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Abstract Evaluating portfolio performance under different stress scenarios is an

important risk management tool. Designing stress scenarios for portfolios can be

complex as it involves determining potential market changes in different asset

classes and risk factors in a coherent manner that are extreme but plausible. This

paper describes an approach to design such stress scenarios where the portfolio

performance depends on market changes in many risk factors and asset classes. The

scenario design is customized for the portfolio and helps describe plausible market

changes that would have the most adverse impact on the portfolio performance. The

approach relies on historical data and derives the scenario based on market changes

during historical periods that would have been the most stressful for the given

portfolio. The proposed approach also allows one to adjust the level of severity and

if desired incorporate any specific market conditions of concern (such as scenario

design for increasing interest rate environment and/or certain level of unemploy-

ment rate, etc.). The main advantages of the proposed approach are (a) flexibility in

scenario design with and without constraints on market conditions with

adjustable levels of severities, (b) computational simplicity, (c) scalability to any

number of market risk factors, (d) no need of prior assumptions on joint distribution

of market risk factors, and (e) transparency of the results as they are developed from

market changes during actual stressful historical periods.
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Introduction

Apart from value at risk (VaR), stress tests are commonly used in portfolio

management to quantify the downside risk of portfolios. The goal of stress tests is to

evaluate losses in extreme but plausible market conditions. For financial institutions

stress tests also play an important role in Federal Reserve’s capital adequacy tests

(Comprehensive Capital Analysis and Review 2016). Stress scenarios are often

static and used to quantify economic impact to the portfolio under a specific market

condition such as 2008 financial crisis. Such static scenarios that do not take into

consideration the portfolio risk profile are not useful in answering questions such as

‘‘what are the worst market conditions for the given portfolio?’’ Reverse stress

testing, an approach encouraged by regulators (such as FSA (FSA)), aims to address

this question by focusing scenario design on the specific vulnerabilities of the

portfolio. In reverse stress testing one starts with a question such as ‘‘what market

condition would result in financial failure of the institution’’ and work backward

from there to identify the sequence of events that would result in market conditions

reaching the point that result in failure of the institution. Since such an exercise

helps identify events that would cause the institution to fail, it is also very useful in

business planning so that the firm takes measures to protect itself from such

catastrophic events. Because of its focus on possible events that could cause firm’s

failure, apart from market risk, reverse stress testing could also include liquidity and

funding risk, etc., as well as idiosyncratic events that are critical to the firm’s

survival. Given the starting point of failure of firm’s business model, these

approaches are less useful for portfolio management where failure is hard to define.

The objective of this paper is to propose an approach for creating plausible

market stress scenarios while also incorporating portfolio vulnerabilities and risk

profile as is the case in reverse stress testing. Here we propose algorithms to

addresses questions such as ‘‘what would be the expected market changes such that

the resulting portfolio losses are unlikely to occur more than once in N years’’? In

some instances one is interested in stress scenario design when certain types of

market conditions are specified—for example, quantifying potential downside in an

increasing interest rate and/or increasing crude oil price environment. The proposed

approach can also be used to answer such questions as ‘‘what would be the expected

market changes in an environment of increasing rates so that the resulting portfolio

losses are unlikely to occur more than once in N years’’?

There have been numerous approaches proposed in recent years for scenario

design such as Breuer et al. (2009), Flood and Korenko (2012), Glasserman et al.

(2015), and Rebonato (2010). Scenario design approaches can be broadly classified

into three categories—(a) expert judgment, (b) historical data based, and (c) ana-

lytical/quantitative approaches based on some assumptions on distribution of the

underlying risk factors. In the first approach, one relies on expert judgment such as

views of economists for potential market changes for the scenario of concern. Apart

from being fairly subjective, the approach may be difficult to implement for

portfolios whose value depends on thousands of market risk factors as it may be

difficult to provide coherent market changes for thousands of risk factors using

324 K. M. Nagpal



expert judgment. Historical data-based portfolio stress designs are commonly used

and are typically based on the market changes during a specified period that would

have been quite stressful for the portfolio. This approach of choosing market

changes over a specified historical period provides transparency and is easy to

implement but has certain drawbacks such as inability to adjust the level of severity

of market shocks since choosing a particular stressful period uniquely determines

the scenario. Additionally, stress scenarios based on specific historical periods may

not be particularly meaningful if those dates do not correspond to period of extreme

stress for the given portfolio.

In analytical approaches such as Breuer et al. (2009), Flood and Korenko (2012),

Glasserman et al. (2015), and Rebonato (2010), stress scenarios are designed based

on certain assumptions on the distributions of the market risk factors (for example,

elliptic distribution) or assumptions about conditional probabilities of events.

Assumptions on the statistical distributions of the market risk factors allow the

authors to quantify plausibility and capture the tradeoff between scenario severity

and plausibility. Distributional assumptions also allow one to address the inverse

problem (for example, as in Flood and Korenko (2012))—‘‘what market changes are

most likely to produce portfolio losses above a certain level?’’ The proposed

approach in the paper differs from these references in one fundamental way—

instead of starting with some distributional assumptions on the market risk factors,

here the statistical properties of the market risk factors are derived from their

changes during the most stressful historical periods for the given portfolio. Thus

instead of a priori assumptions on the statistical properties of the market risk factors,

they are determined after the identification of the most stressful historical periods

for the given portfolio. Since the most stressful historical periods for two portfolios

with different risk profiles are likely to be different, the statistical properties and

correlations of the underlying risk factors used for scenario design would be

different for two different portfolios. The proposed approach also does not suffer

from artificial ‘‘dimensional dependence’’ of the scenario design that arises in some

analytical approaches. For example Breuer et al. (2009) have shown that without

any adjustments, adding market risk factors that are irrelevant to the portfolio

performance may impact the plausibility results or result in different shifts for the

same risk factors. The proposed approach does not suffer from such dimensional

dependence. Indeed if the portfolio depends on N market risk factors, the final

scenario design for the specified level of plausibility has the same market changes

for the N relevant risk factors regardless of the number of additional irrelevant risk

factors that are included in the scenario design.

