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Abstract
The spread of the COVID-19 pandemic has shown great heterogeneity between 
countries that merits investigation. There is a need to better highlight the variability 
in the pandemic trajectories in different geographic areas. By using openly available 
data from ‘GitHub’ COVID-19 dataset for Europe and from the official dataset of 
France for the period 2020 to 2021, I present the three COVID-19 waves in France 
and Europe in maps. The epidemic trends across areas display different evolutions 
for different time periods. National and European public health authorities will be 
able to improve allocation of resources for more effective public health measures 
based on geo-epidemiological analyses.
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Key messages

• The spread of the COVID-19 pandemic showed heterogeneity between and 
across countries

• National and European public health authorities should improve allocation of 
resources according to this heterogeneity
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Introduction

The spread of the COVID-19 pandemic has shown great heterogeneity between 
regions in countries, including in France and in Europe [1]. Geographical differences 
in incidence, infection, and mortality rates have been correlated with arrival time of 
the COVID-19 virus, population age structure, socio-economic development and popu-
lation density, the health insurance system, climatic and meteorological determinants, 
and anti-contagion policies and health practices [2].

Geo-epidemiological analyses of epidemics is an approach by which one compares 
data of epidemics across different geographical regions and populations, preferably 
at high geographical resolution, and in the process helps to identify environmental 
and socio-economic factors that govern the detected patterns and shape prevention, 
resource-planning, policy making, funding, healthcare considerations, and therapeutic 
intervention [3, 4]. Geo-epidemiological analyses allow comparison of epidemiological 
data of epidemics through a geographical and population prism and can improve the 
local and global health policies [5–7]. Local geo-referenced temporal data could help to 
identify the changing dynamic in the spread of epidemics [8–11].

Recent studies have shown that the geo-epidemiological distribution of the epi-
demic waves varied across countries [1, 12]. Thus, geo-epidemiological analyses using 
data that are publicly available could be of importance to help governments select and 
implement efficient health policies [13].

With the worldwide spread of COVID-19 there is a need to better highlight the 
geo-epidemiological variability in the spatiotemporal trajectory of this pandemic in 
Europe. The epidemic dynamics may change over time and across areas [14]. Dynam-
ics include increasing trends, leveling off, stationary incidence patterns, and decreasing 
trends. Because the types and stringency of public health policies vary across counties 
and locations within a country, classifying and summarizing the geo-epidemiological 
dynamics of the COVID-19 pandemic is essential for real-time public health policy 
making [15]. The knowledge about geo-epidemiological dynamics, including the pat-
terns of disease transmission and the factors that influence the spread of diseases, is 
essential for policymaking to understand how diseases are likely to spread and how to 
best allocate resources to prevent or mitigate outbreaks. This knowledge can inform the 
development of policies related to public health, such as vaccination campaigns, quar-
antine measures, and disease surveillance systems, as well as policies related to travel 
and trade, which can impact the spread of disease across borders. By basing policy 
decisions on a thorough understanding of the underlying epidemiological dynamics, 
policymakers can make informed decisions that are better able to protect the public’s 
health and prevents the spread of disease.

Data and methods

Using openly available data, I mapped different COVID-19 waves in Europe for 
June 2020 to August 2021. The data covering the European countries and France 
are available at no fees [16, 17]. Incident cases were automatically reported per 
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millions persons for Europe [16] and per 100,000 persons in France [17] to make 
possible comparison of geographical areas with each other.

To create the maps for 13 French provinces and 46 European countries, each 
epidemic wave started after the lowest number of infections between the previ-
ous wave to the subsequent next wave. I consider the European peak time (or the 
French peak time) when data showed the highest incident European (or French) 
cases per millions of persons (per 100,000 for France) or for each determined 
wave (see Supplemental Material, Tables S1 and S2). Information about the first 
wave were not included in the analyses due to it specific aspect with absence of 
real PCR test in all countries and the possible bias of non-well-reported incident 
cases at the beginning of the outbreak.

I then calculated four outcomes as follows:

• The total cases between cases counts at the date of the European epidemic 
peak of the each studied wave and cases counts at the minimum of incident 
cases between the previous wave and the studied wave;

• The rolling 7-day average for the date of the French or the European peak 
time of each studied wave;

• The incidence of new cases for the French or the European peak time of each 
studied wave; and then,

• The total new cases between the date of the French or the European peak 
time and the date of the minimum of infection counts between the studied 
wave and the one that follows.

Mixed linear regression models were performed on incident cases per 100,000 
persons in France and incident cases per million persons in Europe to determine 
the interaction of time and location (as countries or French provinces) and to 
determine heterogeneity of the different waves.

For this analysis, incident French cases were reported by states divided by 
the population of each region and per 100,000 inhabitants, and I then calculated 
three outcomes as follows:

• Incident cases per 100,000 persons between cases counts at the date of the 
French epidemic peak of the each studied wave and cases counts at the mini-
mum of incident cases between the previous wave and the studied wave

• Incident cases per 100,000 persons seven days before for the date of the 
French peak time of each studied wave.

• Incident cases per 100,000 persons between the date of the French peak time 
and the date of the minimum of infection counts between the studied wave 
and the one that follows.

