling contagion effect across countries. A 

1 By convergence traders, the authors mean the financial intermediaries.
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discussion of our empirical findings is presented in “ Discussion of results” section 
followed by concluding remarks in “Conclusion” section. The proofs of our theoreti-
cal results can be found in the appendix.

CoVaR risk measures

The CoVaR risk measure was first introduced by Adrian and Brunnermeier (2011). 
This risk measure aims to evaluate a financial institution’s contribution to systematic 
risk and its contribution to the risk of other financial institutions. In general, it is 
used to measure the marginal contribution of an institution against the overall sys-
tematic risk. However, such a measure could also be used to evaluate the impact of 
the whole market or the system on each individual institution. In this paper, we use 
the CoVaR risk measures to evaluate the dependence in the extremes between the 
systematic risk and the individual risks. The impact of the systematic risk should be 
captured through the co-movements in the upper and lower tails. In other words, two 
measurements are needed for both the upper and lower tails. For this purpose, we 
recall the definition of the CoVaR as proposed by Adrian and Brunnermeier (2011) 
and extended by Girardi and Ergün (2013). We call this version of CoVaR measure 
the lower CoVaR as it evaluates the co-movements in the left tail. Then, we define 
a new CoVaR-type measure for the right tail, called the upper CoVaR. The lower 
CoVaR provides a measurement of the downside risk in the distress periods while 
the upper CoVaR quantifies the potential gains in the growth periods.

Assume that for a given time t, Yt is the return of a given asset (it could also be a 
sector or an index). The most popular risk measure that financial institutions use to 
measure risks is the Value-at-Risk (VaR). Let VaR�(Yt) be the VaR for Yt at a certain 
confidence level 0 ≤ � ≤ 1 . The measure VaR�(Yt) is defined as the �-quantile of the 
distribution of Yt and it is given by

Consider another random variable Xt which could represent the return of another 
asset or the return of an index. In our framework, we are interested in the impact of 
Xt on the distribution of Yt and how the tails of Yt behave given Xt . For this purpose, 
the risk measure CoVaR is used. For given confidence levels � and � , Adrian and 
Brunnermeier (2011) define the lower CoVaR risk measure, CoVaRL

�,�
(Yt) , as 

follows:

The measure CoVaR proposed by Adrian and Brunnermeier (2011) assumes the 
conditioning on Xt to be exactly at its VaR level. This definition of CoVaR has 
some limitations that have been discussed by Girardi and Ergün (2013) and Mainik 
and Schaanning (2014). One of the most significant drawbacks of this version is 
the absence of dependence consistency, as pointed out in Mainik and Schaanning 
(2014). A modified CoVaR measure is proposed by Girardi and Ergün (2013). The 

(2.1)Pr[Yt ≤ VaR�(Yt)] = �.

(2.2)Pr[Yt ≤ CoVaRL
�,�

(Yt) ∣ Xt = VaR�(Xt)] = �.
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new definition of CoVaR is based on conditioning a stress event as its returns being 
at most at its VaR. The modified CoVaR is given by

The lower CoVaR, CoVaRL
�,�

(Yt) , is the VaR of Yt conditioning on Xt being in finan-
cial distress. The risk measure CoVaRL

�,�
(Yt) provides information about the condi-

tional extreme downside risk. In order to quantify the impact of Xt on the right tail 
of Yt , an upper CoVaR risk measure is defined. This new measure evaluates the 
extreme potential gains for Yt given that Xt is in extreme financial growth. For given 
confidence levels � and � , the upper CoVaR risk measure, CoVaRU

�,�
(Yt) , is given by

Assume that Xt is the return of a market index and Yt is the return of a single asset in 
this market. Then, the two measures CoVaRL

�,�
(Yt) and CoVaRU

�,�
(Yt) provide a tool to 

evaluate how the returns Yt respond to the potential opportunities in the market, as 
well as the downside risk generated by distress in the whole market. Computing 
these two measures is very informative and shows how assets (or institutions) absorb 
the available information in the market. For further analysis of the extreme depend-
encies between Xt and Yt , the following ratios are defined:

Thus RL
�,�

 and RU
�,�

 are measures of the potential expected systematic extreme loss 
percentage change and the potential expected systematic extreme gain percentage 
change conditional on Xt being in its extreme states. These two ratios could be used 
to identify the asymmetric behavior in the response of Yt to the movements of Xt.

In the rest of the paper, the extreme events are defined using the VaR risk meas-
ure. A market is said to be in an extreme bad state if the current return is below its 
VaR at a confidence level � with � = 10%, 5%, and 1% . Similarly, the market is said 
to be in an extreme good state if its current return is above its VaR at a confidence 
level � with � = 90%, 95%, and 99%.

In order to evaluate the upper and lower CoVaRs, one needs to determine the 
joint distribution of Xt and Yt . This distribution could be a non-parametric distribu-
tion (empirical distribution or kernel distribution), semi-parametric, or a fully-para-
metric distribution. One of our goals in this paper is to derive closed-from expres-
sions for the ratios RL

�,�
 and RU

�,�
 and this implies the use of fully-parametric set-up. 

First, we assume that (Xt, Yt) has a copula C. Using Sklar’s theorem, the joint cumu-
lative distribution function is given by

(2.3)Pr[Yt ≤ CoVaRL
�,�

(Yt) ∣ Xt ≤ VaR�(Xt)] = �.

(2.4)Pr[Yt > CoVaRU
𝛼,𝛽

(Yt) ∣ Xt > VaR𝛼(Xt)] = 𝛽.

(2.5)RL
�,�

=
CoVaRL

�,�

(
Yt
)
− VaRL

�
(Yt)

VaRL
�
(Yt)

,

(2.6)RU
�,�

=
CoVaRU

�,�

(
Yt
)
− VaRU

�
(Yt)

VaRU
�
(Yt)

.
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with u = FXt
(x) and v = FYt

(y), where FXt
 and FYt

 are the cumulative distribution 
functions for Xt and Yt , respectively. It follows that

Then, (2.3) is equivalent to

We also have

Then, (2.4) is equivalent to

Split copulas

Sklar’s theorem (Sklar 1959) shows that any multivariate joint distribution can be 
decomposed into univariate marginal distributions and a copula, which fully captures 
dependence and co-movement. To fit the dependence in both the upper and the lower 
tails, the joint distribution of (Xt, Yt) is assumed to be given by the following copula:

where (u, v) ∈ [0, 1]2, 0 ⩽ � ⩽ 1 and 0 < 𝜏 < 1 with �1 and �2 are two given copu-
las. If �1 and �2 have a density and 0 < 𝜅 ⩽ 1 for 0 < 𝜏 < 1 , then �

��

(
u, v ∣ �1, �2) 

is a copula.
The copula �

��
 can be rewritten as

Pr
(
Xt ≤ x, Yt ≤ y

)
= C(u, v),

Pr
(
Yt ≤ y ∣ Xt ≤ x

)
=

C(u, v)

u
.

