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Abstract
We consider a real discrete pricing problem in network revenue management for FlixBus. We improve the company's current 
pricing policy by an intermediate optimization step using booking limits from standard deterministic linear programs. We 
pay special attention to computational efficiency. FlixBus' strategic decision to allow for low-cost refunds might encourage 
large group bookings early in the booking process. In this context, we discuss counter-intuitive findings comparing booking 
limits with static bid price policies. We investigate the theoretical question whether the standard deterministic linear program 
for network revenue management does provide an upper bound on the optimal expected revenue if customer's willingness 
to pay varies over time.

Keywords  Network revenue management · Discrete pricing · Linear programming · Upper bound · Booking limits · Bid 
prices

Introduction

When the German government deregulated the long-distance 
bus market in 2013, thirteen bus companies entered the mar-
ket. But only five years later, FlixBus had conquered 90% of 
German bus market and has expanded well beyond Europe 
to Asia and the United States, see The Economist (2018).

The dramatic growth of the company is often attributed to 
its highly scalable business model: to be officially licensed 
as a bus company, FlixBus owns one bus, which is parked 
permanently. While regional bus companies own the green 
buses with the FlixBus logo, employ the drivers, and are 
responsible for the day-to-day running of routes, FlixBus 
can focus on permits, network planning, marketing, pricing, 
quality management and customer service. Ticket prices are 
split with its partners accordingly.

The willingness of investors to suffer from short term 
losses in order to gain market share is also cited as a source 
of FlixBus’ growth, see The Economist (2018). Given its 
dominant position in Germany, however, the company 
started to focus on expected revenue maximization and 
employed roughly 50 revenue managers as of 2018. Each of 
those revenue managers manually supervised more than 20 

FlixBus is a global mobility provider since 2013, and from 2018 
also with FlixTrain, expanding this service to the rail industry. As 
a unique combination of tech-startup, e-commerce platform and 
transportation company, FlixBus quickly became Europe’s largest 
intercity bus network, allowing for an affordable and sustainable 
alternative to private transportation. FlixBus network, that is in 
rapid growth in Europe and abroad, relies on close partnerships 
with small and medium-sized enterprises and often family-owned 
businesses. For the operation of the long-distance FlixTrains, 
the company cooperates with the most-successful private train 
operators in Europe.
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bus lines (independent networks) with a total of more than 
150 legs per day.

Given this challenge and the willingness to expand even 
further, it was an operational necessity to automate pricing 
decisions to a larger degree than in the past. There are two 
main aspects of this problem: obtaining a realistic demand 
forecast including information about price elasticity and 
determining a pricing policy based on this forecast. This 
paper is mainly concerned with the second aspect, even 
though the first aspect had to be addressed also in order to 
obtain data, which could be used for realistic experiments.

Although many of the operational pricing constraints 
mimic those of the airline industry (perishable resource 
given highly price sensitive demand), a few key differences 
are: (1) only one of a few predetermined prices should be 
offered for each origin–destination-pair at the same time, (2) 
since tickets can be refunded at very low costs, large group 
bookings might be an issue if an uncontrolled number of 
cheap tickets can be bought early in the selling process, (3) 
given the limited computing resources, it is impossible to 
perform computationally expensive optimization procedures 
frequently for each bus line, (4) given the nature of bus rides 
with many stops, a typical customer uses more legs on a 
given ride than airline customers, and (5) since tickets can 
be returned with a maximum fee of 5 Euros (or Dollars), the 
need for increasing prices over time is large.

Problems with property (1) are usually referred to as 
discrete dynamic pricing problems and well-studied in the 
network revenue management literature. Most notably, Wal-
czak et al. (2010) and Fiig et al. (2010) have shown that a 
transformation exists to transform discrete pricing problems 
to revenue management with independent demand. In this 
paper, we apply this transformation and discuss some lesser-
known implications.

FlixBus traditionally imposed nested booking limits to 
guide revenue managers’ decisions. Given this history and its 
implied computational infrastructure as well as the strategic 
decision (2) combined with the limited computing resources 
(3), a straight-forward bid price control was viewed as risky 
since bid price policies might allow groups to buy a large 
quantity of seats at a low price early in the selling process 
and then return them in case they are not needed. To quan-
tify the expected revenue loss in the presence of early group 
bookings and to address the particularities (4) and (5), we 
present a computational study that focuses on those risks 
and discusses concepts on how to address those problems.

In particular, we make the following contributions:

1.	 We exploit the equivalence transformation from Walczak 
et al.  (2010) to transform discrete pricing to revenue 
management with independent demand. We implement 
deterministic linear programs for both models to obtain 
booking limits, which can then be used directly in a leg-

based pricing mechanism. Our simulation results sug-
gest that this change alone could improve their current 
best practice pricing policy, which is based on expected 
demand forecasts.

2.	 We adopt a simple extension of the well-known deter-
ministic linear program (DLP) for network revenue 
management to obtain an upper bound of the maximum 
expected revenue. This dynamic DLP is closely related 
to the approximate linear program obtained from the 
affine approximation as suggested by Adelman (2007). 
Doing so, we highlight that in dynamic discrete pric-
ing with non-constant willingness to pay, the standard 
(static) deterministic linear program is not guaranteed to 
provide such an upper bound.

3.	 Given a discrete set of feasible prices, the network pric-
ing problems we obtain are linear, leading to imple-
mentable and efficient pricing algorithms. This property, 
which is in stark contrast to the non-linear continuous 
pricing problems discussed in the literature, is especially 
important given the large number of bus lines served by 
carriers such as FlixBus.

4.	 Working with historical sales data including group book-
ings from FlixBus, we compare the company’s present 
best practice pricing policy with standard revenue man-
agement pricing methods. We present counter-intuitive 
findings comparing nested booking limits with bid price 
policies. Considering worst-case scenarios, the fear of 
bid prices being risky due to the threat of early group 
bookings might indeed be unsubstantiated.

5.	 We find that dynamic programming decomposition pro-
vides the best results in all scenarios of our simulation. 
Due to its large computational requirements, however, 
this technique is infeasible for most practical purposes. 
This is why we suggest a reduction of the required mem-
ory capacity using piecewise linear approximations.

Literature review

The problem considered in this paper can be described as dis-
crete dynamic pricing in network revenue management with 
time-dependent price elasticities and independent demand 
across origin–destination-pairs. As we discuss below, this 
problem is linked to the network revenue management problem 
with independent demand. In the first half of this section, we 
summarize relevant literature concerning general network rev-
enue management and pricing. In the second half, we focus on 
literature which is more closely related to our specific setting.

General revenue management and dynamic pricing 
literature

Traditionally, revenue management models assume that 
a firm sells multiple perishable products simultaneously. 
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Prices for different products are fixed and demand for each 
product is independent of the availability of other products. 
In this setting, the firm can decide if incoming customer 
requests to buy a given product should be accepted or 
rejected, see e.g., Talluri and Van Ryzin (2004).

Network revenue management and pricing problems con-
sider products that may use more than just one resource. In 
general, these models suffer from the curse of dimensional-
ity and can thus usually not be solved exactly. As a conse-
quence, they have been approached by different approxima-
tion methods and heuristics.

The most common method is the deterministic linear 
program (DLP), see Talluri and Van Ryzin (1998). When 
including customer choice, or when considering a discrete 
dynamic pricing problem, a corresponding choice determin-
istic linear program (CDLP) can be formulated, see Gallego 
et al. (2004). Since both the DLP and CDLP are static and do 
not consider dynamic stochastic demand over time, it is com-
mon practice to frequently re-solve those linear programs 
during the selling process, see e.g., Jasin and Kumar (2012). 
However, there is no guarantee that re-solving increases the 
expected revenue, see Jasin and Kumar (2013) or Cooper 
(2002). In addition, it is well-known that the DLP provides 
an upper bound of the maximum expected revenue in the 
traditional revenue management model. Similarly, CDLP 
provides an upper bound to the discrete dynamic pricing 
problem if the willingness to pay is constant over time, see 
e.g., Zhang and Adelman (2009). This result, however, does 
not hold for varying willingness to pay over time. In the con-
text of approximate dynamic programming (ADP), tighter 
upper bounds than DLP can be found for traditional revenue 
management models.

