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Grey forecasting models have taken an important role for forecasting energy demand, particularly the GM(1,1)
model, because they are able to construct a forecasting model using a limited samples without statistical
assumptions. To improve prediction accuracy of a GM(1,1) model, its predicted values are often adjusted by
establishing a residual GM(1,1) model, which together form a grey residual modification model. Two main issues
should be considered: the sign estimation for a predicted residual and the way the two models are constructed.
Previous studies have concentrated on the former issue. However, since both models are usually established in the
traditional manner, which is dependent on a specific parameter that is not easily determined, this paper focuses on
the latter issue, incorporating the neural-network-based GM(1,1) model into a residual modification model to
resolve the drawback. Prediction accuracies of the proposed neural-network-based prediction models were
verified using real power and energy demand cases. Experimental results verify that the proposed prediction
models perform well in comparison with original ones.
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1. Introduction

Rapid economic development and ongoing industrialization

has led to enormous energy consumption. Energy demand

prediction has become increasingly important when devising

development plans for a country, and particularly for devel-

oping countries (Pi et al, 2010), such as China. Meanwhile,

energy management is an important issue for future economic

prosperity and environmental security (Suganthi and Samuel,

2012). China has become increasingly influential in energy

production and consumption (Liu, 2015). China energy has

been mainly provided by coal and crude oil, comprising 2/3

(66 %) and 18 %, respectively, of total energy consumed

(National Bureau of Statistics of China, 2014). In the past

decade, annual energy consumption increases were larger than

energy production increases, and China faces not only

inevitable environmental impacts, but also the challenge of

devising an energy policy forecasting energy demand. Also,

energy demand forecasting for China has been an interesting

issue (Suganthi and Samuel, 2012).

Grey prediction models are capable of characterizing an

unknown system using small data sets (Deng, 1982),

without requiring conformance with statistical assumptions.

Only few sample data points are required to achieve

reliable and acceptable prediction accuracy (Wen, 2004;

Wang and Hsu, 2008) and have been widely applied to

management, economics, and engineering (e.g. Feng et al,

2012; Chang et al, 2015; Pi et al, 2010; Lee and Tong,

2011; Mao and Chirwa, 2006; Zeng et al, 2016; Chang

et al, 2015; Tsaur and Liao, 2007; Wen, 2004; Cui et al,

2013; Wei et al, 2015). Grey prediction systems are

particularly appropriate for energy demand forecasting,

because energy consumption data are often few and/or do

not conform to the usual statistical assumptions, such as

normal distribution (Lee and Tong, 2011; Suganthi and

Samuel, 2012). Wu et al, (2013) also used practical

numerical examples to demonstrate that the small sample

usually has more accuracy than the large sample for setting

up a grey prediction model. Artificial intelligence tech-

niques, multivariate regression, and time series models

(e.g. Ediger and Akar, 2007; Gonzalez and Zamarreno,

2005; Tutun et al, 2015; Lauret et al, 2008; Duran, 2009;

Xia et al, 2010) require large sample sizes to achieve

reasonable forecasting accuracy (Wang and Hsu, 2008;

Feng et al, 2012; Chang et al, 2015; Pi et al, 2010), which

is impractical for energy demand forecasting.

The GM(1,1) model is one of the most frequently used grey

prediction models for time series forecasting (Liu and Lin,
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2006). To improve prediction accuracy of the original

GM(1,1) model, several improved versions have been

proposed, such as a discrete forecasting model (Xie and

Liu, 2009), a grey Lotka–Volterra model (Wu et al, 2012), a

new model with the fractional order accumulation (Wu et al,

2013), a novel BGM(1,1) using a box plot to analyse data

features (Chang et al, 2015), an improved grey model with

convolution integral GMC(1, n) (Wang and Hao, 2016), and a

self-adaptive intelligence model (Zeng et al, 2016). Besides,

the residual model has been eye-catching and played an

important role in grey prediction (Liu and Lin, 2006; Deng,

1982). The residual modification model thus becomes the

focus of this study.