(2.7)
C(�,FYt

[
CoVaRL

�,�
(Yt)

]
)

�
= �.

Pr(Y > y ∣ X > x) =
1 − u − v + C(u, v)

1 − u
.

(2.8)
1 − � − FYt

(CoVaRU
�,�

(Yt)) + C(�,FY (CoVaR
U
�,�

(Yt)))

1 − �
= �.

�SC(u, v∣�1, �2) =
⎧⎪⎨⎪⎩

��1

��
u

�

��

, v� ∣�1
� 1

�

if u ⩽ �

�v + (1 − �)�2

��
u−�

1−�

��

, v� ∣�2
� 1

�

Otherwise

,

�
��

(
u, v ∣ �1, �2) =�

[
�1

((
u

�

)�

, v� ∣�1
) 1

�

Iu⩽�

]

(1 − �)

[
�

(1 − �)
v + �2

((
u − �

1 − �

)�

, v� ∣�2
) 1

�

(1 − Iu⩽�)

],
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where Iu⩽� = 1 if u ⩽ �, and Iu⩽� = 0 otherwise. This form shows that the split cop-
ula can be written as a mixture of two truncated distributions.

We restrict ourselves to copulas �1 and �2 for which the copula densities exist 
and, consequently, the two-increasing condition is met if d

2���(u,v∣�1,�2)
dudv

 is non-nega-

tive, i.e., d
2���(u,v∣�1,�2)

dudv
⩾ 0.

Theorem 3.1 Let u∗ =
(

u−�

1−�

)�

, v∗ = v� , and u∗∗ =
(

u

�

)�

 then �
��

 is a copula with 
the following density:

where �
i,u

(
u, v∣�

i

)
=

d��(u,v∣�1,�2)
du

, �
i,v

(
u, v∣�

i

)
=

d��(u,v∣�1,�2)
dv

, and �i
(
u, v∣�i) = d2��(u,v∣�1,�2)

dudv
 

(i = 1, 2).

To assess the tail dependence, we consider the coefficients of the upper, �U , 
and the lower , �L , tail dependence (see Joe (1997)). For any given copula C we 
define

and

where C is the survival copula and it is given by C(u, v) = u + v − 1 + C(1 − u, 1 − v) . 
The copula C has a lower (an upper) tail dependence if �L ∈ (0, 1] ( �U ∈ (0, 1] ), and 
no lower (upper) tail dependence if �L = 0 ( �U = 0).

CoVaR for split copulas

In this section, explicit formulas for CoVaR measures are obtained using the split 
copulas defined in the previous section. Recall that

�
��

�
u, v ∣ �1, �2� =

⎧
⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

�
u�−1

��−1
v�−1�1

�
u�

��
, v� ∣�1

� 1

�
−2

��
1

�
− 1

�
�1,v∗

�
u�

��
, v� ∣�1

�
�1,u∗∗

�
u�

��
, v� ∣�1

�

+�1

�
u�

��
, v� ∣�1

�
�1

�
u�

��
, v� ∣�1

�� if u ⩽ �

�v�−1
�

u−�

1−�

��−1

�2

��
u−�

1−�

��

, v� ∣�2
� 1

�
−2

��
1

�
− 1

�
�2,v∗

��
u−�

1−�

��

, v� ∣�2
�
�2,u∗

��
u−�

1−�

��

, v� ∣�2
�

+�2

��
u−�

1−�

��

, v� ∣�2
�
�2

��
u−�

1−�

��

, v� ∣�2
��

Otherwise

⎫
⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

,

(3.1)�L = lim
u→0

C(u, u)

u
,

(3.2)�U = lim
u→1

C(1 − u, 1 − u)

1 − u
,
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where (u, v) ∈ [0, 1]2, 0 ⩽ � ⩽ 1 and 0 < 𝜏 < 1 . Then �SC(u, v∣�1, �2) is a copula. 
Note that the parameter � is a distortion parameter. We define the following copula:

for i = 1, 2.

Remark 4.1 Note that if �i is an archimedean copula with a given generator �i , then 
�

(�)

i
 is also an archimedean copula with a generator �i(t) = �i(t

�) , for i = 1, 2.

Assume that C = CSC in (2.7) with � ≤ � . Then,

Moreover, assume that �(�)

1
 is archimedean with a generator �1 , i.e.,

The assumption of working with archimedean copulas is very important in the con-
text of this paper. First, the family of archimedean copulas is very riche and provides 
a lot of flexibility in terms of fitting dependence between rvs. Second, this assump-
tion allows us to derive closed-form expression for the lower Covar risk measures as 
well as the ratio RL

�,�
 . Indeed, combining (4.3) and (4.4) leads to

where F−1
Yt

 is the inverse cumulative distribution function of Yt.
Similarly, let C = CSC in (2.8) with 𝛼 > 𝜏 . Then,

where �
(�)

2
 is the survival copula of �(�)

2
 . Then,

(4.1)�SC(u, v∣�1, �2) =
⎧
⎪⎨⎪⎩

��1

��
u

�

��

, v� ∣�1
� 1

�

if u ⩽ �

�v + (1 − �)�2

��
u−�

1−�

��

, v� ∣�2
� 1

�

Otherwise

,

(4.2)�
(�)

i
(u, v) = �i((u)

� , v�)
1

� ,

(4.3)��
(�)

1

(
�

�
,FYt

[
CoVaRL

�,�
(Yt)

])
= ��.

(4.4)�1(u, v) = �−1
1
[�1(u) + �1(v)].

(4.5)CoVaRL
�,�

(Yt) = F−1
Yt

[
�−1
1

(
�1

(
��

�

)
− �1

(
�

�

))]
,

1 − u − v + CSC(u, v) =1 − u − v + �v + (1 − �)�2

((
u − �

1 − �

)�

, v�
) 1

�

=(1 − �)
[
1 −

u − �

1 − �
− v + �

(�)

2

(
u − �

1 − �
, v
)]

=(1 − �)�
(�)

2

(
1 − u

1 − �
, 1 − v

)

(4.6)(1 − �)�
(�)

2

(
1 − �

1 − �
, 1 − FYt

[
CoVaRU

�,�
(Yt)

])
= (1 − �)�.
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In order to find a closed-from for the upper CoVaR, we assume that the survival 
copula of �2 is archimedean with a generator �2 . This is equivalent to assume that 
�

(�)

2
 is archimedean with a generator �2(t) = �2(t

�) , i.e.,

Using (4.6) and (4.7), one finds

For the split copulas, the lower and upper tail coefficients are given in terms of the 
copulas generators as follows:

and

It is important to note that a good choice of the generators �1 and �2 could lead to a 
good fit of both upper and lower dependence.