Methods based on a dynamic programming decomposi-
tion divide the network problem into several single-resource 
problems by assigning adjusted prices to each product-
resource combination, see Talluri and Van Ryzin (2004).

Based on those approximations, booking limits or bid 
prices are often used to control a traditional network revenue 
management or discrete pricing problem, see Talluri and 
Van Ryzin (2004). Booking limits represent the maximum 
number of units of a product that should be sold. On the 
other hand, bid price policies approximate marginal seat val-
ues. A product is thus offered whenever its price exceeds the 
sum of all bid prices connected to the consumed resources.

De Boer et al. (2002) compare leg-based nested booking 
limits and bid price policies for network problems with inde-
pendent demand. A similar comparison was conducted by 
Pimentel et al. (2018) for hotel revenue management. Both 
papers report superiority of nested booking limits over bid 
price methods. We add to this discussion in our numerical 
experiments.

Static booking limits and bid prices can be obtained 
from DLP. But static bid prices have the disadvantage of 

not considering remaining time or capacity. Adelman (2007) 
provides an ADP-based approach for computing time-
dependent bid prices. The resulting method is closely related 
to simply adding a time index to the DLP, see ‘Dynamic 
versions of the static DLPs’ and ‘Upper bounds in pric-
ing’ below. Taking into account the remaining capacity 
becomes important when realized demand differs substan-
tially from demand forecasts. Capacity dependent bid prices 
are addressed for example by Bertsimas and Popescu (2003), 
Topaloglu (2009), Meissner and Strauss (2012) or Vossen 
and Zhang (2015).

Dynamic pricing models determine prices for different 
products. Demand for each product generally depends on the 
set of prices for each product, see Gallego and Van Ryzin 
(1997) for an introduction and Chen and Chen (2015) for a 
literature overview. In the context of setting prices in trans-
portation, as considered in this paper, customers often only 
request one particular origin–destination-pair without being 
influenced by the prices of other routes, see e.g., Erdelyi and 
Topaloglu (2011).

In contrast to continuous pricing problems, discrete 
pricing problems restrict the set of feasible prices for each 
product to a finite set. Such a problem can be transformed 
efficiently to an independent demand model, see Walczak 
et al. (2010) as well as Fiig et al. (2010).

Using ADP for dynamic pricing models, continuous 
prices usually lead to non-linear mathematical programs, 
see e.g., Ke et al. (2019). On the other hand, the discrete 
pricing problem often leads to a linear program, see e.g., 
Ke et al. (2019).

Related literature on bus and railway revenue management

Most literature about practical applications of revenue man-
agement theory is concerned with the airline industry.

For the bus industry, the authors are not aware of any 
literature on revenue management models. Passenger rail-
way is very similar to the bus industry and has received 
much more attention in the literature. For an overview, see 
Armstrong and Meissner (2010). We summarize the most 
relevant literature on this application in the following.

Because prices are often fixed for railway companies due 
to government restrictions, most papers introducing models 
for this industry do not consider dynamic pricing, see e.g., 
Ciancimino et al. (1999), You (2008), Wang et al. (2016).

Yuan et al. (2018) apply the compact reduction for the 
affine approximation done by Vossen and Zhang (2015) to 
a railway revenue management problem. Since their setting 
includes a general customer choice model, even the reduced 
linear program is of an exponential size and must be solved 
by constraint generation.

Zheng and Liu (2016) and Zheng et al. (2017) optimize 
over a continuous set of feasible prices, which renders their 
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mathematical problem highly non-linear. Similarly, Hu et al. 
(2020) implement a Quasi-Newton method to solve their 
dynamic pricing problem.

Hetrakul and Cirillo (2014) discuss a simultaneous pric-
ing and seat allocation model. In their model, the total 
demand over the selling horizon is fixed. Dynamic pricing 
can only influence the booking time distribution. Qin et al. 
(2019) as well as Zhu and Zhao (2020) need booking limits 
together with dynamic pricing because their model includes 
an upper bound constraint on the price. The resulting math-
ematical programs are solved by a heuristic algorithm or 
LINGO, respectively.

Outline of paper

In ‘Preliminaries and problem formulation’, we introduce 
the general problem framework and notation. In ‘Status quo: 
leg-based booking limits based on expected demand’, we 
shortly outline the pricing policy currently used by FlixBus. 
We start the discussion of standard revenue management 
methods with the introduction of the choice deterministic 
linear program and its equivalent independent demand DLP 
in ‘Other heuristics for the discrete pricing problem’. The 
dynamic improvement of the DLP is done in ‘Dynamic ver-
sions of the static DLPs’. We discuss upper bounds that are 
obtained from our pricing problems in ‘Upper bounds in 
pricing’. Then, we discuss the threat of early group book-
ings in ‘Danger of early group bookings’. We also suggest 
remedies which take into account computational limitations. 
The paper concludes with numerical experiments using real 
data in ‘Numerical experiments’.

All proofs to our theorems and lemmas can be found in 
‘Proofs’.

Preliminaries and problem formulation

A bus route starting at origin 1 and running to destination 
L + 1 with stops at locations 2, 3,… , L is commonly referred 
to as a bus line. Since in our application, transfers are rare, 
we consider a network corresponding to one bus line.

For a particular bus line, various origin–destination-pairs 
j ∈ {1,… , J} are sold during a finite selling horizon of con-
tinuous time � ∈ (0, �T ] , where � denotes the time-to-go until 
departure. The bus company may choose the best price for 
every origin–destination-pair over time from a given set of 
prices. Its goal is to maximize the expected revenue gener-
ated from the selling process.

Each origin–destination-pair j starting at origin o and 
ending at destination d consists of legs o, o + 1,… , d − 1 , 
see Fig.  1. The consumption matrix A ∈ {0, 1}L×J has 
corresponding entries: Al,j = 1 if leg l  is contained in 
origin–destination-pair j , and Al,j = 0 otherwise. Let 
Aj =

(
A1,j,… ,AL,j

)T be the column corresponding to ori-
gin–destination-pair j . For each origin–destination-pair j , 
there are fare classes f ∈ {1,… ,F} with corresponding 
prices Pj,f  , with Pj,1 > Pj,2⋯ > Pj,F . The additional artifi-
cial fare class f = 0 provides the possibility of closing a 
particular origin–destination-pair for sale. At time �T , no 
ticket has been sold yet and the bus has a total capacity of 
cl = C seats on each leg l . For notational convenience, we 
define �⃗c =

(
c1,… , cL

)T.
The customer arrival stream is modeled as a non-station-

ary Poisson process with arrival rate ��,j . An arriving cus-
tomer requesting origin–destination-pair j is willing to pay 
fare class f  with probability Pr(f |�, j) , where Pr(F|�, j) = 1 . 
To model group bookings, we assume that the probability 
distribution of the group size is known and given by 

(
�s

)
s∈ℕ

 , 
where we interpret �s as the probability for a group size s . 
For each group size s , the arrival stream is then modeled as 
a non-stationary Poisson process with arrival rate �s��,j∕s . 
To simplify the model, we divide the time horizon into a 
finite number of intervals 

(
�t−1, �t

]
, t = 1,… , T . In each time 

interval t , the expected number of customers requesting ori-
gin–destination-pair j and willing to pay at most Pj,f  is 
Dt,j,f = ∫ �t

�t−1
��,j ⋅ Pr(f |�, j) d� . We choose the time grid fine 

enough such that 
∑

j Dt,j,F ≤ 1 for each t , i.e., we assume that 
for all t , at most one customer arrives in expectation.