When the corresponding residual model is established,

predicted values from the original model can be adjusted by

those from the residual model. The two models comprise a

grey residual modification model, and both models are

usually constructed in the same way as the traditional

GM(1,1) model. However, the background value has an

important role for the traditional model, but is not easily

determined. This leads to some well-known prediction

models using the traditional GM(1,1) model, developed for

residual sign estimation to improve the prediction accuracy

of the residual modification model, which also encounter the

difficulty in determining background value, for example the

MLP-GM(1,1) model based on multi-layer perceptron (MLP)

(Hsu and Chen, 2003) and the GP-GM(1,1) model based on

genetic programming (GP; Lee and Tong, 2011). The neural-

network-based GM(1,1) (NN-GM(1,1)) model is free of the

dependency on the background value (Hu et al, 2001) and

performs well in comparison with the traditional GM(1,1)

model. Therefore, it is interesting to investigate the impact on

prediction accuracy of the proposed neural-network-based

residual modification models on energy demand forecasting

for China by using the NN-GM(1,1) model rather than the

traditional GM(1,1) model.

The remainder of the paper is organized as follows.

Section 2 introduces the traditional grey residual modifica-

tion model, and Section 3 introduces the NN-GM(1,1) model

and the proposed neural-network-based residual modification

model. On the basis of the MLP-GM(1,1) and GP-GM(1,1)

models, Section 4 examines the forecasting performances of

the proposed prediction models using real cases of power and

energy demand. Section 5 discusses the outcomes and

presents conclusions.

2. Traditional grey residual modification model

2.1. Traditional GM(1,1) model

The computational steps to construct a traditional GM(1,1)

model are as follows:

Step 1 Present an original and nonnegative data sequence

xð0Þ ¼ x
ð0Þ
1 ; x

ð0Þ
2 ; . . .; xð0Þn

� �
; provided by one system

and consisting of n samples.

Step 2 Perform the accumulated generating operation

(AGO).

Identify the potential regularity hidden in xð0Þ using

AGO (Liu and Lin, 2006; Duran, 2009) to generate a

new sequence, xð1Þ ¼ x
ð1Þ
1 ; x

ð1Þ
2 ; . . .; xð1Þn

� �
;

x
ð1Þ
k ¼

Xk
j¼1

x
ð0Þ
k ; k ¼ 1; 2; . . .; n ð1Þ

and x
ð1Þ
1 ; x

ð1Þ
2 ; . . .; xð1Þn can be then approximated by a

first-order differential equation,

dxð1Þ

dt
þ axð1Þ ¼ b ð2Þ

where a and b are the developing coefficient and

control variable, respectively. The predicted value,

x̂
ð1Þ
k , for x

ð1Þ
k can be obtained by solving the

differential equation with initial condition

x
ð1Þ
1 ¼ x

ð0Þ
1 :

x̂
ð1Þ
k ¼ x

ð0Þ
1 � b

a

� �
e�aðk�1Þ þ b

a
ð3Þ

Step 3 Determine the developing coefficient and control

variable.

a and b can be obtained using the ordinary least-

squares method:

a; b½ �T¼ BTB
� ��1

BTy ð4Þ

where

B ¼

�z
ð1Þ
2 1

�z
ð1Þ
3 1

..

. ..
.

�zð1Þn 1

2
66664

3
77775

ð5Þ

z
ð1Þ
k ¼ axð1Þk þ ð1� aÞxð1Þk ð6Þ

y ¼ x
ð0Þ
2 ; x

ð0Þ
3 ; . . .xð0Þn

h iT
ð7Þ

where z
ð1Þ
k is the background value. a is usually

specified as 0.5 for convenience, but this is not an

optimal setting. Thus, a and b are fully dependent on

z
ð1Þ
k , which is not easily determined.
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Step 4 Perform the inverse accumulated generating

operation (IAGO).