The proposed approach can be viewed as a combination of historical and

analytical approaches. Unlike typical historical stress scenario design where market

shifts are obtained from changes in a particular historical period, the proposed

approach is based on the synthesis of multiple historical periods that would have

been stressful for the portfolio. Reliance on historical data adds transparency to the

scenario design and also provides deeper understanding of market conditions that

could result in such a stress scenario. The proposed approach relies on the answers

to the following two fundamental questions:
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If one had held the portfolio for the entire duration of historical data,

(a) what would have been the frequency of stressful periods (how many times

would the portfolio have suffered losses above a certain threshold level)?

(b) what would have been portfolio losses in each of those stress periods

identified in step (a)?

By incorporating both the frequency of occurrence of stressful periods as well as

portfolio loss severities in those periods, one can adjust plausibility and severity in a

coherent manner that is consistent with the historical data. The plausibility of the

designed scenario is characterized in terms of ‘‘one in N year event’’ and increasing

N allows one to increase the severity of the stress scenario. Suitably adjusting the

possible frequency/likelihood of the scenario, allows one to scale the scenario to the

desired level of severity while maintaining the relative changes of market risk

factors (correlations) consistent with those in stressful historical periods.

The main advantages of the proposed approach are:

1. Transparency about the scenario risk factor changes due to reliance on historical

data. Knowledge of the events and economic conditions in the historical

stressful periods that are used for scenario design, provide deeper insights about

market conditions that could result in such a stress scenario.

2. Customization of scenario design based on the portfolio risk profile. Since the

scenario design is based on worst historical periods identified for the given

portfolio, the scenario is specifically designed for the given portfolio. Thus the

risk factor statistical properties assumed in the scenario construction depend on

the portfolio risk profile.

3. The approach provides a consistent framework to compare the downside risk of

different portfolios. By comparing 1 in N year losses of two different portfolios

derived from the same historical data, one can compare the downside risk for

the two different portfolios even though the stress scenarios for the two

portfolios could be quite different.

4. Ability to customize the level of severity and plausibility while maintaining the

relative market changes and correlations observed during the stressful periods.

The scenarios are described as 1 in N year events and by increasing N, one

increases the level of severity.

5. Stability of results as additional risk factors are introduced or risk profile is

changed by a small amount.

6. Ability to incorporate some desired market conditions for the scenario (for

example, design a scenario with combinations of some conditions such as rates

increase/decrease, USD strengthens/weakens, and/or unemployment rate above x).

7. Computationally simple algorithm that does not involve any complex stochastic

models for risk factors or Monte Carlo simulations.

The main disadvantage of the proposed approach as with any other historical

data-based scenario design is that the scenario shifts and correlations are informed

by the historical data and thus may not be very useful in scenario design for events

that have no historical precedence. As observed by Alfaro and Drehmann (2009),
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unless the prevailing macro conditions are already weak, stress scenarios designed

based on historical data are often not sufficiently severe. At the same time if the

stress scenarios deviate materially from any historical precedence, they may lack

credibility and be hard to justify. For scenario designs to be sufficiently stressed

using the proposed approach, it is thus preferable to have sufficiently long historical

data so that it includes some periods that would have been sufficiently stressful for

the given portfolio.

The sections that follow will provide an algorithm and an example for:

• Unconstrained scenario design Determine the changes in all risk factors that

impact the portfolio value such that the level of loss could occur only once in

N years for the given portfolio;

• Constrained scenario design The same objective as above under some

constraints on market changes (e.g., interest rates increase and/or oil prices fall).

Scenario design inputs

In this section, we describe all the inputs and design choices that are used in the

scenario design.

Quantifying portfolio value change from risk factor changes

Portfolio risk profile is a key input in the proposed scenario design methodology.

This provides a link between changes in markets (the risk factors such as equity

prices, rates for different maturities, exchange rates, implied volatilities) and the

NPV for the portfolio. In cases where the underlying portfolio NPV depends on

numerous risk factors (for example, greater than thousand) and computational time

is a constraint, it may be preferable to use a simpler proxy portfolio for scenario

design with sensitivities to fewer market parameters. Since the objective in scenario

design is to determine market changes and not estimate the precise portfolio losses

in a particular scenario, it is not necessary that the NPV of the proxy portfolio match

exactly that of the given portfolio as long as the portfolio losses of the proxy

portfolio have strong correlation to the losses in the given portfolio. This could, for

example, be tested by historical correlation of NPV changes of the actual and the

proxy portfolio. If a simpler proxy portfolio is used for the scenario design with

fewer risk factors than required for the actual portfolio, we will describe later how

one can determine shifts for all the market risk factors (regardless of the number) in

a coherent manner that is consistent to the observed correlations between all the risk

factors in stressful periods.

Since the scenario design goal is to create stressful conditions that are very

infrequent, it is important that the historical data for risk drivers are sufficiently long

to cover periods of extreme market changes and correlations that would have been

quite stressful for the portfolio. In most cases, data spanning at least one economic

cycle or about 10 years are adequate for scenario design. We will also assume that
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historical data include daily values of all risk drivers—either obtained directly from

the market (such as stock values, interest and exchange rates) or inferred indirectly

from some market observables.

For determining the most stressful periods for the portfolio, one has to estimate

the portfolio value change (assuming no change to the portfolio) for risk factor

changes between any two specified dates. It is assumed that one has all the required

inputs to estimate portfolio value change based on risk factor changes between any

two dates. Let t be the as of date for scenario design (for example current date) and

let Xt be the set of all risk factor values needed to evaluate the portfolio value on

date t. It is assumed that for any past dates T1 and T2 within historical data range

with T2[ T1, we have all the risk factor values to compute change in portfolio value

at time t based on risk factor changes from time T1 to T2:

Change in time t portfolio value based on risk factor changes from T1 to T2
= Portfolio value (risk factor values at time t plus changes in risk factor values

from T1 to T2)

- Portfolio value (risk factor values at time t)

The above computation may be based on full revaluation of the portfolio or

estimated approximately using portfolio Greeks (Delta and Gamma) if computa-

tionally time is an issue.