Let xl be the number of remaining seats on leg l during 
the selling process and �⃗x =

(
x1,… , xL

)T . The value function 
maximizing the expected revenue that can be obtained by 
choosing the fare class of each origin–destination-pair for 
all t is then given by:

(1)
vt
�
�⃗x
�
= max

f⃗ ∈ {0,… ,F}J

s.t. �⃗x ≤ Aj for all j with fj > 0

�∑
j Dt,j,fj

�
Pj,fj

+ vt−1
�
�⃗x − Aj

�
− vt−1

�
�⃗x
��

+ vt−1
�
�⃗x
��

Fig. 1   Network of a bus line, stations 1,… ,L + 1 and legs l = 1,… ,L
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The optimal pricing policy based on the value function is:

where � ∈ (�t−1, �t].
Given �⃗x , the chosen fare class maximizes the sum of the 

expected one-stage revenue and the expected value function 
given the reduced number of seats �⃗x − Aj given a sale and 
�⃗x given no sale. Since the number of states increases expo-
nentially in the number of legs, this recursion suffers from 
the curse of dimensionality and is therefore intractable even 
for relatively small problems.

Status quo: leg‑based booking limits based 
on expected demand

Until recently, FlixBus exclusively implemented a pric-
ing policy which specifies booking limits that are based 
directly on the expected demand. We present a simplified 
version of their algorithm which should be sufficiently 
compatible in order to illustrate the core idea. Expected 
demand Dt,j,f  for origin–destination-pair j at time t  will-
ing to pay at most Pj,f  is estimated from historical data. 
Given this, the number of customers expected to request 
origin–destination-pair j and willing to pay fare class f  but 
not fare class f − 1 is 

∑
t

�
Dt,j,f − Dt,j,f−1

�
 . Assuming that 

demand equals expected demand on leg l , a booking limit of 
bl,f =

∑
t,j Al,j

�
Dt,j,f − Dt,j,f−1

�
 tickets should be sold to fare 

class f  for each leg l . These booking limits are then adjusted 
in order to ensure that the cumulative booking limit on each 
leg l does not exceed the total capacity of seats, cl = C , by 
reducing the booking limits of the lowest-priced fare classes.

Having computed these booking limits for each leg l and 
each fare class f  , the fare class offered is determined as the 
lowest fare class that is available for sale on all legs l con-
tained in the requested origin–destination-pair j.

This leg-based booking limit mechanism for pricing is 
remotely related to the nested network policy discussed 
by Pimentel et al. (2018). Since expected demand is used 
directly to compute booking limits and nesting is done by 
fare class, it can be viewed as a computationally less expen-
sive dynamic pricing version of the algorithm suggested by 
De Boer et al. (2002) for traditional network revenue man-
agement with independent demand.

In the following, we refer to this booking limit policy 
based on expected demand as BL-ED. As long as the 
demand forecast is not changed, leg-based booking limits 
always lead to increasing prices over time. The additional 

(2)v0
(
�⃗x
)
= 0, vt

(
�⃗0
)
= 0.

(3)f ∗(t, j) = argmax
f

Dt,j,f

[
Pj,f + vt−1

(
�⃗x − Aj

)
− vt−1

(
�⃗x
)]

recommendation to only update booking limits of fare 
classes that are not fully booked at the time of the update 
ensures increasing prices over time even in the presence of 
forecast updates.

This control policy has two major drawbacks: (1) book-
ing limits based on expected demand may perform poorly 
even on single-leg problems depending on the price differ-
ences between fare classes and the shape of the demand dis-
tribution and (2) leg-based booking limits severely restrict 
the options to control demand streams in network revenue 
management.

Drawback (1) is well-known in the revenue management 
community. Therefore, we provide a short toy example to 
demonstrate drawback (2):

Example drawback 2

Consider a bus with 5 seats going from origin 1 to desti-
nation 3. Prices for origin–destination-pairs 1–2 and 2–3 
are 5 for fare class 2 and 15 for fare class 1. Prices for ori-
gin–destination-pair 1–3 are 7 for fare class 2 and 20 for fare 
class 1. Expected demand for all origin–destination-pairs is 
expected to be larger than 5 for fare class 2; it is 0 for fare 
class 1. Even though it is obvious that origin–destination-
pair 1–3 should now be closed to bookings in fare class 2 
and the others should remain open, such a policy cannot 
be implemented given leg-based booking limits. Note that 
(leg-based) bid prices could resolve this drawback by setting 
them equal to 4 for both legs. Since 5 > 4 but 7 < 4 + 4 , this 
would open fare class 2 for origin–destination-pairs 1–2 and 
2–3, and close fare class 2 for origin–destination-pair 1–3.

Other heuristics for the discrete pricing 
problem

To address the drawbacks mentioned above, we suggest a set 
of standard methods of revenue management, adapted to the 
discrete pricing problem.

Deterministic linear programs

Within the class of deterministic linear programs, we suggest 
two approaches: (1) view the discrete pricing problem as a 
special case of the deterministic linear program with cus-
tomer choice, as suggested by Gallego et al. (2004), and (2) 
transform the discrete pricing problem to a capacity control 
problem with independent demand and then use the standard 
DLP, see Talluri and Van Ryzin (2004). We first introduce 
both approaches and then show that they are equivalent.
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Choice deterministic linear program

The following linear program was suggested for general cus-
tomer choice models by Gallego et al. (2004) but can easily 
be applied to our discrete pricing setting as demonstrated by 
Erdelyi and Topaloglu (2011):

where Dj,f =
∑T

t=1
Dt,j,f  . For each origin–destination-pair j , 

the variable �j,f  can be interpreted as the portion of time 
at which fare class f  is offered during the selling horizon. 
The objective is to maximize the expected revenue. The first 
constraint is the availability constraint, the second constraint 
enforces consistency with the interpretation of � . The dual 
values of the first constraint yield bid prices �l , which can 
be used as an approximation for the marginal seat value: ∑

l 𝜋lAl,j ≈ vt−1
�
�⃗x
�
− vt−1

�
�⃗x − Aj

�
 . Inserting this approxima-

tion into (3), we obtain the following pricing policy, which 
aims at a maximization of a one-stage expected revenue with 
bid price adjusted prices:

We refer to this policy as BP-CDLP. Given the status-
quo implemented at FlixBus, a policy based on leg-based 
booking limits would require only minimal changes. We 
hence also suggest to control the selling process as outlined 
in ‘Status quo: leg-based booking limits based on expected 
demand’ but based on the expected demand that should be 
satisfied, Dj,f�j,f  instead of Dj,f − Dj,f−1 , i.e., using booking 
limits bl,f =

∑
j Al,jDj,f�j,f  . We refer to this policy as BL-

CDLP in the following.
To allow the underlying bid prices to change over time, 

the underlying deterministic linear program is often re-
solved multiple times during the selling process in practice.

Transformation to revenue management with independent 
demand

Since it is well-known that discrete pricing problems can be 
transformed to capacity control problems with independent 
demand (see Fiig et al. (2010) and Walczak et al. (2010)), 
the well-known DLP used in network revenue management 
can also be used for our discrete pricing problem.

As a first step, we transform total demand and prices as 
follows: For every origin–destination-pair j , we delete all 
fare classes which do not belong to the efficient frontier, 
see Fiig et al. (2010). In the following, we only consider the 
remaining set of efficient fare classes Fj.

�
PCDLP

�
max
�≥0

∑
j,f Dj,f Pj,f�j,f

∑
j,f Dj,f Al,j�j,f ≤ cl ∀l∑

f �j,f ≤ 1 ∀j

(4)f ∗(j) = argmax
f

Dj,f

�
Pj,f −

∑
l �lAl,j

�
.

If fare classes f � = 1,… , f  are offered given the inde-
pendent demand assumption, customers willing to pay at 
most Pj,f ′ with f ′ < f  do not buy down to fare class f  . Since 
they buy down in the discrete pricing problem, demand is 
adapted to dj,f � ∶= Dj,f � − Dj,f �−1 . According to Walczak et al. 
(2010), we then transform prices as follows:

With the transformed demand dj,f  and prices pj,f  , we 
can reformulate the standard DLP given in Talluri and Van 
Ryzin (2004):

In this linear program with independent demand, the 
value yj,f  represents the booking limit for origin–destina-
tion-pair j and fare class f  . The objective is to maximize 
the expected revenue. The first constraint ensures availabil-
ity. The second constraint forces the booking limits to not 
exceed the demand forecasts. The following Theorem shows 
that 

(
PDLP

)
 is equivalent to 

(
PCDLP

)
 and yields the same bid 

prices.