Using the IAGO, the predicted value of x
ð0Þ
k is

x̂
ð0Þ
k ¼ x̂

ð1Þ
k � x̂

ð1Þ
k�1; k ¼ 2; 3; . . .; n ð8Þ

Therefore,

x̂
ð0Þ
k ¼ ð1�eaÞ x

ð0Þ
1 � b

a

� �
e�aðk�1Þ; k ¼ 2; 3; . . .; n

ð9Þ

and note that x̂
ð1Þ
1 ¼ x̂

ð0Þ
1 holds.

2.2. Residual modification using traditional GM(1,1)

models

A residual modification model is usually established using

traditional GM(1,1) models. The computational steps of con-

structing a traditional residual modificationmodel are as follows:

Step 1 Establish a traditional GM(1,1) model for xð0Þ.

Step 2 Generate the sequence of absolute residual values,

eð0Þ ¼ eð0Þ2 ; eð0Þ3 ; . . .; eð0Þn

� �
; where

eð0Þk ¼ x
ð0Þ
k � x̂

ð0Þ
k

���
���; k ¼ 2; 3; . . .; n ð10Þ

Step 3 Establish a residual model.

A residual model is established as a traditional

GM(1,1) model for eð0Þ. Similar to x̂
ð0Þ
k , the predicted

residual of eð0Þk is

êð0Þk ¼ 1� eaeð Þ eð0Þ2 � be

ae

� �
e�aeðk�1Þ;

k ¼ 3; 4; . . .; n
ð11Þ

where ae and be are the developing coefficient and the

control variable, respectively, and are also fully

dependent on the background value.

Step 4 Perform residual modification.

A predicted value x̂
ð0Þ
ktr can be obtained by adding or

subtracting êð0Þk from original x̂
ð0Þ
k (Hsu and Wen,

1998).

x̂
ð0Þ
ktr ¼ x̂

ð0Þ
k þ sk ê

ð0Þ
k ; k ¼ 2; 3; . . .; n ð12Þ

where sk denotes the positive or negative sign for ê
ð0Þ
k .

The determination of sk can be dependent on the

mechanism of sign estimation provided by other

residual modification models, for instance the MLP-

GM(1,1) and GP-GM(1,1) models. For simplicity,

the sign estimation methods of those two prediction

models are omitted.

3. Neural-network-based grey residual modification
model

3.1. NN-GM(1,1) model

Because z
ð1Þ
k is not easily determined, it is quite reasonable to

consider finding a and b without requiring z
ð1Þ
k . A cost function

E(a, b),

Eða; bÞ ¼ 1

2

X
k

x
ð0Þ
k � x̂

ð0Þ
k

� �2

; k ¼ 2; 3; . . .; n ð13Þ

was built for the NN-GM(1,1) model, where a and b are the

connection weights. The model itself was a widely used

single-layer perceptron (SLP). Similar to the back-propagation

algorithm (BP; Smith and Gupta, 2002), the computational

steps to constructing such a model are as follows:

Step 1 Present a randomly selected sequence (k, 1, 1)

(k = 2, 3,…, n) with x
ð0Þ
k as its desired output to

NN-GM(1,1).

Step 2 Calculate the actual output x̂
ð0Þ
k of NN-GM(1,1).

Step 3 Adjust the connection weights. For (k, 1, 1), a and b

are adjusted to a ? Da and b ? Db, respectively.

Then Da and Db can be derived by the gradient

descent method on the cost function, and

Da ¼ g x
ð0Þ
k � x̂

ð0Þ
k

� �
Vak ð14Þ

Db ¼ gðxð0Þk � x̂
ð0Þ
k ÞVbk ð15Þ

where

Vak ¼ ð�eaÞ x
ð0Þ
1 � b

a

� �
e�aðk�1Þ þ ð1�eaÞ b

a2

� �	

e�aðk�1Þ þ ð1�eaÞ x
ð0Þ
1 � b

a

� �
ð�k þ 1Þe�aðk�1Þ




ð16Þ

Vbk ¼ ð1�eaÞ � 1

a

� �
e�aðk�1Þ

	 

ð17Þ

Step 4 Terminate when a pre-specified number of iterations

have been performed; otherwise, return to Step 1.