Incorporating scenario attributes

In some instances we may be interested in stress scenario design with either

(a) certain type of market changes (such as rates increase and/or cruder oil prices

fall) or (b) certain type of macro-economic conditions (such as unemployment rate

greater than x %). For such scenario designs, we will assume that daily data are

available of the scenario attribute factors that allow us to identify whether any given

start and end date in the historical data satisfies the scenario attributes. The only

purpose of scenario attributes is to eliminate from historical data any start and end

dates that are inconsistent with the required scenario characteristics. For example if

the objective is to design a stress scenario where 10-year treasury yields increase, in

analysis of historical data to identify stressful periods we will ignore any start and

end date where the 10-year treasury yields did not increase.

Maximum time horizon for the stress scenario

This input describes that maximum period to be considered for change in market

conditions. In stress scenario analysis, the typical assumption is that the market

changes immediately by the specified amounts without any ability to hedge or

change the risk profile of the portfolio. From a practical perspective, it is thus not

very useful to have a stress period design based on shifts that would occur over a

long period (such as a year) for portfolios that are actively managed. This design

input should thus be based on the liquidity of the portfolio and the ability to actively

adjust the portfolio positions. As the maximum time horizon for stress scenario

increases, the severity of the stress scenario increases as the potential market

changes can be greater over a longer period.
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Scenario severity

The level of severity is quantified using the likelihood of encountering market risk

scenario of such level of severity.When the input for this field isN years, it implies that

we are interested inmarket changes so that we are likely to see that level of loss nomore

than once in N years. Increasing N produces more severe scenario for the portfolio.

The scenario design algorithm

In the scenario design the first step is to identify historical periods which would have

been stressful for the portfolio. In that regard, it would be helpful to have a precise

definition of what is implied by stressful period.

Definition Stress period for loss threshold level L The time period between date

A and date B is said to be a stress period for loss threshold level L if (a) the number

of days between A and B is less than the maximum time horizon for the scenario

design (input in ‘‘Maximum time horizon for the stress scenario’’ and one quarter

for example), (b) based on the changes in the risk factors between these two dates,

the portfolio loss would have exceeded amount L, and (c) market changes from

dates A to B meet the required scenario constraints if any (as described in

‘‘Incorporating scenario attributes’’).

The algorithm is divided into five main steps:

(a) Identification of all non-overlapping stress periods for loss threshold level L

For a specified loss level L, find all non-overlapping stress periods for loss

threshold level L in the historical data range (the risk factor changes over

those non-overlapping periods would result in portfolio loss greater than L).

(b) Obtain frequency of stress periods for loss threshold level L Estimate the

frequency of occurrence of stress periods for loss threshold level L from the

number of such periods in historical data.

(c) Obtain a calibration of loss distribution for portfolio losses in stress periods

for loss threshold level L Using a suitably chosen parametric form or extreme

value theory (EVT), obtain a calibration of portfolio loss distribution for

portfolio losses from all identified stress periods for threshold level L.

(d) Obtain the portfolio loss for the one in N year scenario from the calibrated

loss distribution From the calibrated loss distribution and the percentile of the

distribution for a one in N year stress event, obtain the target portfolio loss for

a one in N year stress event.

(e) Estimate the scenario shifts for the risk factors for the scenario portfolio loss

Obtain the expected scenario shifts that would result in the desired portfolio loss in

the stress scenario. The conditional estimate of risk driver shifts for the specified

scenario loss is obtained based on the correlation between portfolio losses and risk

factors in the identified historical stress periods for loss threshold level L.

We now describe each of the steps in more detail. In the proposed approach loss

threshold level L, a design parameter, is used to identify historical stress periods

Designing stress scenarios for portfolios 329



used in scenario design. At the end of the next section, we will comment on how this

parameter is chosen but for now let us assume that we have chosen a portfolio loss

threshold level L to identify stressful periods.

From the historical data determine all non-overlapping stress periods
for threshold level L

In this step, one sorts through all the possible start and end dates in the historical

data and determines the stressful historical periods for the portfolio that are

(a) shorter than maximum scenario horizon, (b) meet the requirements of the

scenario attributes if any, and (c) risk factor changes between the start and end dates

result in portfolio losses in excess of threshold amount L. We will discuss later how

one should choose the loss threshold level L. Let us assume the available historical

data for scenario design spans T years. If in a particular time period there are

multiple ways to choose the start date and end dates where loss level exceeds L, to

be conservative the pair of start and end dates are chosen that produce the maximum

loss for the portfolio.

Since the objective is to determine distinct historical periods with losses in excess

of amount L, any date that lies within one stressful period cannot be within another

stressful period. In other words, there should be no overlap between distinct

historical stress periods. To illustrate how the search algorithm for identification of

stressful periods works, let T_start and T_end be the start and end dates of the most

stressful period identified from the given historical data among all possible

combinations of start and end dates for which portfolio losses exceed amount L. Let

A be the set of all dates from the historical data that end just before T_start and let

B be the set of all dates from the historical data that begin just after T_end. Thus

neither A nor B contain any dates from T_start to T_end. When searching for the

next stressful period, the start and end dates are chosen from sets A and B with the

constraint that both start and end dates are in the same set—in other words one

identifies the worst period from sets A and B with portfolio losses above amount

L and then takes the worse one. The reason end date in set B is not considered for

start dates in set A is because such a period would cover the period between T_start

and T_end which in turn would result in period from T_start to T_end being

included in multiple historical stress periods. The search process continues in this

manner where the search takes place within several sets with the constraint that both

start and end dates are in the same set of dates where each set corresponds to one

continuous period. Whenever the worst time period is identified from the remaining

dates, the set that includes the worst period is split in two as described above. This

process continues until we have obtained all the historical stress periods with losses

in excess of L.