Theorem 1  The linear programs 
(
PCDLP

)
 and 

(
PDLP

)
 are 

equivalent and yield the same bid prices.

Booking limits yj,f  obtained from 
(
PDLP

)
 are booking 

limits of the transformed problem and in general not equal 
to Dj,f�j,f  . Since 

(
PDLP

)
 has much more intuitive appeal, 

however, we also suggest a pricing policy BL-DLP that 
controls the selling process as outlined in ‘Status quo: leg-
based booking limits based on expected demand’ but based 
on 

(
PDLP

)
 using booking limits bl,f =

∑
j Al,jyj,f  . For integer 

demand forecasts dj,f  , the unimodularity of the constraint 
matrix implies that optimal solutions of 

(
PDLP

)
 and hence the 

corresponding booking limits used by BL-DLP are always 
integer, see Bertsimas and Popescu (2003).

In revenue management with independent demand, all 
fare classes which satisfy pj,f ≥

∑
l �lAl,j are offered. Con-

sistent with the above intuitive discussion of the transfor-
mation formula, the corresponding discrete pricing policy 
BP-DLP offers the lowest such price, implying

Lemma 1  The pricing policies BP-CDLP and BP-DLP are 
equivalent.

pj,f ∶=
Dj,f Pj,f−Dj,f−1Pj,f−1

Dj,f−Dj,f−1

.

�
PDLP

�
max
y≥0

∑
j,f pj,f yj,f

∑
j,f Al,jyj,f ≤ cl ∀l

yj,f ≤ dj,f ∀j, f .

f ∗(j) = max{f ∣ pj,f ≥
∑

l �lAl,j}.
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Dynamic versions of the static DLPs

Both 
(
PCDLP

)
 and 

(
PDLP

)
 ignore the dynamic nature of the 

problem. Given time-dependent price elasticities, we expect 
that adding a time index to the variables should improve 
performance. The following linear program is based on a 
more general dynamic formulation of 

(
PCDLP

)
 provided in 

Kunnumkal and Topaloglu (2008):

The intuition of this linear program closely follows the 
interpretation of 

(
PCDLP

)
 : Variable �t,j,f  is interpreted as the 

probability that price class f  for origin–destination-pair j is 
offered at time t.

A dynamic version of 
(
PDLP

)
 can be formulated accord-

ingly. To do this, let dt,j,f , pt,j,f  be the result of a transfor-
mation as outlined in ‘Transformation to revenue manage-
ment with independent demand’, but using Dt,j,f  instead of 
Dj,f  . The following linear program is similar to the single-
resource multi-product stochastic version of Maglaras and 
Meissner (2006):

Just like their static counterparts, these two problems are 
equivalent. The proof of the following theorem is analogue 
to the proof of Theorem 1.

Theorem 2  The linear programs 
(
Pd−CDLP

)
 and 

(
Pd−DLP

)
 are 

equivalent and yield the same bid prices.

Bid prices �l obtained from 
(
Pd−CDLP

)
 or 

(
Pd−DLP

)
 can 

be used to construct a policy using (4) if Dj,f  is replaced 
with Dt,j,f  . We refer to this policy as BP-dDLP. We can 
also construct leg-based booking limit policies BL-dCDLP 
resp. BL-dDLP by computing bl,f =

∑
t,j Al,jDt,j,f�t,j,f  resp. 

bl,f =
∑

t,j Al,jyt,j,f .

Upper bounds in pricing

For capacity control problems with independent demand and 
constant prices, it is well known that the (static) DLP pro-
vides an upper bound of the exact value function, see e.g., 
Bertsimas and Popescu (2003). Adelman (2007) suggests a 
linear program that provides an even tighter upper bound. 
Similarly, in the customer choice setting with time-inde-
pendent choice probabilities, Zhang and Adelman (2009) 

�
Pd−CDLP

�
max
�≥0

∑
t,j,f Dt,j,f Pj,f�t,j,f

∑
t,j,f Dt,j,f Al,j�t,j,f ≤ cl ∀l∑

f �t,j,f ≤ 1 ∀t, j.

�
Pd−DLP

�
max
y≥0

∑
t,j,f pt,j,f yt,j,f

∑
t,j,f Al,jyt,j,f ≤ cl ∀l

yt,j,f ≤ dt,j,f ∀t, j, f .

prove that the (static) CDLP is an upper bound of the exact 
value function.

If we transform a discrete pricing problem with time-
dependent price elasticity to a single stage capacity con-
trol problem with independent demand, however, the opti-
mal value of neither 

(
PCDLP

)
 nor 

(
PDLP

)
 provides an upper 

bound for the exact value function. This is because these 
static models assume constant prices over time and a time-
dependent price elasticity leads to time-dependent trans-
formed prices. We demonstrate this in numerical experi-
ments in ‘Numerical experiments’.

Kunnumkal and Topaloglu (2008) prove that the dynamic 
deterministic linear program 

(
Pd−CDLP

)
 , however, provides 

an upper bound. Again, the affine approximation from Adel-
man (2007), adapted to the discrete pricing model, provides 
a tighter bound. The proof of the following theorem can 
be found in ‘Proofs’. It highlights the close similarity of (
Pd−DLP

)
 and the affine approximation from Adelman (2007):

Theorem 3  Let Zd−DLP be the optimal value of 
(
Pd−DLP

)
 and (

Pd−CDLP

)
. Furthermore, let 

(
PAL

)
 be the approximate linear 

program based on (1) and (2) with the affine approximation 
as described by Adelman (2007), and let ZAL be the optimal 
value of 

(
PAL

)
. Then, vT

(
�⃗c
)
≤ ZAL ≤ Zd−DLP.

Danger of early group bookings

Given the strategic decision to allow for low-cost refunds, 
groups could buy large numbers of tickets early in the selling 
process without large financial risks. In the face of such a 
threat, a booking limit policy often appears to be safer than 
a static bid price policy since the number of tickets sold at 
small prices is limited.

Using a booking limit policy for a given origin–destina-
tion-pair j , the number of tickets sold at Pj,f  is always 
restricted by the booking limit. If the remaining capacities 
are xl , tickets are currently offered at Pj,f  , and a group 
requests n t ickets at the same time, at most 
minl{xl −

∑f−1

f �=1
bl,f � } seats are sold at price Pj,f  . If this num-

ber is smaller than n , the remaining seats are offered at 
higher prices.

A pricing policy based on bid prices always offers the 
lowest price class f  such that the transformed price pj,f  is 
larger than the sum of the bid prices of the legs used on this 
origin–destination-pair. If the remaining capacity on each 
leg l is xl , tickets are currently offered at Pj,f  , and a group 
requests n tickets at the same time, the total price charged 
is nPj,f  as long as n ≤ xl for each leg l used by origin–des-
tination-pair j.
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Most commonly, this drawback of bid price based poli-
cies not being capacity-dependent is addressed by resolv-
ing the underlying problem multiple times over the selling 
horizon. Given these updated bid prices, new capacity lev-
els are taken into account. In our setting, however, updates 
can only be done overnight due to computational capacity 
restrictions. But even given more computational resources, 
it seems difficult to schedule an update in the middle of a 
group booking.

In the following, we will argue that the intuition of book-
ing limits being superior in such a setting need not be true. 
Instead, the performance of booking limit vs. bid price 
policies highly depends on the circumstances of the group 
booking.