Specification of the marginal distributions and the copula

The marginal distributions

To model the marginal distributions, we use the two-piece exponential power distri-
bution also called the split exponential power distribution. Another possible choice 
is the skewed t-distribution of Hansen (1994). We use the exponential power distri-
bution instead of t-distribution because the latter allows only for fatter tails than the 
normal, while the former allows for both fat and thin tails and reduces to the normal 
distribution when the shape parameter is equal to 2. The exponential power distri-
bution family (EP) has as a general form of the standardized density function from 
Rombouts and Bouaddi (2009) and Douch et al. (2015) that is defined for any real 
number x as

(4.7)�
(�)

2
(u, v) = �−1

2
[�2(u) + �2(v)].

(4.8)CoVaRU
�,�

(Yt) = F−1
Yt

[
1 − �−1

2

(
�2

(
(1 − �)�

1 − �

)
− �2

(
1 − �

1 − �

))]
.

�L = lim
u→0

�−1
1

(
�1

(
u

�

)
+ �1(u)

)

u

�

,

�U = lim
u→1

�−1
2

(
�2

(
1−u

1−�

)
+ �2(1 − u)

)

1−u

1−�

.

(5.1)g(x) =
�

2
√
2Γ(

1

�
)
exp

⎛⎜⎜⎝
−

������
x√
2

������

�⎞⎟⎟⎠
,
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where � is the shape parameter. When � approaches 0 the distribution exhibits fat 
tails and when � tends to infinity the tails become tiny. The EP distribution has as 
special cases the normal (� = 2) and Laplace (� = 1) . GED distribution is used in 
financial econometrics by Liesenfeld and Jung (2000) and Hardouvelis and Theo-
dossiou (2002). Komunjer (2007) present an asymmetric extension of the exponen-
tial power distribution with applications to risk management.

While the EP family of distributions is appropriate for data with excess kurtosis, 
it is not useful for modeling data with significant skewness. To allow for skewness, 
we use the following asymmetric centered and scaled version of the EP distribution 
(hereafter SEP(�t, �1,t, �2,t, �))

where the function Γ(x) is the Gamma function given by

and

The density (5.2) can be rewritten in a two-piece form as

The parameter �t is the conditional mode, the parameters �1,t and �2,t capture the dis-
persion (conditional volatilities) in bad and good regimes, respectively.

Theorem 5.1 The cumulative distribution function (CDF) and the quantile function 
of (5.2) are defined by

and

(5.2)f (rt) = k

� exp
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where the function �inc(x) is the Gamma distribution CDF given by

The function � inv
inc

 is the quantile of Gamma distribution.

See the proof in Appendix A.

Specification of the location and scale parameters

To allow for time-varying conditional location and scale parameters of returns, we con-
sider six different models: GARCH, AGARCH, EGARCH (Exponential GARCH), 
GJR (threshold GARCH), PARCH (Power ARCH), and the component GARCH. To 
select the best model among these six model, we use three commonly used informa-
tion criteria: Schwartz Criterion, Akaike Criterion, and Hannan–Quinn Criterion. The 
obtained results are given in Tables 13, 14, and 15 in the appendix. Based on these tests, 
we select AGARCH. ARMAGARCH models become a work horse when it comes to 
modeling the financial time series dynamic. Financial time series usually include loca-
tion and scale models. The location component is modeled using conditional mean 
models usually ARMA models. The scale component which is just the volatility of 
returns is modeled using GARCH model. The rational behind this choice is that finan-
cial time series have some dominant stylized facts such as volatility clustering, volatil-
ity persistence, asymmetric news effect, and fat tails. Volatility clustering and fat tails 
can have dramatic effect on the forecasting performance of the model. More specifi-
cally, ignoring volatility dynamics may lead to underestimating of risk measures such 
as value at risk. In order to achieve accurate forecast, most researchers apply GARCH 
to model volatility and autoregressive moving average (ARMA) to model the condi-
tional mean. There is a consensus on families of GARCH(1,1) as the popular model 
among others specifications because it is sufficient to capture the volatility clustering 
in the data the simplest and most robust among volatility models on modeling studies 
have selected GARCH(1,1) model to analyze the dynamic of time series data. In our 
empirical application, we estimated GARCH models with different lag length and used 
the Bayesian information criterion to select the optimal model. We found that the best 
model is GARCH(1,1).

In this paper, this approach is adopted and the model for �t is an ARMA(1,1)

where rt is the return of the stock at time t and

(5.6)qt =

⎧
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�
𝛾 inv
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�� 1
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�
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inc
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Otherwise

,

�inc(x) =
∫ x

0
tx−1 exp [−t]dt

Γ(x)
.

rt = �t + �t,
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The model for �1,t and �2,t is an asymmetric GARCH(1,1) of Engle (1993), i.e., 
AGARCH(1,1) given by

The parameters �i, �i , and�i capture, respectively, the effect of news, the volatility 
persistence, and the leverage effect. For instance, if 𝛿i > 0, then bad news have a 
higher effect on volatility than good news. This can be seen clearly by rewriting the 
variance equation as

where �∗
i
= �i + �i�

2
i
 and �∗

i
= �i�i . Since �∗

i
 is positive, bad news 

(
𝜀t−1 < 0

)
 have 

a higher effect on the volatility than good news 
(
𝜀t−1 > 0

)
 . Notice that, because the 

distribution is asymmetric, �t is the conditional mode rather than the conditional 
mean.

Dependence specification

The split copulas introduced in “Split copulas” section could be defined using 
any copula family for C1 and C2 . Also, the closed form for the CoVaR up and 
the CoVaR down as along as the copulas C1 and C2 are Archimedean copulas. 
In our numerical implementation, we have many choices for the copulas C1 and 
C2 . Based on the ability of the Clayton copulas to capture extreme dependence 
and after testing the best fit using Schwartz Criterion, Akaike Criterion, and Han-
nan–Quinn Criterion, the Clayton copula was selected. For more details on the 
Clayton copulas, we refer to Joe (1997). In the case of Clayton copula, the distor-
tion parameter � is not identified. Thus, it is normalized to � = 1 . It follows that 
the split copula is defined by assuming that both C1 and C2 to be Clayton copulas 
with parameters �1 and �2 , respectively. For instance, the characteristics of this 
copula are given in Table 1.