The following example illustrates the approach to determine the worst historical

periods. Let the historical data be the daily market data from Jan 1, 2006 to Dec 31,

2015. Then the algorithm will proceed as follows

(a) Determine all the possible start and end dates in the range from Jan 1, 2006 to

Dec 31, 2015 for which (a) the end date is within the scenario horizon
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window of the start date (for example, end date within one quarter of the start

date), (b) if specified, the scenario design attributes are satisfied for the period

covered by start and end dates and (c) portfolio losses based on risk factor

change between those dates exceeding L. From all possible pairs of start and

end dates, determine the one where the portfolio losses are the maximum. If

the historical data cover 2500 days (roughly 10 years) and on average each

possible start date has 40 eligible end dates, the determination of the worst

possible start and end date pair would require about 100,000 P&L

computations for the portfolio. For illustration, let us assume that the worst

period for the portfolio was September 25, 2008–Dec 10, 2008.

(b) Divide the historical data into two distinct periods (a) Jan 1, 2006–Sept 24,

2008 (data before the worst period), and (b) from Dec 11, 2008 to Dec 31,

2015 (data after the worst period). For each of the two time periods,

determine the worst start and end dates that lie within the same contiguous

time period with portfolio losses above L. Let the worst periods for the

portfolio for the two sets be Jan 3, 2007–March 14, 2007 and Feb 3, 2009–

March 22, 2009. Then the second worst period for the portfolio is the one of

these two periods which results in greater portfolio losses. Let us assume that

second worst historical period is Feb 3, 2009–March 22, 2009.

(c) We now describe how one determines the third worst historical period having

identified the worst two periods. Let us divide the original data into three

contiguous time periods that are separated by the most stressful periods

identified so far. Thus the three separate periods are (i) Jan 1, 2006–Sep 24,

2008, (ii) Dec 11, 2008–Feb 2, 2009, and (iii) March 23, 2009–Dec 31, 2015.

For each of these three sets, we determine the worst start and end dates within

these sets with losses above L and the third worst period is the one with the

maximum portfolio losses amongst these three periods.

This process continues until there are no more periods with losses exceeding the

loss threshold level L. Please note that regardless of the number of stress periods for

losses above threshold level L, the portfolio value change for risk factor changes has

to be determined only once. In other words, if the historical data of risk factors

contain 2500 possible start dates and 40 possible end dates (based on maximum gap

between start and end dates), portfolio value changes have to be computed once for

2500*40 = 100,000 combinations of risk factor changes. The determination of all

stress periods for threshold level L proceeds as described above and is simply an

exercise in sorting and eliminating a set of start and end dates at each step. This step

of determining the most stressful historical periods is computationally the most

time-consuming part of the algorithm.

Typically, loss threshold level L is chosen so that there are between ten and thirty

distinct stress periods for threshold level L in the available historical data (not too

many so as to focus on the worst periods but also enough to make meaningful

observations about their frequency and market correlations in stressful periods for

the portfolio). The final scenario design is based on the observed market changes

during the identified stress periods for threshold level L and thus this choice of loss

level L does impact the scenario shifts of risk factors. There are two competing
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issues that partially offset each other to decrease the overall sensitivity of scenario

design to the choice of loss threshold level L. If L is lower there are more stress

periods for threshold level L in the same historical period and thus the frequency of

their occurrence is higher; but if L is lower, the average magnitude of risk factor

changes and the corresponding portfolio losses are also less severe. On the other

hand, while higher level of loss threshold level L results in fewer but more severe

stress periods being considered, it also results in lower frequency of occurrence of

stress periods. This issue is discussed further in the ‘‘Example’’ which presents an

illustrative example of the proposed approach and discusses the sensitivity of

scenario design to the chosen loss threshold level L.

Frequency of stress periods with loss threshold level L

Once a loss threshold level L has been chosen and all stress periods with losses

above L are identified, frequency of occurrence of stress events for threshold level

L is estimated as follows:

Frequency of occurrence of stress periods for threshold level L

¼ Total number of stress periods with losses above threshold level L =

length of the historical data
ð1Þ

Thus, for example, if the twenty distinct periods were identified from 10 years of

historical data with portfolio losses in excess of amount L, then the frequency of

occurrence of such stress events would be 20 events/10 years = 2 per year.

Loss distribution calibration for portfolio losses in stress periods
for threshold level L

The next step is to fit a loss distribution for portfolio losses in stress periods for

threshold level L which are obtained as described in ‘‘From the historical data

determine all non-overlapping stress periods for threshold level L.’’ The choice of

loss distribution calibration should take into account the following desirable

attributes:

(a) loss distribution is one-sided (zero probability of losses below zero or loss

threshold level L as we are interested in modeling portfolio losses that exceed

loss threshold L)

(b) low severity losses are more likely than high severity losses (see for example

Fig. 1 related to the Example)

(c) fat tail of the loss distribution (rare occurrences of very large losses)

For calibrating loss distributions, we will consider parametric forms as well as

EVT. For parametric calibration, we chose two parameterizations that are

analytically tractable and have the desired attributes described above. EVT relates

to limiting distributions for the minimum or the maximum of a large collection of
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independent random variables. For example, let L1, L2, LN be maximum daily losses

within years 1, 2,…, N. Let LN_max = maximum {L1,…,LN} be the maximum daily

loss from the N peak yearly loss levels. EVT is useful in modeling LN_max for large

values of N.

The choice of loss distribution calibration is a design input which influences the

final scenario design. In the illustrative example we will compare results obtained

using two parametric forms as well as EVT. For parametric forms, the calibration is

based on matching only the first two moments (mean and standard deviation) of the

portfolio losses in stress periods for threshold level L but one could easily extend

this approach to more complex parameterizations and also match other higher order

moments such as kurtosis. Below we describe the three different loss distribution

calibration methods considered here.