In general, our simulations confirm this intuition if such 
group bookings represent extra unexpected demand. To 
demonstrate that this is not generally true, however, con-
sider the following setting: assume that high fare demand 
occurring during the selling process belongs to passengers 
traveling to a group event. A group organizer might venture 
to buy tickets for all potential participants early in the book-
ing process. The total expected demand remains unchanged, 
but the temporal distribution differs from the forecast. We 
outline an example of this setting in the following:

Example group organizer

Consider a single-leg bus line with a capacity of 16 seats and 
two fare classes f = 1, 2 with prices P1 = 20,P2 = 10 . We 
divide the booking horizon into two time periods t = 1, 2 and 
assume that both demand and willingness to pay increase as 
departure approaches. In particular, demand Dt,f  is deter-
ministic and equal to D2,1 = 1,D2,2 = 6 in period t = 2 , and 
D1,1 = 8,D1,2 = 12 in period t = 1 . All D1,1 = 8 high fare 
passengers travel to a group event. The bus departs at the 
end of period t = 1 . Booking limits bf  obtained by BL-CDLP 
are equal to b1 = 8, b2 = 8 . Bid price policy BP-DLP also 
starts by offering the lower fare class. We assume that a 
group organizer buys all D1,1 = 8 tickets at a price of P2 
at the beginning of period t = 2 (before regular demand of 
this period arrives). Consequently, all high fare demand in 
period t = 1 is lost.

At the beginning of period t = 2 , the booking limit policy 
sells 8 tickets to the group organizer at P2 = 10 and then 
increases the price to P1 = 20 . Since D2,1 = 1 in period 2, 
one ticket is sold at price P1 = 20 . During period t = 1 , all 
high fare demand D1,1 = 8 is satisfied by the group organizer 
and no tickets can be sold by the bus company. The total rev-
enue equals 8 ⋅ 10 + 1 ⋅ 20 = 100 . The bid price policy also 
sells 8 tickets to the group organizer, and another 6 tickets 
at price P2 = 10 in period t = 2 . After updating, the price is 
increased, but all high fare demand at t = 1 is again lost. The 

total revenue equals 8 ⋅ 10 + 6 ⋅ 10 = 140 . In this example, 
the bid price policy beats the booking limit policy by 40%.

If an early group booking replaces high fare demand that 
would normally occur towards the end of the booking hori-
zon, the above example shows that booking limits cannot 
always prevent corresponding revenue losses. Even worse, 
booking limits might protect seats for high fare demand 
which is then lost. We further demonstrate this phenomenon 
in our numerical experiments with stochastic demand below.

Alternatives to static bid price policies and booking 
limit policies include: (1) Solving 

(
PDLP

)
 for a set of given 

capacity levels, leading to a table of capacity-dependent bid 
prices (see ‘Capacity- and time-dependent bid prices based 
on static deterministic linear program’ for details) and (2) 
implementing the standard dynamic programming decom-
position method (DPD). Since the memory capacity needed 
for DPD is large, we suggest approximating the decomposed 
value function piecewise linearly (see ‘Dynamic program-
ming decomposition’ for details). Naturally, such improve-
ments come at a computational cost. We discuss this tradeoff 
in the numerical experiments.

Numerical experiments

In this section, we consider a real-life bus line that starts in 
city 1 and goes to city 6 with 4 stops (at cities 2, 3, 4, and 
5). Hence, there are L = 5 legs. The bus has a capacity of 
C = 46 . Due to legal restrictions only J = 11 origin–desti-
nation-pairs of the 15 possible combinations are offered. For 
each origin–destination-pair, there are F = 8 fare classes.

We first explain our demand data, which we derive from 
historical sales. Second, we present results of simulations we 
ran based on these data sets. Third, we discuss these results 
and try to explain the observed phenomena.

Estimation and simulation of demand

For the 5-leg ride described above, we obtained (1) data of 
internal demand rate forecasts for 46 departure times of one 
particular month as well as (2) the corresponding historical 
selling prices.

F l i x B u s  f o r e c a s t s  d e m a n d  r a t e s (
�t
)
t=1,…,24

= (1, 2, 3,… , 91, 364) days before departure. 
Constant demand rates ��,j ⋅ Pr(f |�, j) are assumed within the 
time interval (�t−1, �t] . In order to obtain 

∑
j Dt,j,F ≤ 1 , we 

divided each of these time intervals into sufficiently small 
sub-intervals. We refer to demand streams given by a process 
that first randomly picks one of the departure times and then 
generates demand according to the given demand rates as 
“company data”.
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Since we cannot reveal how the internal forecast was 
derived, we additionally unconstrained historical sales by 
fitting a parametric model using regression. We call this data 
set “parametric data”.

Given prices Pj,f  for origin–destination-pairs j and fare 
classes f = 1,… ,F , the model underlying the data set “par-
ametric data” has parameters.

•	 � and � modeling the total exponential arrival rate �e��;
•	

(
gj
)
j
 with 

∑
j gj = 1 providing the probability of incoming 

demand requesting origin–destination-pair j ; and
•	 the price elasticity coefficient Λj(�) , which evolves over 

time polynomially with exponent �j and satisfies 
Λj(0) = �

(0)

j
 and Λj

(
�T
)
= �

(T)

j
.

Modeling the willingness to pay via an isoelastic function (
Pj,f

Pj,F

)−Λj(�)

 with elasticity coefficient Λj(�) depending on 

time polynomially, see Schlosser (2015), this yields

where Λj(�) ∶=
(

�T−�

�T

)�j
(
�
(0)

j
− �

(T)

j

)
+ �

(T)

j
.

The parameters were fitted to historical sales of a particu-
lar month via a least squares regression. (A Tikhonov-type 
penalty term was added for stability.) Based on the results, 
we determined the time grid �1,… �T such that formula (5) 
yields 

∑
j Dt,j,F = 1 − p0 with p0 = 0.2 . Consistent with the 

interpretation of the “company data”, arrival rates are then 
assumed to be constant within time intervals (�t−1, �t] , i.e., 
��,j ⋅ Pr(f |�, j) =

Dt,j,f

�t−�t−1
.

Highlighting the time-dependence of price elasticity, note 
that for origin–destination-pair 3–4, we obtain Λj

(
�T
)
= 4.98 

and Λj(0) = 0.27.
For arrival times earlier than 15 days before departure, 

arrival rates are very low but do not drop exponentially. This 
is why we only consider � ≤ 15 in our fitted data, shortening 
the booking horizon and hence lowering expected demand 
slightly. To decrease the discrepancy between “parametric- 
and company data”, we also shorten the booking horizon of 
the “company data” to 105 days.

For both data sets, we simulated three booking scenarios: 
single arrivals, group arrivals and the case of a group organ-
izer. These three scenarios use the same forecast and only 
differ with respect to the simulation. For the single arrivals 
scenario, we have �s = 1 if and only if s = 1 , and �s = 0 for 
s > 1 . This is the assumption used in most academic papers. 
For the group arrivals scenario, we determined the distribu-
tion of �s using historical data.

We simulate a group organizer as follows: For one given 
origin–destination-pair jgr , all demand willing to pay a 

(5)Dt,j,f ∶= ∫ �t
�t−1

�e��gj

(
Pj,f

Pj,F

)−Λj(�)

d�

where

certain price Pgr is part of the group event. The expected 
demand of potential participants of the event is 1.5 times the 
total forecast 

∑
t Dt,jgr ,f

 for all f  with Pjgr ,f
≥ Pgr . The group 

organizer buys tickets for all potential participants in the first 
time period t = T  according to stochastic demand with 
expectation 1.5 ⋅

∑
t Dt,jgr ,f

 . At the end of the booking hori-
zon, 1

3
 of the participants is expected to cancel ensuring that 

the total expected demand is unchanged. Accordingly, each 
ticket bought in the first time period t = T  is returned for a 
fee of 5 Euros with probability 1

3
 . In our simulations, we 

choose jgr to be the origin–destination-pair 3–4, which only 
uses leg 3. As the estimated willingness to pay differs sig-
nificantly between the company data and the parametric 
data, we choose Pgr = 19.99 for the company data and 
Pgr = 11.99 for the parametric data.

Pricing policies

We compare the performance of the following policies in the 
demand scenarios described above.

BL-ED: FlixBus’ currently used leg-based booking limit 
mechanism, which is based directly on expected demand as 
described in ‘Status quo: leg-based booking limits based on 
expected demand’.