The Clayton copula is a member of the Archimedean copula family. It has a 
dependence parameter (−1,+∞)�{0} and generator function �(u) =

u−�−1

�
 . The 

perfect dependence is approached at � ⟶ +∞ , while independence is attained at 
� ⟶ 0 . The Clayton copula is preferred for modeling positive dependence and 

(5.7)�t = � + �rt−1 + ��t−1.

(5.8)�2
i,t
= �i + �i(�t−1 − �i)

2 + �i�
2
i,t−1

(i = 1, 2).

�2
i,t
= �∗

i
+ �i�

2
t−1

− �i�i�t−1 + �i�
2
i,t−1

(i = 1, 2),

Table 1  The main characteristics of Clayton copulas

CDF Parameter’s range Kendall’s tau Generator

max(
(
u
−� + v

−� − 1
)− 1

� , 0)
(−1,+∞)�{0} �

�+2

u
−�−1

�
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asymmetric tail dependence in the lower tail. The lower and upper tail dependence 
coefficients for the split copula using (3.1) and (3.2) become

and

Working with Clayton copulas allows us to obtain closed forms for CoVaR risk 
measures as well as introducing upper and lower tail dependence. These two fea-
tures motivate the choice of the Clayton copula. Other copulas could be considered 
but our analysis is limited to the case of a split copula based on Clayton copulas. 
The density of split copula is given by

and

Using the quantile function of the marginal distribution in (5.6) , the closed forms 
for CoVaR risk measures given in (4.5) and (4.8) reduce to

for 𝛼 < 𝜏 and

for 𝛼 > 𝜏.

�L = (1 + �−�1)
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1

�1 ,
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−

1

�2 .
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Application

We implement our approach to assess the markets stock returns’ behavior when 
the US stock market is in extreme bad and good states (bear market vs. bull mar-
ket). Since the maximum likelihood estimation method is challenging to implement 
because of a large number of unknown parameters and the complexity of the model, 
we adopt the inference functions for margins approach (IFM), also known as the 
two-step maximum likelihood estimation approach. This approach of estimation has 
been introduced by Shih and Louis (1995) and Joe and Xu (1996) where the mar-
gins’ parameters are estimated first, then the dependence parameters are estimated 
in the second step. Patton (2006) has proven that this two-step estimation yields 
asymptotically efficient estimators and normally distributed parameter estimates.

We initialize the estimation using 10% of the observations and utilized an expand-
ing window by adding an extra observation at a time to reestimate the model param-
eters and compute the quantiles for next period forecasts.

We consider the market daily prices of Brazil, Canada, China, Germany, India, 
Japan, Russia, UK, and US for the period from April 2005 to June 2020, a sample 
of 3973 observations. The price indices data are collected from Datastream database 
while the exports, consumer sentiment index, and exchange rates data are collected 
from St. Louis fred data.2 We compute the continuously compounded returns from 
the downloaded price series. In Table 2, we report the mean, maximum, minimum, 
standard deviation, skewness, and kurtosis. We notice that the sample means are all 
positive except for Brazil, Russia, and UK. The distributions of returns exhibit high 
kurtosis as an indicator of the presence of extreme returns. The skewness is nega-
tive, attesting for a higher likelihood of a loss than a gain of the same amount. The 
normality and symmetry of the distributions are rejected. This is in line with what is 
generally acknowledged in the literature (Fama 1965 and Eling 2008).

Figures 1 and 8 display the variations in returns. The movements of returns are 
relatively slow when the markets are in good condition. Otherwise, they move 

Table 2  Descriptive statistics for each market’s index

Brazil Canada China Germany India Japan Russia UK USA

Mean − 0.001 0.002 0.016 0.032 0.014 0.010 − 0.009 − 0.012 0.022
Median 0.034 0.058 0.046 0.000 0.000 0.039 0.028 0.045 0.037
Maxi-

mum
16.856 11.699  12.370 8.915 19.051 11.644 25.313 12.219  10.957

Mini-
mum

− 19.661 − 14.067  − 14.807 − 9.561 − 15.983 − 11.186 − 21.873 − 14.214 − 12.765

Std. Dev. 2.360 1.466  1.607 1.730 1.650 1.409 2.263 1.470 1.291
Skew-

ness
− 0.567 − 1.011 − 0.254 − 0.585 − 0.137 − 0.320 − 0.288 − 0.423  − 0.554

Kurtosis 12.620 17.532  11.403 7.165 14.636 9.990 18.967 15.284 16.779

2 https:// fred. stlou isfed. org/.

https://fred.stlouisfed.org/
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faster in the presence of bad conditions due to the arrival of bad news to the mar-
ket. In this figure, we observe that returns are more volatile in crisis periods. The 
clustering of high returns and low returns reveals that the volatility is time-vary-
ing and persistent.

Table 3 reports maximum likelihood parameter estimates for the marginal con-
ditional distributions. Each of the table’s columns gives results for the full sample 
period estimation for each country. Rows three and four give the estimates of the 
coefficient of the autoregressive part ( � ) and the moving average part ( � ) for the 
conditional mode (Eq. (5.7)). In the case of Canada, Germany, Russia, the UK, and 
the US, the conditional mode is high when the past return is high ( 𝜙 > 0 and statisti-
cally significant). It seems that past returns have no effect on the conditional mode 
for the case of Brazil, China, India, and Japan.

When bad news arrives, the conditional mode increases in the case of Canada, 
Germany, Japan, Russia, the UK, and the US ( 𝜑 < 0 and statistically significant) 
while it is non-significant in the case of Brazil, China, and India. Regarding the 
volatility regimes, we observe that the volatility is persistent in the bad and good 
regimes of the financial markets. Both �1 and �2 are higher than 0.79, showing that 
today’s volatility is strongly dependent on past volatility. The leverage effect is statis-
tically significant for both regimes ( �1 and �2 are statistically significant and positive) 
except for Canada, where it is negative. In the case of China and Russia, there is no 
leverage effect in the good regime ( �2 is not statistically significant). This means that 
in most countries, bad news has a higher effect on volatility than good news. This 
effect is even more substantial in the bad state of the market ( 𝛿1 > 𝛿2 ). The shape 
parameter � is smaller than two for all countries, revealing that the returns’ distribu-
tions have fat tails.3

Fig. 1  Index’ returns where the shaded areas represent the periods of economic recessions and financial 
crises

3 Recall that for � = 2 we get the tails of the normal distribution.
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The independence from the US market is firmly rejected for all countries when 
the US market is in bad ( �1 is statistically different from zero as stated in Table 4).4 
However, only Canada and UK depend on the US market when the US market is in a 
good state, and this effect is small.