Parametric distribution 1: non-central v2 distribution

We first describe non-central v2 distribution with one degree of freedom

parametrization for calibrating loss distribution for stress events of threshold level

L. Recall that non-central v2 distribution with one degree of freedom and non-

centrality parameter k is the distribution of X2 where X is normally distributed with

mean of
ffiffiffi

k
p

and standard deviation of 1:

Non-central v2 random variable ¼ ðX þ
ffiffiffi

k
p

Þ2

where X * N(0,1) (normal random variable with mean 0 and standard deviation of

1)

The mean and variance of non-central v2 distribution with one degree of freedom

and non-centrality parameter k are as follows:

Mean non-central v2 random variable ¼ E X þ
ffiffiffi

k
p� �2

� �

¼ 1þ k

Variance non-centralv2 randomvariable ¼ 2þ 4 k ð2AÞ

The above implies that for this distribution

4 �mean-variance ¼ 2 ð2BÞ

or that there is only one degree of freedom in the distribution—one can fix either

mean or standard deviation but not both. The cumulative density function for this

distribution can be easily obtained from that of normal distribution as
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Prob X þ
ffiffiffi

k
p� �2

� Z

� �

¼ Prob X�
ffiffiffi

Z
p

�
ffiffiffi

k
p� �

þ Prob X� �
ffiffiffi

Z
p

�
ffiffiffi

k
p� �

:

For the loss distribution calibration we will assume that a portfolio loss is a

multiple of non-central v2 random variable:

Portfolio loss ¼ X þ
ffiffiffi

k
p� �2

=K where X�Nð0; 1Þ:

The two positive parameters K and k are obtained so that the mean and the

variance of the above distribution match the mean and variance of the observed

losses from all stress events of threshold level L. This parametrization has support

for loss

”

[0,?) and not loss

”

[L,?) but is chosen for tractability and the fact that

it produces reasonable results. Let

ML = mean of portfolio loss in historical stress events of threshold level L

StDevL = standard deviation of portfolio loss for historical stress events of

threshold level L

Define

Y ¼ Portfolio loss � K

Since Y has non-central v2 distribution, from Eq. 2B the scaling parameter

K must be the positive solution of the following quadratic equation:

4 � K � ML � K2 � StDev2L ¼ 2:

And the parameter k is determined from Eq. 2A from either the mean or the

standard deviation of the scaled loss Y:

K � ML ¼ 1þ k or K2 � StDev2L ¼ 2þ 4 k:

The above equations highlight the fact that to calibrate the distribution to the

required mean and standard deviation, the standard deviation cannot be too large

relative to the mean. If this is the case, higher degrees of freedom non-central v2

distribution or other parametric forms should be chosen.

Parametric distribution 2: Gamma distribution

Another parametrization for loss distribution calibration that has the desirable

properties is the following probability density function for loss

f xð Þ ¼ 0; x\L

Gamma pdf x� L; a; bð Þ; x� L

�

ð3Þ

Gamma pdf x; a; bð Þ ¼ 1

baC að Þ x
a�1e

�x
b ;

where L is the loss threshold level used in the identification of historical stressful

periods and Gamma_pdf is the density function for the Gamma distribution.
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Parameters a and b are the shape and the rate parameters of the distribution. This

distribution has the advantage of support in the desired range of loss

”

[L,?). The

parameters a and b can be easily obtained from the mean and the variance of

estimated losses of the historical data-based stress events of threshold level L since

for the distribution described by Eq. 3,

Mean lossð Þ ¼ Lþ a b

Variance lossð Þ ¼ a b2

EVT distribution: Gumbel distribution

The probability density function for the extreme value distribution (Type 1 or

Gumbel distribution) is the limiting distribution of minimum of large number of

unbounded identically distributed random variables (see for example Lawless

(1982)):

f xð Þ ¼ r�1 exp
x� l
r

� �

exp � exp
x� l
r

� �� �

; ð4Þ

where l is the location parameter and r is the scale parameter. The above density

function is suitable for modeling the minimum value but can be used for modeling

the maximum value by switching sign of the random variables.

The two parameters l and r are typically chosen to be the maximum likelihood

estimates for the given data (portfolio losses in stress periods for loss threshold L).

Obtaining the portfolio loss under the given scenario

Let us assume we have to design 1 in N year scenario. Let freq denote the frequency

of occurrence of stress events of threshold level L as obtained from Eq. 1. Then the

worst 1 in N year event would be the worst of 1 of N*freq random draws from the

calibrated loss distribution. This is equivalent to determining the loss amount such

that probability of loss exceeding this amount is only 1/(N*freq). As an example,

consider a situation where stress events of threshold level L occur at the rate of 2 per

year (freq = 2/year). If we are interested in one in 10-year scenario design, we are

interested in the loss amount that is the worst in 10*2 = 20 loss amounts drawn

from the distribution. In other words we are interested in the loss amount so that the

probability of exceeding it is only 1/20 = 5%. For the calibrated distributions

described above, it is easy to determine the inverse of the cumulative distribution

and obtain the portfolio loss for the desired percentile of the loss distribution.

Estimating the shift of risk factors for the scenario from the target portfolio
loss

In the previous step, the scenario loss is determined for the given portfolio. In this

step we describe an approach to obtain the expected shifts that would result in the

desired level of scenario portfolio loss. This problem is equivalent to finding
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conditional estimate of shifts for the given loss amount where the relationships

between risk factors and portfolio losses are based on that observed in the stress

periods for threshold level L. This problem is generally quite complex as (a) the

portfolio loss is often a non-linear function of changes in key risk factors (for

example, when Gamma terms are not zero) and (b) the joint distribution of key risk

factors and portfolio loss can be quite complex and depends on the choice of

parametrization.

We will for simplicity use the following result which provides the linear unbiased

estimate that minimizes the error variance of the conditional estimate.

Lemma (Linear unbiased minimum variance estimator)

Let X and Y be random variables (each possibly a vector) with the following first

and second-order statistics:

�X ¼ E Xf g; �Y ¼ E Yf g; RXX ¼ E X � �Xð Þ X � �Xð Þ0
	 


; RYY

¼ E Y � �Yð Þ Y � �Yð Þ0
	 


; RXY ¼ E X � �Xð Þ Y � �Yð Þ0
	 


¼ RYX0 :

Then the linear estimate of Y given X that is unbiased (unbiased means

E bY
n o

¼ E Yf g) and minimizes the error variance (regardless of the distribution of

X and Y) is

bY ¼ �Y þ RYXR
�1
XX X � �Xð Þ ð5Þ

With the above estimate, the error variance is

E ðY � bY ÞðY � bY Þ0
n o

¼ RYY � RYXR
�1
XXRXY ð6Þ

Moreover if X and Y are normally distributed then the estimate given by bY given

above is also the conditional estimate

E Y Xjf g ¼ bY ¼ �Y þ RYXR
�1
XX X � �Xð Þ if X and Y are normally distributed, ð7Þ

where the conditional estimate error variance is the same as that above in (6):

E Y � EfYjXgð Þ Y � EfY jXgð Þ0
	 


¼ RYY � RYXR
�1
XXRXY

if X and Y are normally distributed:
ð8Þ

For completeness, the proof is provided in the Appendix. The above Lemma can be

applied to obtain conditional estimate of a risk driver shifts (ŶÞ in the stress scenario
for a given a given scenario loss amount (X) where the first and second-order

moments used in Eq. (5) ( �X, �Y ;RXX;RYY andRXY ) are obtained from the identified

historical periods with portfolio losses above L (as described in ‘‘From the historical

data determine all non-overlapping stress periods for threshold level L’’).