BL-CDLP: FlixBus’ leg-based booking limit mechanism 
combined with the booking limits obtained from 

(
PCDLP

)
 

instead of expected demand as described in Choice deter-
ministic linear program’.

BL-DLP: FlixBus’ leg-based booking limit mechanism 
combined with the booking limits obtained from 

(
PDLP

)
 

instead of expected demand as described in ‘Transformation 
to revenue management with independent demand’.

BL-dCDLP: FlixBus’ leg-based booking limit mechanism 
combined with the booking limits obtained from 

(
Pd−CDLP

)
 

as described in ‘Dynamic versions of the static DLPs’.
BL-dDLP: FlixBus’ leg-based booking limit mechanism 

combined with the booking limits obtained from 
(
Pd−DLP

)
 as 

described in ‘Dynamic versions of the static DLPs.
BP-DLP: Bid price policy based on the dual values of (

PDLP

)
 as described in ‘Transformation to revenue manage-

ment with independent demand’.
BP-dDLP: Bid price policy based on the dual values of (

Pd−DLP

)
 as described in ‘Dynamic versions of the static 

DLPs’.
Values of all the above-mentioned policies are updated 

5,4,3,2 and 1 days before departure. In addition, we consider:
BP-levels: Capacity-dependent interpolated bid prices 

based on the dual values of 
(
PDLP

)
 with different capacity 

levels as described in ‘Danger of early group bookings’ and 
‘Capacity- and time-dependent bid prices based on static 
deterministic linear program’.
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DPD-exact: Standard dynamic programming decom-
position based on the bid prices obtained from 

(
PDLP

)
 as 

described in ‘Danger of early group bookings’ and ‘Dynamic 
programming decomposition’.

DPD-approx: Piecewise linear approximation of the 
dynamic programming decomposition as described in ‘Dan-
ger of early group bookings’ and ‘Dynamic programming 
decomposition’.

Results

The average revenues of the different pricing policies, data 
sets, and scenarios are displayed in Table 1. Relevant com-
puting times are reported in Table 2. The average number 
of sold seats per leg for both the single arrivals and group 
organizer scenario are shown in Table 3. The average num-
bers of sold tickets per fare class on leg l = 3 for the group 
organizer scenario are displayed in Table 4. The temporal 
developments of average prices for four important ori-
gin–destination-pairs are plotted in Figs. 2 and 3.

For the parametric data, we also report the optimal values 
of the linear programs 

(
PCDLP

)
 , 
(
PDLP

)
 , 
(
Pd−CDLP

)
 , 
(
Pd−DLP

)
 

as well as 
(
PAL

)
 in Table 5.

Overall, simulations using the company data generally 
produce higher revenues than simulations using the para-
metric data. This difference is mainly due to the fact that 
the company data estimates higher willingness to pay than 
our model. Single arrivals simulations also generally pro-
duce higher revenues than group arrivals simulations. This 
is because in our simulation group bookings, which are not 
taken into account during the optimization process, occupy 
more low fare seats than expected.

Upper bounds

Note that a few simulated expected revenues for paramet-
ric data and single arrivals in Table 1 exceed the optimal 

values of 
(
PDLP

)
 and 

(
PCDLP

)
 given in Table 5. As mentioned 

before, 
(
PDLP

)
 and 

(
PCDLP

)
 do not offer an upper bound of 

the maximum expected revenue.

Comparison of pricing policies

Turning to the comparison of the different pricing policies, 
we first focus on single arrivals and group arrivals. Compar-
ing average revenues in Table 1 (obtained using the para-
metric or company data), we observe that FlixBus’ current 
pricing policy BL-ED is outperformed by the booking limits 
obtained from 

(
PCDLP

)
 , which in turn are outperformed by 

the booking limits obtained from 
(
Pd−CDLP

)
 . Booking limits 

obtained from the standard deterministic linear programs (
PDLP

)
 and 

(
Pd−DLP

)
 perform worse than their correspond-

ing choice linear programs 
(
PCDLP

)
 and 

(
Pd−CDLP

)
 . This is 

not surprising since booking limits of 
(
PDLP

)
 and 

(
Pd−DLP

)
 

represent optimized booking limits for a capacity control 
problem with independent demand and hence should not be 
used directly in a pricing context.

Bid price policies using dual values from 
(
PDLP

)
 and (

Pd−DLP

)
 also beat FlixBus’ current policy and work 

especially well when using the company data. Capacity-
dependent 

(
PDLP

)
-bid prices (policy BP-levels) do not 

offer a substantial improvement compared to the policies 
already mentioned. Dynamic programming decomposition 

Table 1   Average revenues, standard error ≤ 10

Parametric data Company data

Single arrivals Group arrivals Group organ-
izer

Single arrivals Group arrivals Group organizer

BL-ED 705 691 650 1049 1028 970
BL-CDLP 761 742 649 1147 1121 1053
BL-DLP 717 706 609 1052 1025 960
BL-dCDLP 774 752 675 1165 1134 1054
BL-dDLP 728 711 638 1073 1047 962
BP-DLP 730 721 680 1179 1151 1107
BP-dDLP 771 749 698 1188 1157 1044
BP-levels 761 745 712 1193 1159 1122
DPD-exact 807 783 736 1217 1182 1150
DPD-approx 803 782 731 1212 1177 1153

Table 2   (Average) computing times in seconds

Parametric data Company data

BL-CDLP 0.047 0.051
BL-DLP/BP-DLP 0.032 0.048
BL-dCDLP 0.34 0.50
BL-dDLP/BP-dDLP 0.23 0.23
BP-levels 3.86 3.28
DPD-exact/DPD-approx 0.73 1.20
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outperforms all other policies, and only loses little quality 
when approximated piecewise linearly.

Comparing the booking limit policy BL-CDLP with the 
bid price policy BP-DLP, our results are in line with De 
Boer et al. (2002) and Pimentel et al. (2018), confirming 
that booking limit policies lead to larger expected revenues 
when our parametric data is used. This, however, is not true 
when using the company data. Hence, no clear hierarchy 
can be established.

Comparing the two data sets, it seems like the stark 
change in willingness to pay in the last hours before depar-
ture is the main driver of booking limits outperforming 
bid prices given our parametric data set. Since bid prices 
are only updated on a daily basis in the last days before 

departure, prices cannot increase during the day. Book-
ing limits, however, can lead to increasing prices within a 
day. The company data, on the other hand, suggests a lower 
change in willingness to pay. In this setting, price changes 
during a single day are less important.

Group organizer

The average revenues reported in the group organizer sce-
nario in Table 1 underscore the discussion of ‘Danger of 
early group bookings’: Booking limits do not necessarily 
provide better results than bid price policies. Looking at 
the columns for leg l = 3 in the group organizer scenario in 
Table 3, we observe that the performance correlates with 

Table 3   Average number of sold seats per leg

Single arrivals

Parametric data Company data

Leg l 1 2 3 4 5 1 2 3 4 5

BL-ED 34.2 36.6 34.8 14.5 8.9 17.2 30.1 34.1 13.2 6.6
BL-CDLP 40.6 43.4 41.6 7.8 4.6 22.2 37.6 41.5 14.7 7.2
BL-DLP 35.8 38.6 36.3 5.8 3.5 17.1 30.0 34.4 12.0 5.7
BL-dCDLP 41.4 44.3 42.9 11.7 6.5 23.8 40.2 42.5 14.9 7.1
BL-dDLP 37.8 40.6 36.3 9.9 5.5 18.3 31.9 35.8 12.4 5.9
BP-DLP 43.4 45.1 45.3 8.5 7.5 26.2 41.4 44.3 17.1 8.7
BP-dDLP 42.3 45.2 45.0 14.1 8.6 26.9 43.9 44.8 17.8 8.8
BP-levels 42.8 45.7 45.4 17.7 11.0 27.5 45.0 44.7 18.1 9.0
DPD-exact 41.0 44.0 44.6 13.8 8.5 26.2 42.7 44.7 19.0 9.0
DPD-approx 40.6 43.7 44.6 15.4 9.4 25.9 42.4 44.8 17.9 8.9