To capture the effect of the US market on the other countries’ markets in the bad 
and good extreme states, we compute the ratios RL

�,�
 and RU

�,�
 where the values of � 

and � are set to be 1%. We also consider the cases � = � = 5% and � = � = 10% . In 
this section, we limit our analysis to the case � = � = 1% and the results for the 
other values of confidence level are given in the Appendix. Table  5 presents the 
results for RL

�,�
 and RU

�,�
 . The table shows that, conditional on the US market being 

extremely bear or bull, the potential expected systematic extreme loss percentage 
change and the potential expected systematic extreme gain for all countries are not 
equal. This suggests that there is an asymmetric spillover effect conditional on the 
state of the US financial market. The effect is also different across countries. For all 
countries except Japan, the extreme systematic loss is much higher than the system-
atic extreme gain. We notice the opposite in the case of Japan. The case of Japan 
exhibits different behavior. The Japanese financial market sees its potential expected 
extreme loss decreasing by 29.43% when the US market is in its extreme bad state 
and its potential expected extreme gain increasing by 7.03% when the US market is 
in its extreme good state. The results show that all countries’ markets (except Japan) 
lose more when the US market is extremely bad, but they also gain more when the 
US market does extremely well (except China). Alternatively, we find that the Chi-
nese market suffers when the US market does extremely well or extremely poorly. 
As opposed to the Chinese financial market, the Japanese financial market generates 
less losses when the US market is in its extreme bad state as its potential expected 
extreme loss decreases by 29.43% conditional on bear US market and its potential 
expected extreme gain increases by 7.03% when the US market is in its extreme 
good state. A better illustration of our results is given in Figs. 2 and 3 which display 

Table 5  The potential expected systematic extreme loss and gain percentage changes RL

�,�
 and RU

�,�
 

( � = � = 1%)

The definitions of the ratios RL

�,�
 and RU

�,�
 are given in Eqs. 2.5 and 2.6

Extreme loss % change

Brazil Canada China Germany India Japan Russia  UK

18.024 7.878 20.207 11.489 6.113 − 29.427 23.879  7.946

Extreme gain % change

Brazil Canada China Germany India Japan Russia  UK

6.767 3.054 − 36.818 6.064 4.313 7.030 3.150  6.734

4 Recall that for Clayton copula, independence is met when �1 = �2 = 0.
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the historical values of the ratios RL
�,�

 and RU
�,�

 when � = � = 1% for each country. 
This figure shows the asymmetric response for each country and the differences 
between countries’ responses to good and bad news. It also highlights the impact of 
the financial crisis on the spillover across countries.

Now, we focus our analysis on the impact of the financial crisis on the spillover. 
We observe the same results occur if we consider before the crisis (the financial cri-
sis of 2007–2008),5 during the crisis, after the crisis periods and during the Covid-
19 pandemic. Table 6 presents the values for the ratios RL

�,�
 and RU

�,�
 for these four 

periods. We notice that the effect is higher during and after the crisis and during the 
Covid-19 pandemic periods than before. This is because the US financial crisis rap-
idly developed and spread into global economic shock, resulting in several European 
and international banks failures, declines in various stock indexes, and large reduc-
tions in the market value of equities and commodities. This causes a de-leveraging 

Fig. 2  The historical values for the potential expected systematic extreme loss RL

�,�
 with � = � = 1%

5 The global financial crisis of 2007–2008 is considered by many economists to have been the most 
severe financial crisis since the Great Depression of the 1930s.
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of financial institutions since they are pushed to sell assets to pay back obligations 
that could not be refinanced in frozen credit markets. As a result, the insolvency 
problem is accelerated and causes a decrease in international trade, as is shown in 
Table 7. This table reports the averages of the US commercial balance deficit to the 
total US imports ratio for each country and the US consumer sentiment index over 
four non-overlapping periods: pre-crisis, crisis, post-crisis, and covid-19.6 The ratio 
is decreasing for all countries in the crisis period and Covid-19 pandemic, but the 
highest decrease is experienced in the case of China. In the case of Russia, the ratio 
increased by more than 100% during the Covid-19 compared to before the financial 
crisis period. This significant increase of the ratio in the case of Russia is due to the 
currency crisis developed at the end of October 2008, where most of the currencies 
start depreciating compared with the US dollar. The tragedy of the crisis pushed 
investors to transfer their wealth into stronger currencies such as the yen and the 

Fig. 3  The historical values for the potential expected systematic extreme gain RU

�,�
 with � = � = 1%

6 The data are collected from the US Census Bureau on a monthly frequency for the period 1963–2018.
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Table 6  The potential expected systematic extreme loss and gain percentage changes RL

�,�
 and RU

�,�
 for 

The three non-overlapping periods: pre-crisis, crisis, and post-crisis ( � = � = 1%)

The definitions of the ratios RL

�,�
 and RU

�,�
 are given in Eqs. 2.5 and 2.6

Extreme loss % change

Brazil Canada China Germany India Japan Russia UK

Pre-Crisis
11.249 − 0.030 2.518 4.502 − 20.043 − 39.885 9.987 − 4.879
Crisis
14.170 6.410 4.403 4.587 − 14.413 − 41.155 14.572 − 1.399
Post-Crisis
19.242 8.449 24.997 13.574 12.451 − 25.885 26.836 10.844
Covid-19
22.244 7.831 40.174 18.705 19.04374 − 23.16559 19.444 14.917

Extreme gain % change

Brazil Canada China Germany India Japan Russia UK

Pre-Crisis
2.020 1.785 − 35.633 2.243 2.898 16.248 0.583 6.803
Crisis
4.674 3.261 -3.951 4.958 4.313 10.953 1.474 9.198
Post-Crisis
7.444 3.003 − 46.171 6.456 4.352 5.719 3.670 6.026
Covid-19
10.037 6.614 − 65.264 5.520 1.408 9.143 5.631 6.268

Table 7  The averages of the US commercial balance deficit to the total US imports ratio for each country 
and the US consumer sentiment index over four non-overlapping periods: pre-crisis, crisis, post-crisis, 
and covid-19