Remark 1 The form of Eq. (5) is intuitively appealing. The first term is the

expected value or the average value of Y (the average value of shift of risk factor

over all the historical stress events with threshold level L). The second term
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modifies the risk factor shift based on how far X (the target portfolio loss in the

stress scenario) deviates from its average value (average portfolio loss in the

historical stress periods for threshold level L). The proportionality constant

(RYXR�1
XXÞ can be viewed as the ‘‘beta’’ of risk driver change relative to the portfolio

loss.

Remark 2 In case the scenario design is based on a simplified portfolio with fewer

risk factors, Eq. 5 can still be used to obtain shifts for all the risk factors (even if

they are not part of the scenario design) as long as historical data of their changes

are available for the identified stress periods for threshold level L. This is because

from portfolio losses and market change of any risk driver over the identified stress

periods with portfolio losses above L, one can obtain the required first- and second-

order moments needed to estimate (Eq. 5) the risk factor shift for a given target

portfolio loss.

Example

For the scenario design we will consider the following simplified portfolio where we

will assume that the NPV changes can be adequately approximated by first- and

second-order portfolio Greeks:

The first column in Table 1 describes the asset type (the actual portfolio would

likely have more granular description), the second column the observable market

risk factor used to quantify the change in the portfolio value, the third column

describes whether market changes for that risk factor are computed based on relative

changes or additive changes, and the last two columns provide Greeks with respect

to the risk factors. The portfolio above has long position in equities (with positive

convexity), investment grade and non-investment grade corporates, crude oil, USD

(DXY). The portfolio benefits from rally in short maturity rates but benefits from

increase in 10 year rates. The above table corresponds to scenario design inputs

described in ‘‘Quantifying portfolio value change from risk factor changes.’’

For equities since the shifts are computed in terms of relative changes, 3% fall in

equities will have the following impact based on the Delta and Gamma described in

the first row of Table 1:

Table 1 Portfolio risk sensitivity assumptions

Exposure Index Shift methodology Delta Gamma

Equities SPX Relative $0.7MM/1% $0.03MM/1%1%

Short maturity rates 2 year treasury yield Additive -$0.1MM/bp 0

Long maturity rates 10 year treasury yield Additive $0.2MM/bp 0

Inv grade corp LQD Relative $3MM/1% 0

High yield corp HYG Relative $0.4MM/1% 0

Crude oil 1st month future Relative $0.1MM/1% 0

FX DXY Relative $0.3MM/1% 0
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P&L from 3% drop in S&P = -0.7*3 ? 0.5*0.03*3*3 = -$1.965MM

If 10-year Treasury yields were to go up by 10 bp, the P&L would be $0.2MM/

bp*10 bp = $2MM. On the other hand, if 2 year Treasury yields were to go up by

10 bp, the P&L would be -$0.1MM/bp*10 bp = -$1MM.

For the above two portfolio we will consider two stress scenario designs:

(1) Stress Scenario 1 no constraints on market changes. This scenario tries to

capture the worst possible market changes for the given portfolio.

(2) Stress Scenario 2 if increase in longer term rates is a concern, one maybe

interested in a scenario with increase in 10-year rates. To design such a

scenario, one may wish to impose a constraint that 10-year treasury yields

increase by at least 10 bp (an illustrative scenario design constraint discussed

in ‘‘Incorporating scenario attributes’’).

Let us assume that we are interested in market changes that could occur over a

period no longer than a quarter in which case the input corresponding to ‘‘Maximum

time horizon for the stress scenario’’ will be 91 calendar days. Thus for

determination of historical stressful periods in which portfolio losses would have

exceeded loss threshold L, we would consider only those combinations where the

end date is no later than 91 calendar days from the start date.

For the scenario design we will also consider sensitivity with two key design

inputs: (a) the choice of parametrization for loss distribution and (b) the loss

threshold level L in identification of stressful periods for the portfolio.

Choosing one quarter as the maximum gap from start date to end date and using

daily data from April 11, 2007 to August 27, 2016, the following Tables 2 and 3

provide the historical periods with and without constraints as well as portfolio losses

in those stressful historical periods where the portfolio loss threshold loss level is

$12MM for the unconstrained case and $6MM for the rate increasing case.

As one might expect, the most stressful historical periods for the portfolio as well

as losses are different when there are constraints in the scenario (here ten treasury

yield increase in the constrained case). For the unconstrained case, there were

nineteen distinct periods between April 11, 2007 and August 26, 2016 for which

portfolio losses exceeded $12MM. Similarly for the constrained case 10-year

treasury yields increase at least 10 bp, there were only seventeen periods when

portfolio losses exceeded $6MM.

As described in ‘‘Loss distribution calibration for portfolio losses in stress

periods for threshold level L,’’ we now obtain parametrization of the loss

distributions. For parametric representations, the parameters are obtained to match

the mean and standard deviation of the portfolio losses in the stressful historical
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periods identified in Tables 2 and 3 (last column). Tables 4 and 5 below provide

parametrization of loss distribution based on the two parametric distributions

considered.

The maximum likelihood estimates for the EVT distribution parameters

described in Eq. (4) are provided in Table 6.

The above parameterizations are illustrated in the plot below which shows the

histogram of observed losses in historical stress events in the increasing rate

environment (Table 3) and the probability density function of the calibrated loss

distributions.