Group organizer

Parametric data Company data

Leg l 1 2 3 4 5 1 2 3 4 5

BL-ED 33.9 36.3 28.1 10.0 6.3 15.8 28.3 27.9 9.5 4.7
BL-CDLP 40.4 43.2 29.5 4.6 2.9 20.1 34.8 34.4 11.2 5.4
BL-DLP 35.9 38.6 24.1 5.1 3.2 15.5 27.9 27.9 8.7 4.1
BL-dCDLP 41.6 44.6 31.0 8.4 4.8 21.8 37.9 34.2 11.2 5.4
BL-dDLP 37.9 40.8 26.0 7.2 4.3 16.7 29.9 28.1 9.0 4.3
BP-DLP 43.6 45.3 35.8 7.1 6.1 23.7 38.0 37.9 13.3 6.8
BP-dDLP 42.3 45.2 35.1 10.6 6.5 25.0 41.5 38.3 12.5 6.3
BP-levels 42.7 45.7 37.2 9.6 5.9 26.5 44.4 37.8 13.8 7.1
DPD-exact 41.5 44.5 35.7 11.6 8.0 25.4 42.2 38.0 14.1 7.1
DPD-approx 41.2 44.1 35.7 11.3 7.6 25.1 41.9 37.9 14.3 7.2
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the average number of sold seats. Badly performing book-
ing limit policies protect seats for high fare demand, which 
is then lost to the group organizer, see Table 4. Compared 
to bid price policies, this results in a small number of seats 
sold. Finally, dynamic programming decomposition outper-
forms all other policies also for the group organizer scenario.

Computational efficiency

Taking a look at Table 2, we see that computing bid prices 
for different capacity levels (policy BP-levels) is the least 
efficient method, directly followed by dynamic programming 
decomposition (policy DPD). In our experiments, approxi-
mating the decomposed value function piecewise linearly 
reduces the needed memory capacity by two orders of mag-
nitude, see ‘Dynamic programming decomposition’. Consid-
ering performance, we conclude that dynamic programming 

decomposition combined with piecewise linear approxima-
tion (policy DPD-approx) tends to yield a better tradeoff 
than BP-levels.

The trade-off between computational efficiency and per-
formance quality is confirmed by Tables 1 and 2: Efficient 
policies such as BL-CDLP or BP-DLP are outperformed by 
dynamic programming decomposition, which is computa-
tionally more involved.

Price paths of  different pricing policies  Concerning price 
developments, we can observe in Figs.  2 and 3 that most 
policies increase prices fairly monotone. As expected, 
booking limit policies produce monotone prices. Capacity-
dependent price policies, which are not based on booking 
limits, such as DPD and BP-levels, need not always lead to 
monotone prices.

Table 4   Average number of sold seats per fare class on leg l = 3 (group organizer)

Parametric data

Fare class f 1 2 3 4 5 6 7 8

BL-ED 0.4 0.3 0.5 1.5 3.0 13.0 8.8 0.6
BL-CDLP 2.8 0.0 0.0 0.3 1.2 2.9 0.9 21.4
BL-DLP 2.5 0.0 0.1 0.4 1.7 5.8 2.8 10.9
BL-dCDLP 2.5 0.0 0.0 0.1 1.1 3.3 8.3 15.7
BL-dDLP 2.4 0.0 0.2 0.3 1.4 6.0 6.5 9.2
BP-DLP 1.7 0.0 0.0 0.1 2.3 2.5 4.4 24.9
BP-dDLP 1.9 0.2 0.3 0.7 2.1 3.5 4.4 22.0
BP-levels 2.3 0.2 0.4 0.4 0.6 1.8 6.5 24.9
DPD-exact 1.8 0.2 0.3 0.4 2.3 4.9 13.5 12.2
DPD-approx 1.9 0.2 0.3 0.5 2.2 5.0 9.6 16.0

Company data

Fare class f 1 2 3 4 5 6 7 8

BL-ED 3.5 4.8 7.0 6.5 5.6 0.5 0.0 0.0
BL-CDLP 4.3 1.2 3.9 8.0 14.3 2.4 0.3 0.0
BL-DLP 4.7 4.1 4.5 5.4 8.4 0.8 0.1 0.0
BL-dCDLP 4.1 1.9 4.8 4.9 12.9 3.8 1.6 0.3
BL-dDLP 4.8 3.5 4.3 4.2 8.6 2.1 0.6 0.1
BP-DLP 1.8 4.3 3.3 6.1 19.1 2.7 0.6 0.0
BP-dDLP 1.9 0.8 1.9 3.8 20.8 4.5 4.1 0.4
BP-levels 1.9 3.4 6.1 4.7 15.8 3.2 2.3 0.4
DPD-exact 1.3 4.4 7.7 5.8 14.6 2.8 1.3 0.1
DPD-approx 1.4 4.7 8.5 5.5 13.4 3.0 1.3 0.2
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Fig. 2   Average price development for four origin–destination-pairs (parametric data, single arrivals)
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Conclusion

In this paper, we considered a real-world discrete pric-
ing problem for FlixBus, a large European bus company. 
The company’s current pricing policy, which implements 
booking limits directly based on expected future demand, 
was improved by an intermediate optimization step using 

Fig. 3   Average price development for four origin–destination-pairs (company data, single arrivals)

Table 5   Optimal values of linear programs (parametric data)
(
P
CDLP

) (
P
DLP

) (
P
d−CDLP

) (
P
d−DLP

) (
P
AL

)

757.0 757.0 844.5 844.5 837.1
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booking limits from standard deterministic linear programs. 
Similar improvements could be achieved implementing bid 
price policies.

The fear that bid price policies, in contrast to booking 
limits, cannot protect resources from the threat of early 
group bookings turned out to be unsubstantiated if total 
demand remains unchanged: protecting seats for high fare 
demand does not necessarily make sense if this demand is 
replaced by an early group booking.

In all scenarios, dynamic programming decomposition 
outperformed all other policies. The required memory 
capacity can be reduced substantially by approximating the 
decomposed value function piecewise linearly, which, how-
ever, still needs much more computing time than solving 
standard deterministic mathematical programs.

We demonstrated that the standard static choice determin-
istic linear program only guarantees an upper bound of the 
maximal expected revenue if price elasticities are constant 
over time. As soon as a time index is added to the linear 
program, we obtain a dynamic deterministic linear program 
that provides an upper bound.

Further research can be done by investigating different 
early group booking and scalper scenarios. In particular, it 
would be of interest if, based on scenario characteristics, 
recommendations concerning the choice of an appropriate 
policy can be made. Second, concerning the comparison 
of discrete and continuous pricing problems, the trade-off 
between computational efficiency and accuracy should be 
researched in more detail.

Appendix

Proofs

Proof (Theorem 1)  The dual of 
(
PCDLP

)
 is

The dual of 
(
PDLP

)
 is

�
DCDLP

�
min
V ,�≥0

∑
l Vlcl +

∑
j �j

�j ≥ Dj,f

�
Pj,f −

∑
l Al,jVl

�
∀j, f .

�
DDLP

�
min
V ,�≥0

∑
l Vlcl +

∑
j,f dj,f �j,f

dj,f �j,f ≥ dj,f
�
pj,f −

∑
l Al,jVl

�
∀j, f .