3.2. Residual modification using NN-GM(1,1) models

In the proposed neural-network-based model, traditional

GM(1,1) models are no longer used; rather, NN-GM(1,1)

models considered. The construction of the proposed grey

prediction model is described as follows:

Step 1 Establish a NN-GM(1,1) model for xð0Þ.
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Step 2 For xð0Þ, generate the sequence of absolute residual

values, eð0Þ ¼ eð0Þ2 ; eð0Þ3 ; . . .; eð0Þn

� �
.

Step 3 Establish a residual NN-GM(1,1) model.

A residual NN-GM(1,1) model, using all sequences

of absolute residual values, is established where ae
and be are connection weights of a SLP for

processing residuals. Dae and Dbe may be derived

with respect to ae and be, respectively, by defining a

cost function

E ae; beð Þ ¼ 1

2

X
k

eð0Þk � êð0Þk

� �2

; k ¼ 3; 4; . . .; n

ð18Þ

Similar to a and b, ae and be can be adjusted to

ae ? Dae and be ? Dbe, respectively, after presenting
a randomly selected sequence (k, 1, 1) (k = 3, 4,…,

n) with desired output eð0Þk to the SLP related to,

where

Dae ¼ g eð0Þk � êð0Þk

� �
Vak ð19Þ

Dbe ¼ g eð0Þk � êð0Þk

� �
Vbk ð20Þ

and

Vak ¼ ð�eaÞ eð0Þ2 � b

a

� �
e�aðk�1Þ

þ ð1�eaÞ b

a2

� �
e�aðk�1Þ

þ ð1�eaÞ eð0Þ2 � b

a

� �
ð�k þ 1Þe�aðk�1Þ ð21Þ

Vbk ¼ ð1�eaÞ � 1

a

� �
e�aðk�1Þ ð22Þ

Step 4 Perform residual modification.

A predicted value x̂
ð0Þ
knnr is produced by adding or subtracting

êð0Þk from the original x̂
ð0Þ
k ,

x̂
ð0Þ
knnr ¼ x̂

ð0Þ
k þ sk ê

ð0Þ
k ; k ¼ 2; 3; . . .; n ð23Þ

As demonstrated in Figure 1, two independent SLPs were

employed to establish the proposed neural-network-based grey

residual modification model: one each for the original and

residual sequences. The MLP-GM(1,1) and GP-GM(1,1)

models used two traditional GM(1,1) models, independently,

and artificial intelligence tools were applied to effectively

determine sk. The flow chart of the proposed residual

modification model is illustrated in Figure 2.

When the NN-GM(1,1) models were incorporated into the

MLP-GM(1,1) and GP-GM(1,1) models, rather traditional

GM(1,1) models, two new prediction models, NN-MLP-

GM(1,1) and NN-GP-GM(1,1), were able to remove the

requirement of determining background values.

4. Empirical results

Empirical studies were conducted using real data sets to

compare energy demand forecasting ability of the proposed

NN-MLP-GM(1,1) and NN-GP-GM(1,1) models against orig-

inal GM(1,1), NN-GM(1,1), MLP-GM(1,1), and NN-GP-

GM(1,1) models. Mean absolute percentage error (MAPE)