To create the maps and to perform analyses, I used SAS software (version 
9.4; SAS Institute, Carry, NC).
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Results

The maps of four outcomes for 46 European countries show no visual homoge-
nous infection rates across countries for the three detected waves (Fig. 1A, D). On 
the day of the epidemic peaks for the waves (Supplementary Table S1) Europe 
maps show different infection rates between the countries on the day of the Euro-
pean peak. This may indicate that national epidemic peaks appeared at differ-
ent times. The European peak may not be a good indicator for regional or global 
management of the epidemic. The spatial distribution of total cases between the 
nadir with minimum infection counts and the European peak timing for the sec-
ond and third waves show that the fourth wave developed mainly in the Western 
countries of Europe (Fig. 1A; Supplementary Table S2). The European peak in 
the countries with the highest rates of infection occurred in the Eastern countries 
(Fig. 1C). The fourth wave, however, appears to be pronounced primarily in the 
Western countries, not those in Eastern Europe (Figures of the 4th wave). We also 
observed similar differences for the rolling 7-day average before the European 
peak time of each wave (Fig. 1B) and for the incidence of new cases on the day of 
the European epidemic peak (Fig. 1C).

Maps of France at the province level show heterogeneous infection rates over 
time and across provinces for each three waves (Fig. 2). The maps help to show 
that the French regional epidemic peaks appear at different times. Thus, a national 
peak may not be a good indicator for national management of the epidemic. The 
fourth wave appears to be concentrated mainly in the Southeast rather than the 
Northwest, list in Supplementary table (Fig. 2).

When considering incident cases per 100,000 persons and per day, signifi-
cant interactions time-provinces were observed for the three analyzed waves in 
France (p for interaction < 0.001 for each wave), when considering analysis A 
(Fig. 3A) with the incident cases between the date of the French epidemic peak 
of the each studied wave and the minimum of incident cases between the previous 
wave and the studied wave; analysis B (p for interaction time-provinces < 0.001, 
Fig.  3B) when considering the incident cases seven days before the date of the 
French peak time of each studied wave; and analysis C (p for interaction time-
provinces < 0.001, Fig. 3C) when considering the incident cases between the date 
of the French peak time and the date of the minimum of infection counts between 
the studied wave and the one that follows. Similar results were observed for all 
the waves in Europe (p for interaction < 0.001).

Discussion

Numerous studies have investigated the prediction of epidemic trend of COVID-
19 [18], but there are few reports of high-resolution, geo-epidemiological maps 
[19–21]. Showing epidemic spatial patterns provides insights about the geo-
graphic risks and social and economic determinants related to COVID-19 
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transmission and inform those planning how to respond to it. This study dem-
onstrated varying geo-epidemiological dynamics in different areas within Europe 
and in France. It is likely that the presented maps demonstrated that the spread of 
COVID-19 has gradually shifted from a mostly imported case pattern to a local 
transmission pattern [22]. Greater transmission risks were likely to be in location 
with low-detection capacity, high transportation, or economic connections to the 
epicenter of the outbreak, but with few severely restricting travels, no social dis-
tancing, no school closures, and no lockdowns [23–27].

Fig. 1  Total count of new cases per million persons of COVID-19 patients across Europe for three waves 
(new cases were reported by states divided by the population of each state and per million inhabitants). A 
The total cases between cases counts at the date of the European epidemic peak of the each studied wave 
and cases counts at the minimum of incident cases between the previous wave and the studied wave. B 
The rolling 7-day average for the date of the European peak time of each studied wave. C The incidence 
of new cases for the European peak time of each studied wave. D The total new cases between the date of 
the European peak time and the date of the minimum of infection counts between the studied wave and 
the one that follows
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Limitations

This study shows several limitations, results were extrapolated from open avail-
able data which can include some errors in the reported data. Moreover, the dif-
ferent models did not consider the situation of each country regarding the differ-
ent lockdowns or public policies and the time of their implementations which can 
bias the interpretation of the epidemic peak in Europe. Information about the first 

Fig. 2  Total count of new cases per 100,000 persons of COVID-19 patients across France during three 
waves (new cases were reported by states divided by the population of each region and per 100,000 
inhabitants). A The total cases between cases counts at the date of the French epidemic peak of the each 
studied wave and cases counts at the minimum of incident cases between previous wave and the studied 
wave. B The rolling 7-day average for the date of the French peak time of each studied wave. C The inci-
dence of new cases for the French peak time of each studied wave. D The total new cases between the 
date of the French peak time and the date of the minimum of infection counts between the studied wave 
and the one that follows
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wave were not included in the analyses due to it specific aspect with the absence 
of real PCR test in all countries and the possible bias of non-well-reported inci-
dent cases at the beginning of the outbreak.

Conclusions

Geo-epidemiological heterogeneity of the COVID-19 pandemic occurred in 
regions of France and between the European countries. This observation may pro-
vide a basis for the implementation of geo-epidemiological analyses to improve 
public health policies.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1057/ s41271- 023- 00402-z.

Funding This research received no external funding.

Data availability Data are open available for Europe at, https:// github. com/ CSSEG ISand Data/ COVID- 
19 and for France, at https:// www. data. gouv. fr/ fr/ datas ets/ synth ese- des- indic ateurs- de- suivi- de- lepid 
emie- covid- 19/

Declarations 

Conflict of interest The author declares no conflict of interest.

Ethical approval Not applicable.

Informed consent Not applicable.

Fig. 3  Incident cases per 100,000 persons of COVID-19 patients across France during three waves (new 
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