Next we describe the determination of portfolio losses for the desired scenarios.

There were nineteen stress periods with portfolio loss greater than $12MM for the

unconstrained case (Table 2) and seventeen stress periods with loss greater than

$6MM in the 10-year rate increasing scenario (Table 3). The historical data span

9.38 years (from April 11, 2007 to August 26, 2016). Thus stress events with

Table 4 Parametrization of the loss distribution using non-central v2 distribution for the two scenarios:

(a) without constraints on market changes and (b) with at least 10 bp increase in 10-year treasury yields

Parameter No constraint 10 year rate inc

K 0.4536 0.2108

k 10.1133 2.4118

The parameters have been obtained so that the mean and standard deviation of the distribution match the

estimated portfolio losses in the stressful historical periods (last columns of Tables 2, 3)

Table 5 Parameterization of loss distribution using Gamma distribution described in Eq. 3 for the two

scenarios: (a) without constraints on market changes and (b) with at least 10 bp increase in 10-year

treasury yields

Parameter No constraint 10 year rate inc

a 0.7572 0.3958

b 16.5061 25.7362

The loss threshold level in Eq. (3) for the two scenarios is $12MM and $6MM, respectively. The

parameters have been obtained so that the mean and standard deviation of the distribution match the

estimated portfolio losses in the stressful historical periods (last columns of Tables 2, 3)

Table 6 Parameterization of loss distribution using Gumbel distribution described in Eq. 4 for the two

scenarios: (a) without constraints on market changes and (b) with at least 10 bp increase in 10-year

treasury yields

Parameter No constraint 10 year rate inc

l (18.9023) (10.5494)

r 8.3365 7.5378

The parameters are the maximum likelihood estimates for the given portfolio losses in the stressful

historical periods (last columns of Tables 2 and 3)
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portfolio losses of at least $12MM for the unconstrained case occur at the rate of

19/9.38 = 2.03 per year. This implies that over 10 years, one would expect

2.03*10 = 20.3 such scenarios. Thus one in 10-year scenario will be the worst

scenario out of every 20.3 scenarios drawn from the calibrated loss distribution.

Thus the probability of losses exceeding one in 10-year stress event is

1/20.3 = 4.94% (or loss percentile is 95.06% of the loss distribution). The Tables 7

and 8 below describe the loss percentile for several scenarios ranging from one in 5

year to one in 25-year stress events together with loss amount corresponding to the

desired loss percentile from the loss distribution calibrations described above.

As one would expect, portfolio losses for the same severity scenario (for

example, one in 10-year scenario) are greater when there are constraints on the

scenario. For example using the non-central v2 distribution, portfolio loss for one in

5-year scenario without constraints is $44MM, while under the increasing 10-year

rate constraint it is $37MM.

For stress scenarios of the same severity (the same percentile of loss distribution),

portfolio losses are usually highest for Gamma distribution. The ‘‘fatter tail’’ of

Gamma distribution is in part due to the fact that the probability density function is

zero for losses below threshold level L, while for other distributions there is a non-

zero probability of losses being lower than threshold level L. EVT/Gumbel

distribution produces less severe portfolio losses for the same level of severity than

the two parametric calibrations. Since EVT describes limiting distribution

(maximum or minimum of a very large set of random variables), it may be more

accurate if there are many stress events of threshold level L in the historical data or

0
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PDF EVT (le�)

Observed Por�olio Losses and Calibrated Loss Distribu�on
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Fig. 1 Comparison of historical stress event losses and PDF of the calibrated loss distribution for the
case when 10-year treasury yields increase by at least 10 bp. For v2 and Gamma distributions, loss
distributions are calibrated to match the mean and the standard deviation of losses in the stress periods
(last column of Table 3) while EVT/Gumbel distribution parameters are the maximum likelihood
estimates
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very extreme scenarios needs to be designed. For most practical applications we find

that Gamma distribution provides quite reasonable and expected results.

In the final step of the algorithm, one uses the Lemma describing the conditional

unbiased estimate to obtain shifts of risk drivers given the loss amount in the

scenario. These estimates, described in Tables 9 and 10, are obtained using Eq. (5)

which involves the first and second moments obtained from the observed market

changes and portfolio losses described in Tables 2 and 3. Please note that in

Table 10, 10-year treasury yield increases as desired in the constrained scenario

design.

Next we discuss the sensitivity of scenario design to the loss threshold levels

chosen in determination of stressful historical periods. Recall that the loss thresholds

for choosing stress periods were $12MM for the unconstrained scenario and $6MM

for the scenario with increasing 10-year treasury yields. If one had chosen loss

threshold of $15MM and $8MM, respectively, for the two scenarios, only the first

thirteen scenarios of Table 2 and the first twelve of Table 3 would exceed the

threshold loss amount and thus be used in the scenario design. Changing loss

threshold results in a different loss scenario parameterization and also results in

different frequency of loss severity. For example, only thirteen stressful events were

observed with portfolio losses in excess of $15MM. The frequency of occurrence of

such events in 9.38 years is 13/9.38 = 1.39 per year. One in 10-year scenario would

then be the worst among 1.39*10 = 13.9 such stress events and thus correspond to

1–1/13.9 = 92.78% of the loss distribution (as opposed to 95.06% in Table 7 which

was based on the assumption of 2.03 stress events per year). Table 11 below shows

the comparison of scenario design for the constrained case (increasing rates) for the

two different choices of loss threshold—$6MM and $8MM, respectively, based on

non-central v2 loss parametrization. The results are not very sensitive to the choice

Table 7 Portfolio loss estimates and their percentiles for different scenarios using different loss distri-

bution calibrations—for the unconstrained case

Scenario Loss percentile

(%)

Scenario loss

(chi distr)

Scenario loss

(Gamma)

Scenario loss

(EVT/Gumbel)

1 in 5 year 90.12 (44) (43) (38)

1 in 10 year 95.06 (51) (54) (44)

1 in 25 year 98.02 (61) (68) (52)

Table 8 Portfolio loss estimates and their percentiles for different scenarios using different loss distri-

bution calibrations—for the constrained case (10-year treasury yields increase at least 10 bp)

Scenario Loss percentile

(%)

Scenario loss

(chi distr)

Scenario loss

(Gamma)

Scenario loss

(EVT/Gumbel)

1 in 5 year 88.96 (37) (33) (27)

1 in 10 year 94.48 (47) (46) (32)

1 in 25 year 97.79 (60) (66) (39)
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of loss threshold level. This is due to two factors that partially offset each other—

increasing loss threshold results in lower frequency of occurrence of stress periods

(fewer stress periods in the same time period with losses above the threshold level)

but at the same time the average severity of stress events is also greater and thus the

calibrated loss distribution has higher losses for the same percentile.