was employed to measure prediction performance, as this can

be treated as the benchmark and is more stable than the

commonly used mean absolute error and root mean square

error (Makridakis, 1993; Lee and Shih, 2011). MAPE with

respect to x
ð0Þ
k is

MAPE ¼
X
k2T

ek

Tj j ð24Þ

where T denotes the set of training or test data, whereas ek is

the absolute percentage error (APE) with respect to x
ð0Þ
k ,

ek ¼
x
ð0Þ
k � x̂

ð0Þ
kp

���
���

x
ð0Þ
k

� 100% ð25Þ

where x̂
ð0Þ
kp is a predicted value (e.g. x̂

ð0Þ
k , x̂

ð0Þ
ktr , x̂

ð0Þ
knnr ) with respect

to x
ð0Þ
k . Lewis (1982) proposed MAPE criteria for evaluating a

forecasting model, where MAPE B 10, 10\MAPE B 20,

20\MAPE B 50, and MAPE[ 50 correspond to high, good,

reasonable, and weak forecasting models, respectively.

4.1. Applications to energy demand forecasting

4.1.1. Case I An experiment was conducted on the historical

annual power demand of Taiwan from 1985 to 2000. As in Hsu

and Chen (2003), data from 1985 to 1998 were reserved for the

model-fitting, and data from 1999 to 2000 were used for ex

post testing. Table 1 summarizes forecasting results, reported

by Hsu and Chen (2003), of original GM(1,1) and MLP-

GM(1,1) models, along with the corresponding details for the

proposed NN-MLP-GM(1,1) model. From Table 1, we can see

that the MAPE of the original GM(1,1), the MLP-GM(1,1),

and the NN-MLP-GM(1,1) models for model-fitting was 1.54,

0.57, and 1.56 %, respectively. And for ex post testing, the

MAPE was 3.88, 1.29, and 0.78 %, respectively.

It is noteworthy that, although the NN-MLP-GM(1,1) model

is slightly inferior to the original GM(1,1) and the MLP-

GM(1,1) models for model-fitting, it is superior to the original

GM(1,1) and the MLP-GM(1,1) models for ex post testing.

Actually, when evaluating a prediction model, more emphasis

should be placed on generalization rather than model-fitting

(Luo et al, 2013). In this case, the MLP-GM(1,1) model seems
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to suffer from over-fitting. Figure 3 demonstrates the superi-

ority of the generalization ability of the proposed NN-MLP-

GM(1,1) model over the original GM(1,1) and the MLP-

GM(1,1) models.

4.1.2. Case II The second experiment was conducted on the

historical annual energy demand of China, collected from

1990 to 2007. Same as Lee and Tong (2011), data from 1990

to 2003 were used for the model-fitting, and data from 2004 to

2007 were used for ex post testing. Forecasting results from

Lee and Tong (2011) obtained by original GM(1,1), MLP-

GM(1,1) and GP-GM(1,1) models are summarized in Table 2,

along with the corresponding details for the proposed NN-

MLP-GM(1,1) and NN-GP-GM(1,1) models. Table 2 shows

that the MAPE of the original GM(1,1), the MLP-GM(1,1), the

GP-GM(1,1), the NN-GM(1,1), the NN-MLP-GM(1,1), and

the NN-GP-GM(1,1) models for model-fitting was 4.13, 3.61,

2.59, 3.81, 4.15, and 2.80 %, respectively. And for ex post

testing, the MAPE was 26.21, 20.23, 20.23, 28.71, 14.81, and

14.81 %, respectively. Since a change on an epic scale

happened to 2004, this can explain why results of the ex post

testing is not as good as those of the model-fitting.

Similar to Case I, although MAPE obtained by NN-MLP-

GM(1,1) and NN-GP-GM(1,1) models is slightly inferior to

that from MLP-GM(1,1) and GP-GM(1,1), respectively, for

model-fitting, they are superior to MLP-GM(1,1) and GP-

GM(1,1), respectively, for ex post testing. In this case, it seems

that both MLP-GM(1,1) and GP-GM(1,1) models suffer from

over-fitting. The predicted values obtained by different

forecasting models are illustrated in Figure 4. The proposed

NN-MLP-GM(1,1) and NN-GP-GM(1,1) models show

‘‘good’’ generalization ability, whereas the other prediction

models have only ‘‘reasonable’’ forecasting ability for testing

data. The generalization ability of the NN-MLP-GM(1,1) and

the NN-GP-GM(1,1) models are conspicuous.