Brazil Canada China Germany India Japan Russia  UK US CSI

Pre-Crisis
10.80 21.95 409.27 95.89 135.23 120.01 145.08 5.11 93.13
Crisis
− 7.021 22.63 379.17 78.40 52.11 113.28 201.03 9.49 71.86
Post-Crisis
− 24.55 8.79 302.71 122.06 87.37 102.74 208.11 -0.88 85.38
Covid-19
− 35.35 9.13 260.54 101.98 76.05 75.20 316.35 -9.61 82.46
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Swiss franc. This behavior caused a reduction in the degree of competitiveness of 
Chinese traded goods and services. Table 8 shows that all currencies are appreciated 
vis a vis the US dollar during the 2008 crisis period.7 However, after the crisis 
period, they are stating their depreciation, while the Chinese yuan remains more or 
less stable on average.8 This negative effect of the exchange rate on the Chinese 
financial market is exacerbated by the decrease of the US Consumer Sentiment 
Index as shown in the last column of Table 7. The Covid-19 pandemic does more 
harm to China. During this period, the extreme change in losses is about ten times 
higher than during the 2007–2008 crisis when the US market is in its extreme bad 
state, as column three of Table 6 shows (40.17 versus 4.40). In addition and during 
the Covid-19 pandemic period, the extreme change in gains is about sixteen times 
lower than during the 2007–2008 crisis, as column three of Table 6 shows (-65.26 
versus 3.95). These very extreme results are in large part due to the recent commer-
cial war between the two countries.

Comparing these results to the obtained values when � = � = 5% and 
� = � = 10% (see Appendix Tables 9,10,11,12) show that our results are robust to 
the confidence levels for most countries and we can confirm the existence of an 
asymmetric response to bad and good news across countries. Based on 
Figs. 2, 3, 4, 5, 6, and 7, we can claim that the impact remains similar regardless 
which confidence levels are used with the same trend and the same asymmetric 
behavior across countries with some few exceptions. In general, we observe the fol-
lowing ordering RL

𝛼1,𝛽1
< RL

𝛼2,𝛽2
 for 𝛼1 < 𝛼2 and 𝛽1 < 𝛽2 . This ordering is due to the 

fact that the gap between the conditional distribution and the unconditional distribu-
tions get narrower as the confidence levels decrease. A such observation does not 
apply in the context of the Chinese market for which we notice the opposite 
(Tables 7 and 8). One can explains this by the fact that conditional on the American 
market the distribution of returns on the Chinese market becomes heavier. For the 

Table 8  The averages of the country currency exchange rate per one US dollar over four non-overlapping 
periods: pre-crisis, crisis, post-crisis, and covid-19

Brazil Canada China Germany India Japan Russia  UK

Pre-Crisis
2.567 1.227 8.165 0.800 44.876 110.785 28.148 0.544
Crisis
1.935 1.095 7.135 0.712 44.378 104.837 27.495 0.563
Post-Crisis
2.853 1.177 6.529 0.823 60.669 101.501 48.472 0.690
Covid-19
5.348 1.357 7.011 0.882 75.050 107.247 71.122 0.796

8 Exchange rates are measured as the number of units of the country currency per US dollar.

7 The exchange rates are collected from the St Louis Federal Reserve at: https:// fred. stlou isfed. org/

https://fred.stlouisfed.org/
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upper side of the distribution, the behavior is more irregular and we cannot claim to 
observe such a ordering for most of the countries.

To test whether there is a difference between the Potential Expected Systematic 
Extreme Loss and the Potential Expected Systematic Extreme Gain 
( difference = CoVarL

�,�
− CoVarL

�,�
 ), we conducted three equality tests: the t-test for 

equality of the means, the Wilcoxon/Mann–Whitney test for equality of medians and 
the F-test for equality of variances. As shown in Tables 16, 17, and 18, all the tests 
strongly reject the null hypothesis for all countries as the P-values are below any 
conventional significance level. This result is enforced by the kernel non-parametric 
densities estimation (Fig. 8) of the difference between Potential Expected System-
atic Extreme Loss and the Potential Expected Systematic Extreme Gain. If there is 
no difference between the Potential Expected Systematic Extreme Loss and the 
Potential Expected Systematic Extreme Gain, the density should be degenerate and 
the graph must put all the mass at zero. On the contrary, the graph shows that the 
density is not degenerate and put most of the mass away from zero for all countries.

Discussion of results

Our results suggest that an extreme negative shock to the US causes investors to 
become cash-seeking, inducing them to sell stocks in other countries and causing 
a contagion effect. The simultaneous intense selling of stocks generates a consider-
able decrease in the asset prices of other countries. Kyle and Xiong (2001) state that 
‘When convergence traders9 suffer trading losses, and they have a reduced capac-
ity for bearing risks. This motivates them to liquidate positions in both markets, 
resulting in reduced market liquidity, increased price volatility in both markets, and 
increased correlation. Through this mechanism, the wealth effect leads to conta-
gion.’ Yuan (2005) built a model of contagion and found similar results. Based on 
copula mixture models for dependence, Rodriguez (2007) found that the depend-
ence of the extreme returns is low for the low variance regime and high for the high 
variance regime. The author concluded that both lower and upper tail dependence 
increases in the crisis period. Our results in Table 5 are consistent with his results 
since we find that, conditional on the state of the US market, the potential expected 
systematic extreme loss percentage change and the potential expected systematic 
extreme gain percentage change are both higher during the crisis period. However, 
we find that they remain high in the pre-crisis period, testing for the persistence 
of the contagion effect. In addition, we find that the presumption of the fact that 
the contagion effect is stronger for extreme negative returns than for extreme posi-
tive returns is in accordance with our results, as shown in Table 5, and this finding 
becomes stronger, given the results in Table 6. Bae et al. (2003) find similar results.

The increasing economic integration and globalization limited the upside gains 
because it is unlikely that all the countries have the same ability to outperform at 
the same time when economic conditions are good. On the other side, the economic 

9 By convergence traders, the authors mean the financial intermediaries.
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integration does not limit the downside risk due to decreasing potential to diversify 
and hedge the risk in bad times due to the strong connection between international 
markets. Therefore, global markets fall a lot further together in the bad state than 
they rise together in the good state. Another explanation for asymmetric spillover is 
that investors exhibit strong home bias in their preferences and overweigh domestic 
securities in crisis periods rather than diversify their portfolios across international 
markets due to increasing asymmetric information, see Coeurdacier and Rey (2013), 
Chan et al. (2005), and Coval and Moskowitz (1999). Ardalan (2019) surveyed the 
literature attempting to explain the home bias puzzle. The home bias is also the 
result of asymmetric expectations leading to overconfidence in local firms Kilka and 
Weber (2000). This lack of international diversification causes the rise of the level 
of risk and reduces stock prices heavily in foreign markets implying a significant 
increase of extreme losses in these markets.