Let V , � be a feasible solution to 
(
DDLP

)
 . By definition of 

d, p , we obtain

Summing over 
∑f

f=1
 , by the definition of d, p and a tele-

scoping sum, this yields

Therefore, V , � is feasible to 
(
DCDLP

)
 and has the same 

objective value. On the other hand, let V , � be a feasible 
solution to 

(
DCDLP

)
 . The functions

are strictly concave and obtain a maximum at f ∗(j) . With-
out  loss of  general i ty,  we may assume that 
�j = Dj,f ∗(j)

�
Pj,f ∗(j) −

∑
l Al,jVl

�
 . By the above calculations (6), 

we therefore conclude that 0 ≥ dj,f
�
pj,f −

∑
l Al,jVl

�
 for 

f > f ∗(j) . Thus, we set �j,f ∶= 0 for f > f ∗(j) , and 
�j,f ∶= pj,f −

∑
l Al,jVl ≥ 0 for f ≤ f ∗(j) . As above, we obtain ∑f ∗(j)

f=1
dj,f �j,f = Dj,f ∗(j)

�
Pj,f ∗(j) −

∑
l Al,jVl

�
= �j . Therefore, 

V , � is feasible to 
(
DDLP

)
 and has the same objective value. ◻

Proof (Lemma 1)  By construction, we have pj,F ≤ ⋯ ≤ pj,1 . 
If the condition pj,f ≥

∑
l VlAl,j holds for some f ′ , then it 

also holds for f = 1 . By definition of p , we can write the 
condition pj,f ≥

∑
l VlAl,j as

Finding the largest f  such that this condition holds 
is therefore equivalent to finding the maximum of 
Dj,f

�
Pj,f −

∑
l VlAl,j

�
.◻

Proof (Theorem 3)  The inequality vT
(
�⃗c
)
≤ ZAL was proven 

by Adelman (2007). Therefore, we only have to show 
ZAL ≤ Zd−DLP.

According to Vossen and Zhang (2015), we have the fol-
lowing reduction of the affine approximation (for the discrete 
pricing problem, an equivalent linear program can be found 
in Ke et al. (2019):

(6)

dj,f �j,f ≥ dj,f
�
pj,f −

∑
l Al,jVl

�

= Dj,f

�
Pj,f −

∑
l Al,jVl

�
− Dj,f−1

�
Pj,f−1 −

∑
l Al,jVl

�
.

�j ∶=
∑

f dj,f �j,f ≥
∑f

f=1
dj,f �j,f ≥ D

j,f

�
P
j,f
−
∑

l Al,jVl

�
.

{Dj,f ∣ f } → ℝ,Dj,f ↦ Dj,f

�
Pj,f −

∑
l Al,jVl

�

Dj,f Pj,f−Dj,f−1Pj,f−1

Dj,f−Dj,f−1

≥
∑

l VlAl,j

⟺ Dj,f

�
Pj,f −

∑
l VlAl,j

�
≥ Dj,f−1

�
Pj,f−1 −

∑
l VlAl,j

�
.

�
PAL

�
max
𝜌,𝜇≥0

∑
t,j,f dt,j,f pt,j,f𝜇t,j,f

𝜌t,l =

�
cl, t = T

𝜌t+1,l −
∑

j,f dt+1,j,f Al,j𝜇t+1,j,f , t < T
, ∀t, l

Al,j𝜇t,j,f ≤ 𝜌t,l, ∀t, l, j, f

𝜇t,j,f ≤ 1, ∀t, j, f .
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Let �,� be feasible to 
(
PAL

)
 , and define yt,j,f ∶= dt,j,f�t,j,f  . 

The first constraint of 
(
PAL

)
 implies

From Al,j�1,j,f ≤ �1,l , it follows that

Therefore, y is feasible to 
(
Pd−DLP

)
 . This proves 

ZAL ≤ Zd−DLP. ◻

Technical details

Capacity‑ and time‑dependent bid prices based on static 
deterministic linear program

To obtain capacity- and time-dependent bid prices, we solve 
the deterministic linear program 

(
PDLP

)
 for different capacity 

levels and different time points. During a booking process, 
current bid prices can then be obtained by interpolation and 
be used directly in formula (4) to compute current prices.

We choose time points 0 = t0 < t1 < t2 < ⋯ < tM = T  
and capacity levels 0 = x0 < x1 < x2 < ⋯ < xN = C . Then, 
consider the following collection of deterministic linear 
programs:

where dm and pm are the result of the transformation using 
Dt,j =

∑tm

t=1
Dt,j,f  , see ‘Transformation to revenue manage-

ment with independent demand’. Let �m,n

l
 be the dual values 

of 
(
P
m,n

DLP

)
,m = 1,…M, n = 1,…N.

Let t  and xl be the current time step and the remaining 
capacities during a booking process. Based on the values 

∑T

t=2

∑
j,f Al,jyt,j,f + �1,l = cl.

Al,j�1,j,f d1,j,f ≤ �1,ld1,j,f
⇒

∑
j,f Al,jy1,j,f ≤ �1,l

∑
j,f d1,j,f ≤ �1,l.

�
P
m,n

DLP

�
max
y≥0

∑
j,f p

m
j,f
yj,f

∑
j,f Al,jyj,f ≤ xn ∀l

yj,f ≤ dm
j,f

∀j, f

�m,n

l
 , current capacity- and time-dependent bid prices �l can 

be computed as linear interpolations. First, we determine 
the current capacity- and time-levels n

(
xl
)
 and m(t) such that

Then, we interpolate between the capacity-levels 
n
(
xl
)
− 1 and n

(
xl
)
 as well as between the time-levels 

m(t) − 1 and m(t) as follows:

Dynamic programming decomposition

In this section, we first recapitulate the standard dynamic 
programming decomposition method for revenue manage-
ment and then suggest an approximation procedure to reduce 
the required memory capacity.

Let dt,j,f  and pt,j,f  be transformed demand and prices, 
see ‘Dynamic versions of the static DLPs’. Since these are 
the parameters of a classic network revenue management 
problem with independent demand, we can apply dynamic 
programming decomposition as outlined in Talluri and Van 
Ryzin (2004, Section 3.4). As a result, we obtain an approxi-
mate value function. A pricing policy is obtained by insert-
ing this approximation into (3).

Let �l be the bid prices obtained as dual values of 
(
PDLP

)
 . 

We separate the problem into L single-leg problems. To this 
end, we determine adjusted prices for all legs l:

For each separate leg l , we then compute the value func-
tion of the corresponding single-leg problem using dynamic 
programming (Bellman equation):

xn(xl)−1 < xl ≤ xn(xl)

tm(t)−1 < t ≤ tm(t).

�
m(t)−1

l
=

�
m(t)−1,n(xl)
l

(
xl−x

n(xl)−1
)
+�

m(t)−1,n(xl)−1
l

(
xn(xl)−xl

)

xn(xl)−xn(xl)−1

�
m(t)

l
=

�
m(t),n(xl)
l

(
xl−x

n(xl)−1
)
+�

m(t),n(xl)−1
l

(
xn(xl)−xl

)

xn(xl)−xn(xl)−1

�l =
�
m(t)

l ((t−1)−tm(t)−1)+�m(t)−1

l (tm(t)−(t−1))
tm(t)−tm(t)−1

.

p̃t,l,j,f = pt,j,f −
∑

l�≠l Al�,j𝜋l ∀t, j, f ∶ Al,j = 1.

vt,l(x) =
∑

j, f

s.t. Al,j = 1

max
u∈{0,1}

dt,j,f
�
up̃t,l,j,f + vt−1,l

�
x − uAl,j

�
− vt−1,l(x)

�
+ vt−1,l(x) ∀t, x ≥ 1

v0,l(x) = 0, vt,l(0) = 0 ∀t, x.
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Finally, 
∑

l vt,l
�
xl
�
 is used as an approximation for the 

exact value function vt
(
�⃗x
)
.

In order to apply the resulting pricing policy, all values 
vt,l

(
xl
)
 must be stored. The number of these values is LTC . 

To reduce storage space, we approximate the value func-
tion for each leg l piecewise linearly. To do so, let tm and xn

l
 

be the same time- and capacity-levels as in ‘Capacity- and 
time-dependent bid prices based on static deterministic lin-
ear program’. We define the following piecewise linear basis 
functions:

Then, by construction of these basis functions, the corre-
sponding weights are determined using the slopes of secants 
connecting points of the value function graph at the prede-
termined capacity- and time-levels:

An approximation of vt,l(x) is then given by

The number of values �l,n,m that now needs to be stored 
is reduced to LMN . In our numerical experiments using the 
parametric data, see ‘Estimation and simulation of demand’, 
the numbers are

Consequently, the required memory capacity is reduced 
by a factor of 5⋅170⋅46

5⋅7⋅10
≈ 112.
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