4.1.3. Case III The third experiment was conducted on

historical annual electricity demand of China, collected from

China Statistical Yearbook (National Bureau of Statistics of

China, 2014), 1981–2002. Following (Zhou et al, 2006), data

from 1981 to 1998 were used for model-fitting, and from 1999

to 2002 for ex post testing. The forecasting results obtained

from the different forecasting models are summarized in

Table 3. All the models have ‘‘high’’ forecasting ability on the

training and test data.

Table 3 shows that results obtained by the proposed NN-

MLP-GM(1,1) and NN-GP-GM(1,1) models are satisfactory.

The MAPE of the original GM(1,1), the MLP-GM(1,1), the

GP-GM(1,1), the NN-GM(1,1), the NN-MLP-GM(1,1), and

the NN-GP-GM(1,1) models for model-fitting was 2.28, 2.03,

1.44, 1.84, 1.84, and 1.28 %, respectively. And for ex post

Output
layer

Input
layer

For original sequences For residual sequences

(0)ˆ nnrk
x

1 a b

(0)ˆkε

11k

1 a b

(0)ˆkx

k 1 1

(0)
kx

(0)
kε

Figure 1 A neural-network-based residual modification model.

Residual Neural-network-based
GM(1,1) model construction

Neural-network-based
GM(1,1) model construction

Original data sequences
collection

Sequences of absolute residual 
values generation

Residual modifications
computation

Figure 2 Flow chart of the proposed residual modification
model.
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testing, the MAPE was 7.24, 3.90, 3.90, 10.35, 3.34, and

3.34 %, respectively. The proposed NN-MLP-GM(1,1) and

NN-GP-GM(1,1) models have superior fitting and generaliza-

tion ability compared to MLP-GM(1,1) and GP-GM(1,1)

models, respectively. Figure 5 also demonstrates the superi-

ority of the generalization ability of NN-MLP-GM(1,1) and

NN-GP-GM(1,1) models over the other prediction models.

5. Discussion and conclusions

Energy demand forecasting can be regarded as a grey system

problem (Pi et al, 2010; Suganthi and Samuel, 2012) because

several factors, such as income and population, influence

energy demand but the precise relationships are not clear. That

is, although relationships exist between input factors and

dependent variable in the real problems, but it is not distinct

about what these relationships are (Hu, 2016; Hu et al, 2015).

Energy demand data are often limited and do not conform to

the usual statistical assumptions, such as normal distribution.

The GM(1,1) model is the most frequently used grey

prediction model and has played an important role in energy

demand prediction because it requires only limited samples to

construct a prediction model without statistical assumptions.

However, the traditional residual modification model has

suffered from determination of the background value, as does

the traditional GM(1,1) model, whereas the NN-GM(1,1)

model is able to directly determine the developing coefficient

and control variable using a SLP without requiring the

background value. The NN-GM(1,1) model is also simple to

implement as a computer program. Therefore, it is reasonable

to replace the traditional GM(1,1) model with the NN-

GM(1,1) model for a grey residual modification model. It is

noted that, unlike the traditional SLP, the NN-GM(1,1) model

does not use the sigmoid function as its activation function.