The effect of the co-movements in international stock markets is explained by 
the differences in the inter-connections between the US stock market and the other 
global markets. For example, the openness of international trade, the accessibility to 
each stock market, and also to the policies of each monetary and financial authority 
lead to the differences between different financial markets. The disparity in response 
to the good and the bad news in the US market is specific to each market and reflects 
the nature of the connection between this market and the US market. In the case of 
China, the explanation of our findings cannot be done without relating the behavior 
of the stock markets to the macro-economic situation for the American and Chinese 
economies. The macro-economic factors such as short-term interest rates, the open-
ness of the capital account, and the variability of foreign exchange rates are behind 
the behavior of the Chinese market given a US bull. The trade war is also a signifi-
cant factor and affected the performance of the Chinese stock market. In 2018, the 
American administration started imposing tariffs on Chinese imported goods and 
announced tariffs on solar panels and washing machines, hundreds of agricultural 
goods, and high-tech industries. Wang et  al. (2021) studied Chinese firms’ stock 
market reactions to the US–China trade war. Using stock market returns of listed 
firms, they found a negative effect of the trade war. They also found that the impact 
is strong when it comes to firms exposed directly to tariff increases.

Conclusion

This paper considers the problem of assessing systematic risks in financial mar-
kets. Using a split-type copula to capture dependence between risks and CoVaR 
risk measures to evaluate the co-movements in the tails, we derive potential 
expected systematic extreme loss and gain percentages. These percentages show 
how countries would respond to the extreme movements in the US market. Based 
on the Clayton-Split copula family, closed-form expressions for these measures 
are derived. Our empirical application reveals that the contagion effect is dif-
ferent depending on whether the US financial market is in its extreme bad state 
or extreme good state. The contagion effect is more pronounced in the extreme 
bad state. The results also show that markets’ response to the systematic risk is 
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different for each country. Such a fact is consistent with the particularity of each 
market, and a fruitful avenue for future research will be to explain these differ-
ences in behavior using a panel macro-economic model. Another extension of 
our work would be to investigate the extreme systematic loss or gain for indi-
vidual assets in a given market. The framework and the results presented in this 
paper measure the impact of systematic spillover between different international 
markets but does not identify the factors driving the differences between coun-
tries’ responses to such a spillover. It is also important to study the extreme co-
movements using daily data or even intra-day data where the returns are subject 
to more volatility and skewness. Another interesting point that the current paper 
does not cover and could be a very interesting research topic is how the spillo-
ver spreads within each market. Addressing these questions would increase our 
understanding on how financial markets are linked both in good and bad times.

The results obtained in this paper are very informative for policy making. For 
instance, one can use our framework to study the systematic extreme co-move-
ments and their implications on the macro-economic policy as well as on the 
micro level for portfolio managers. At macro-economic level, a policy maker can 
use our framework to identify dependencies between markets in the extremes. It is 
also possible to measure and quantify the impact of an extreme loss or a gain in a 
given market on another market. For a portfolio manager, the framework could be 
useful to identify both potential gains and losses linked to the existence of system-
atic risks. The measures used in this paper could be applied to test the ability of 
portfolios to profit from potential systematic gains and minimize systematic losses.

Appendix

Proof of Theorem 1

�
��
(0, v∣�1, �2) is a bivariate copula. That is

• Ground function:

Since �1(u, v∣�1) and �2(u, v∣�2) are copulas then we have 
�1(0, u∣�1) = �1(u, 0∣�1) = �2(0, u∣�2) = �2(u, 0∣�2) = 0, thus

(9.1)�
��
(0, v∣�1, �2) = ��1(0, v

� ∣�1) 1

� = 0

(9.2)

�
��

(
u, 0 ∣ �1, �2) = ��1

(
u�

��
, 0∣�1

) 1

�

Iu⩽�

+ (1 − �)�2

((
u − �

1 − �

)�

, 0∣�2
) 1

�

(1 − Iu⩽�)

=0.



353Systematic extreme potential gain and loss spillover across…

• Uniform Marginals:

Recall that �1(1, u∣�1) = �2(1, u∣�2) = u and �1(u, 1∣�1) = �2(u, 1∣�2) = u , thus

and

• 2-non-decreasing:

We have to show that ���(u2, v2 ∣ �1, �2) − ���(u2, v1 ∣ �1, �2) − ���(u1, v2 ∣ �1, �2) + ���(u1, v1 ∣ �1, �2) ⩾ 0 
for all 0 ⩽ u1 ⩽ u2 ⩽ 1 and 0 ⩽ v1 ⩽ v2 ⩽ 1 . This is the result of �

2�SC(u,v,�,�)

�u�v
⩾ 0.

The density is given by

It is easy to notice that all the components of the density are positive given that 
0 < 𝜅 ⩽ 1 , it follows that �SC(u, v, �, �) =

�2�SC(u,v,�,�)

�u�v
⩾ 0 . Thus, �SC(.) is 2-non-

decreasing function.

(9.3)
�

��
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)�
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�
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Proof of Proposition 1

In the following proof, we dropped the time index for simplicity. With a slight 
change of the results of Box and Tiao (1973) and Kotz and Podgorski (2001), we get 
the CDF and the quantile functions of (5.1) as

and

Here, u is a uniform random variable (i.e., u ∈ [0, 1]) . The functions Γ(x) and �inc(x) 
are the Gamma function, the Gamma distribution CDF given by

and

The function � inv
inc

 is the quantile of Gamma distribution.
Let x ∼SEP(�, �1, �2, �) then by (5.2), the CDF is given by

where

and
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Let h =
t−�

�1
 then t = � + �1h and dt = �1dh

Using (9.7), we get,

If we let x = � in (9.12), we get

Thus

By using similar results as in (9.16) and (9.18), we get
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Thus

Pushing x to plus infinity in (9.18), we get

Therefore, we have

and

Quantile q of level p is given by

Results for ̨ = 5% and ˇ = 5%

Tables (9, 10,  and Figs. 4 and 5)
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Table 9  The potential expected systematic extreme loss and gain percentage changes RL

�,�
 and RU

�,�
 

( � = � = 5%)

The definitions of the ratios RL

�,�
 and RU

�,�
 are given in Eqs. 2.5 and 2.6

Extreme loss % change

Brazil Canada China Germany India Japan Russia UK

44.736 46.025 13.171 37.078 34.985 − 10.291 28.764 13.483

Extreme gain % change

Brazil Canada China Germany India Japan Russia UK

22.263 12.000 − 40.757 16.363 1.809 23.297 − 1.317 15.318

Table 10  The potential expected systematic extreme loss and gain percentage changes RL