Summary

This paper presents an approach to create stress scenarios for portfolios involving

several risk factors. Reliance on historical stressful periods provides transparency to

resulting scenario design as the shifts and correlations can be benchmarked against

actual changes observed in the markets during stressful periods. The scenario design

is customized to the portfolio and thus designed to stress specific risk features of the

portfolio. The approach also allows one to adjust the level of severity and analyze

the tradeoff between plausibility and severity. The approach can also be easily

adapted to scenario design with constraints on macro or market conditions (such as

on unemployment rate or interest rates) by limiting the historical data to only those

periods which are consistent with the required scenario constraints. The approach is

computationally also very tractable even when there are large number of market risk

factors.

Compliance with ethical standards

Table 11 Risk driver shifts for scenarios with constraints (10-year treasury yield increases) based on

non-central v2 loss parametrization

Risk factor Scenario design based on historical stress

periods with loss greater than $6MM

Scenario design based on historical stress

periods with loss greater than $8MM

1 in 5 year

scen

1 in 10 year

scen

1 in 25 year

scen

1 in 5 year

scen

1 in 10 year

scen

1 in 25 year

scen

SPX -17.0% -22.3% -29.2% -17.3% -23.1% -30.3%

Treasury_2 year (0.11) (0.20) (0.30) (0.11) (0.21) (0.34)

Treasury_10 year 0.22 0.22 0.23 0.22 0.22 0.22

LQD -10.2% -12.9% -16.3% -10.3% -13.3% -17.1%

HYG -15.0% -19.5% -25.2% -15.3% -20.0% -25.8%

Crude oil fut -13.1% -18.6% -25.6% -13.7% -18.9% -25.3%

DXY 3.7% 5.1% 7.0% 3.7% 5.4% 7.4%

In one case, the scenario design based on historical periods with losses above $6MM (seventeen historical

periods) while in the other it is based on historical periods with losses above $8MM (12 historical

periods). The final scenario shifts are not that sensitive to the choice of loss threshold level
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Appendix

Proof of unbiased minimum variance estimate Lemma

Here we will prove the Lemma that describes the linear minimum variance unbiased

estimator. Let the linear estimate of Y given X be

bY ¼ AX þ b;

where matrix A and the vector b are to be determined so that (a) the above estimate

is unbiased (unbiased means E{bY} = E{Y}) and (b) the variance of the estimation

error is minimized. Taking expectation of both sides together with unbiased

requirement implies

E bY
n o

¼ E Yf g implies b ¼ �Y � A �X where �X ¼ E Xf g; �Y ¼ E Yf g:

Let tr() represent the trace of a matrix. Then the error variance of the estimate

that needs to be minimized is

tr E ðY� bY ÞðY � bY Þ0
n oh i

¼ tr E ðY� �Y � AðX � �XÞÞðY� �Y � AðX � �XÞÞ0
	 
� �

¼ tr RYY � RYXA
0 � ARXY þ ARXXA

0ð Þ;

where A0 is the transpose of matrix A. Differentiating the above with respect to A

and setting that to zero results in (together with some trace derivative formulae)

dtr RYY � RYXA
0 � ARXY þ ARXXA

0ð Þ
dA

¼ 0 implies RYX ¼ ARXX or A ¼ RYXR
�1
XX:

Substitution the above expressions for A and b results in the optimal linear

estimator form of (5).

Now we prove that under the Gaussian assumption, the estimate is the

conditional estimate with the variance the same as the error variance (we will prove

(7) and (8)). Let

~X ¼ X � �X; ~Y ¼ Y � �Y :
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Also note that the form of the variance of the combined vector ~X and ~Y :

Variance of
~X
~Y

� �

is P ¼ RXX RXY

RYX RYY

 �

:

From the definition of Gaussian distribution, the density function of ~X and the

combined vector ~X and ~Y are

f ~X
� �

¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pÞk RXXj j
q � exp � 1

2
~X0R�1

XX
~X

� �

where k is the dimension of Xð Þ

f ~X; ~Y
� �

¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pÞkþl
Pj j

q � exp � 1

2
½ ~X0 ~Y 0�P�1

~X

~Y

 ! !

where k and l are the dimensions of X and Yð Þ;

where P�1 can be obtained by applying Matrix Inversion Lemma on the expression

of P defined above

P�1 ¼ R�1
XX þ FG�1F0 F

F0 G

 �

;

where F and G are as follows:

F ¼ �R�1
XXRXYG and G ¼ RYY � RYXR

�1
XXRXY

� ��1
:

The conditional density function of ~Y given ~X can thus be expressed as

f ~Y j ~X
� �

¼
f ~X; ~Y
� �

f ~X
� � ¼ 1

ffiffiffiffiffiffiffiffiffiffiffi

RXXj j
p

ffiffiffiffiffiffiffiffiffiffiffiffi

2pl Pj j
p � exp � 1

2
~Y � RYXR

�1
XX

~X
� �0

RYY � RYXR
�1
XXRXY

� ��1
�

~Y � RYXR
�1
XX

~X
� �

�

:

Note that the above probability density function of ~Y given ~X is a Gaussian

distribution where the mean and variance of the distribution are

E ~Y j ~X
	 


¼ RYXR
�1
XX

~X

Variance ~Y j ~X
� �

¼ RYY � RYXR
�1
XXRXY

� �

:

Since ~X ¼ X� �X; ~Y ¼ Y� �Y , the first equation above is equivalent to Eq. (7)

while Eq. (8) follows from the second equation above.
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