Table 1 Prediction accuracy obtained by different forecasting models for power demand (unit: 103 Wh)

Year Actual Original GM(1,1) MLP-GM(1,1) NN-MLP-GM(1,1)

Predicted APE Predicted APE Predicted APE

1985 47919102 47919102 0 47919102 0 47919102 0
1986 53812862 56318092 4.66 53812862 0 53812862 0
1987 59174751 60319829 1.94 59630904 0.77 63072052.4 6.59
1988 65227727 64605914 0.95 65310510 0.13 67141427.8 2.93
1989 69251809 69196550 0.08 69917174 0.96 71470372.97 3.20
1990 74344947 74113379 0.31 74850394 0.68 76076268.3 2.33
1991 80977405 79379577 1.97 80133358 1.04 80977428.0 0
1992 85290354 85019971 0.32 85790897 0.59 86193211.8 1.059
1993 92084684 91061148 1.11 91849611 0.26 91751490.1 0.36
1994 98561004 97531587 1.04 98337985 0.23 97657263.9 0.92
1995 105368193 104461790 0.86 105286530 0.08 103943602.7 1.35
1996 111139816 111884424 0.67 111040924 0.09 110634911.7 0.45
1997 118299046 119834482 1.30 118971794 0.57 117757193.7 0.46
1998 128129801 128349438 0.17 127467127 0.52 125338144.8 2.18
MAPE 1.54 0.57 1.56
1999 131725892 137469433 4.36 133459644 1.32 133406202.6 1.28
2000 142412887 147237458 3.39 144204700 1.26 141995935.9 0.29
MAPE 3.88 1.29 0.78

Figure 3 Absolute percentage errors by different prediction models for Case I.
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Some improved residual modification models, such as

MLP-GM(1,1) and GP-GM(1,1), focused on residual sign

estimation, but they retain the drawback of the traditional

GM(1,1) model. On the other hand, the proposed NN-MLP-

GM(1,1) and NN-GP-GM(1,1) models were developed from

MLP-GM(1,1) and GP-GM(1,1) models, respectively, by

substituting NN-GM(1,1) for traditional GM(1,1) models.

Therefore, the proposed residual modification model can

estimate residual signs effectively and is free from the

drawback of the traditional GM(1,1) model.

Real cases of energy demand data from China were used to

evaluate the forecasting performances of the proposed NN-

MLP-GM(1,1) and NN-GP-GM(1,1) models. The outcomes

verified that the proposed forecasting models perform well.

Zhou et al (2006) showed that for Case III, MAPE for an

autoregressive integrated moving average (ARIMA) and

Table 3 Prediction accuracy obtained by different forecasting models for electricity demand (unit: 100 million kWh)

Year Actual Original GM(1,1) MLP-GM(1,1) GP-GM(1,1) NN-GM(1,1) NN-MLP-GM(1,1) NN-GP-GM(1,1)

Predicted APE Predicted APE Predicted APE Predicted APE Predicted APE Predicted APE