�,�
 and RU

�,�
 for 

The four non-overlapping periods: pre-crisis, crisis, and post-crisis ( � = � = 5%)

The definitions of the ratios RL

�,�
 and RU

�,�
 are given in Eqs. 2.5 and 2.6

Extreme Loss % change

Brazil Canada China Germany India Japan Russia UK

Pre-Crisis
40.766 39.102 5.520 30.895 − 4.424 − 21.489 11.933 28.385
Crisis
44.196 43.077 4.758 32.209 − 2.802 − 20.887 16.573 26.443
Post-Crisis
44.981 47.046 15.681 38.582 18.464 − 7.075 32.598 37.552
Covid-19
41.491 36.337 25.292 39.800 22.269 − 0.680 26.331 38.115

Extreme gain % change

Brazil Canada China Germany India Japan Russia UK

Pre-Crisis
9.644 8.536 − 49.978 10.281 7.716 52.830 − 8.889 23.912
Crisis
13.651 12.935 − 15.720 16.810 5.653 31.467 − 4.450 34.291
Post-Crisis
15.917 11.756 − 47.697 16.345 0.622 20.426 − 0.263 18.821
Covid-19
12.272 21.008 − 61.228 17.185 − 4.881 15.906 − 3.666 11.077
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Fig. 4  The historical values for the potential expected systematic extreme loss RL

�,�
 with � = � = 5%
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Results for ̨ = 10% and ˇ = 10%

Tables 11, 12 and Figs. 6,7.

Fig. 5  The historical values for the potential expected systematic extreme gain RU

�,�
 with � = � = 5%

Table 11  The potential expected systematic extreme loss and gain percentage changes RL

�,�
 and RU

�,�
 

( � = � = 10%)

The definitions of the ratios RL

�,�
 and RU

�,�
 are given in Eqs. 2.5 and 2.6

Extreme loss % change

Brazil Canada China Germany India Japan Russia UK

67.527 88.217 10.343 59.162 21.275 8.647 33.774 58.539

Extreme gain % change

Brazil Canada China Germany India Japan Russia UK

10.401 16.673 − 44.840 12.749 − 8.695 28.358 − 11.417 23.111
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Table 12  The potential expected systematic extreme loss and gain percentage changes RL

�,�
 and RU

�,�
 for 

The four non-overlapping periods: pre-crisis, crisis, and post-crisis ( � = � = 10%)

The definitions of the ratios RL

�,�
 and RU

�,�
 are given in Eqs. 2.5 and 2.6

Extreme loss % change

Brazil Canada China Germany India Japan Russia UK

Pre-crisis
70.805 85.254 2.831 62.452 17.108 − 2.120 15.087 48.519
Crisis
71.239 82.634 7.488 57.723 9.189 − 2.506 20.554 51.598
Post-crisis
66.428 89.938 11.275 59.534 24.812 12.031 37.936 60.749
Covid-19
60.834 74.790 17.139 54.698 25.598 14.616 31.719 52.548

Extreme gain% change

Brazil Canada China Germany India Japan Russia UK

Pre-crisis
12.029 13.744 − 56.308 13.848 6.439 50.141 − 19.871 53.901
Crisis
12.623 17.422 − 25.618 16.307 − 1.304 31.681 − 13.767 42.975
Post-crisis
9.764 16.509 − 50.088 11.737 − 11.066 27.064 − 10.548 16.930
Covid-19
2.964 17.346 − 60.174 5.586 − 17.357 12.474 −19.241 − 1.920
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Fig. 6  The historical values for the potential expected systematic extreme loss RL

�,�
 with � = � = 10%



362 M. Bouaddi, K. Moutanabbir 

Tests of conditional location and scale parameter models

Tables 13, 14 and 15

Fig. 7  The historical values for the potential expected systematic extreme gain RU

�,�
 with � = � = 10%

Table 13  Schwartz Criterion for conditional location and scale parameter models

Model Canada Japan Germany UK Brazil India Russia China US

GARCH 11600 12773 13312 12055 16800 13605 15916 14410 10372
AGARCH 11475 12566 13036 11808 16562 13265 15566 13897 9878
EGARCH 11527 12682 13181 11932 16760 13542 15903 14441 10213
TGARCH 11548 12698 13208 11949 16744 13535 15859 14417 10231
PARCH 11535 12681 13174 11924 16745 13536 15865 14426 10178
Component GARCH 11615 12772 13318 12064 16803 13612 15934 14421 10379
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Difference between CoVarL
˛,ˇ

 and CoVarU
˛,ˇ

Tables 16, 17, 18 and Fig. 8

Table 14  Akaike Criterion for conditional location and scale parameter models

Model Canada Japan Germany UK Brazil India Russia China US

GARCH 11562 12735 13274 12017 16762 13567 15878 14372 10335
AGARCH 11425 12516 12986 11758 16512 13214 15516 13846 9828
EGARCH 11483 12638 13137 11888 16716 13498 15859 14397 10169
TGARCH 11504 12654 13164 11905 16700 13491 15815 14373 10187
PARCH 11485 12630 13124 11873 16695 13485 15815 14375 10127
Component GARCH 11565 12721 13267 12014 16752 13562 15884 14371 10328

Table 15  Hannan–Quinn Criterion conditional location and scale parameter models

Model Canada Japan Germany UK Brazil India Russia China US

GARCH 11576 12749 13287 12030 16776 13581 15892 14385 10348
AGARCH 11443 12534 13003 11776 16530 13232 15534 13864 9846
EGARCH 11498 12653 13153 11904 16732 13514 15875 14412 10185
TGARCH 11520 12670 13179 11921 16715 13507 15831 14389 10202
PARCH 11503 12648 13142 11891 16713 13503 15833 14393 10145
Component GARCH 11583 12739 13285 12032 16770 13580 15902 14389 10346

Table 16  Tests of difference between Potential Expected Systematic Extreme Loss and the Potential 
Expected Systematic Extreme Gain (Coverage rate of 1%)

Test Canada Japan Germany UK Brazil India Russia China

Mean Student-t 83.97 142.51 119.47 96.67 136.64 124.94 100.66 142.51
P-Value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Median W/MW 73.19 73.19 73.19 73.19 73.19 73.19 73.19 73.19
P-Value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Variance Fisher-F 197.57 57.03 777.06 439.09 522.44 319.47 583.93 483.68
P-Value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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