1981 3096 3096 0 3096 0 3096 0 3096 0 3096 0 3096 0
1982 3280 3327.7 1.45 3280 0 3280 0 3230.1 1.52 3280 0 3280 0
1983 3519 3611.5 2.63 3638.0 3.38 3585.0 1.88 3516.7 0.07 3551.4 0.92 3551.4 0.92
1984 3778 3919.5 3.75 3888.3 2.92 3888.3 2.92 3828.7 1.34 3804.6 0.70 3804.6 0.70
1985 4118 4253.9 3.30 4217.1 2.41 4217.1 2.41 4168.4 1.22 4138.1 0.49 4138.1 0.49
1986 4507 4616.7 2.43 4573.3 1.47 4573.3 1.47 4538.3 0.69 4500.3 0.15 4500.3 0.15
1987 4985 5010.5 0.51 4959.4 0.51 4959.4 0.51 4940.9 0.88 4893.4 1.84 4988.5 0.07
1988 5467 5437.9 0.53 5377.6 1.63 5498.2 0.57 5379.3 1.60 5438.9 0.51 5438.9 0.51
1989 5865 5901.7 0.63 5830.7 0.59 5830.7 0.59 5856.5 0.14 5931.2 1.13 5931.2 1.13
1990 6230 6405.1 2.81 6321.4 1.47 6321.4 1.47 6376.2 2.35 6469.7 3.85 6469.7 3.85
1991 6775 6951.4 2.60 6852.8 1.15 6852.8 1.15 6941.9 2.46 7059.1 4.19 6824.7 0.73
1992 7542 7544.3 0.03 7428.1 1.51 7428.1 1.51 7557.8 0.21 7411.0 1.74 7411.0 1.74
1993 8426.5 8187.8 2.83 8050.8 4.46 8324.8 1.21 8228.3 2.35 8044.4 4.53 8044.4 4.53
1994 9260.4 8886.2 4.04 8724.8 5.78 9047.6 2.30 8958.4 3.26 9188.9 0.77 9188.9 0.77
1995 10023.4 9644.1 3.78 9834.3 1.89 9834.3 1.89 9753.2 2.70 10042 0.19 10042 0.19
1996 10764.3 10466.7 2.76 10690.9 0.68 10690.9 0.68 10618.6 1.35 10980.5 2.01 10980.5 2.01
1997 11284.4 11359.5 0.67 11623.7 3.01 11095.3 1.68 11560.7 2.45 12014.1 6.47 11107.2 1.57
1998 11598.4 12328.4 6.29 12017.1 3.61 12017.1 3.61 12586.4 8.52 12018.2 3.62 12018.2 3.62
MAPE 2.28 2.03 1.44 1.84 1.84 1.28
1999 12305.2 13379.9 8.73 13013 5.75 13013.0 5.75 13703.1 11.36 12991.2 5.57 12991.2 5.57
2000 13471.4 14521.2 7.79 14088.8 4.58 14088.8 4.58 14918.9 10.74 14026.9 4.12 14026.9 4.12
2001 14633.5 15759.8 7.70 15250.3 4.21 15250.3 4.21 16242.5 10.99 15124.9 3.36 15124.9 3.36
2002 16331.5 17104 4.73 16503.6 1.05 16503.5 1.05 17683.6 8.279 16283.3 0.30 16283.3 0.30
MAPE 7.24 3.90 3.90 10.35 3.34 3.34

Figure 4 Predicted values obtained by different prediction models.

Yi-Chung Hu and Peng Jiang—Forecasting energy demand using neural-network-based grey residual modification models 563



trigonometric grey prediction model was 3.25 and 2.12 %,

for model-fitting, respectively, which are inferior to the

proposed NN-MLP-GM(1,1) and NN-GP-GM(1,1) models.

For Cases II and III, it is interesting to note that the NN-

GM(1,1) model is superior to the traditional GM(1,1) model

for model-fitting, but inferior for ex post testing. In other

words, the NN-GM(1,1) model appears to be over-fitting.

Experimental results show that the generalization ability of

NN-MLP-GM(1,1) and NN-GP-GM(1,1) models are superior

to the MLP-GM(1,1) and GP-GM(1,1) models. Thus, the

generalization ability of a residual modification model could

be improved by incorporating NN-GM(1,1) models.

The SLP in this study was trained on the basis of the BP

using gradient descent. The learning is continued until a

convergent condition is reached. It is known that one

drawback of using BP is that a local minimum (Weiss and

Kulikowski, 1991) is likely to be stuck during the learning

process. Therefore, other optimization techniques such as

genetic algorithm (GA; Goldberg, 1989; Man et al, 1999)

could be applied to automatically determine the connection

weights. In parenthesis, in comparison with the BP, an

advantage of using GA is that a local minimum is unlikely to

be stuck (Rooij et al, 1996; Vonkj et al, 1997; Hu, 2010).

Additionally, the MLP-GM(1,1), the NN-GP-GM(1,1), and

the proposed models have something in common. It is evident

that they are grey residual modification models and devel-

oped for residual sign estimation to improve the prediction

accuracy of the residual modification model. However, it is

interesting to estimate not only the sign but the extent to

which x̂
ð0Þ
k obtained from the original GM(1,1) model can be

modified by êð0Þk (k = 2, 3,…, n). This remains for the future

work.
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