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Abstract
The goal of this paper is to provide a point of empirical evidence as to how machine-learning techniques stack-up in their 
ability to predict consumer choices relative to traditional statistical techniques. We compare a traditional (naïve) multinomial 
logit to six machine-learning alternatives: learning multinomial logit, random forests, neural networks, gradient boosting, 
support vector machines and an ensemble learning algorithm. The comparison is done by applying these methods to beer 
category stock keeping unit (SKU) level panel data. Results show that machine-learning techniques tend to perform bet-
ter, but not always. Ensemble learning performs best while maintaining an overall high-performance level across all SKU 
classes, independently of their sample size. This result builds on existing evidence about the benefits of combining multiple 
prediction techniques over relying on a single best performing model, as conventional wisdom would intuitively make us 
believe. In general, the better performance of machine learning techniques at predicting product choice should not come as a 
surprise. At their core, machine learning techniques are designed to augment dimensionality of models and/or scan through 
orders of magnitude greater model alternatives, relative to the narrower focus of traditional approaches.

Keywords Choice prediction · Machine learning · Ensemble learning

Introduction

Machine-learning techniques have been gaining ground over 
traditional statistics in most fields, particularly among prac-
titioners. Social sciences including marketing and econom-
ics are no exception. However, the quantitative foundations 
of these two fields have historically been rooted in inter-
pretability and causal inference, while machine learning is 
generally understood to be stronger at predicting but rela-
tively weaker at interpretability and hypothesis testing. This 
contrast has sparked some intellectually stimulating philo-
sophical soul-searching in these two disciplines (Iskhakov 
et al. 2020; Dzyabura and Yoganarasimhan 2018). Academic 
marketing research based on machine learning techniques 
is nothing new (Hauser et al. 2010; Kazemia et al. 2013; 
Huang and Luo 2015; Liu and Dzyabura 2016; Yoganar-
asimhan 2020), but it is somewhat surprisingly limited in 

terms of assessments of this methodological disruption to 
the discipline. The contribution of this paper is to provide a 
point of comparison across a wide set of machine-learning 
techniques in their ability to predict consumer choices rela-
tive to more traditional statistical techniques and uncovering 
their performance strengths and weaknesses in the context 
of a typical consumer product choice problem.

The greatest conceptual difference between traditional 
statistical techniques and machine learning is that in the 
former a hypothesis is proposed in the form of a stylized 
mathematical model that is then tested; while the latter 
allows for greater mathematical construct flexibility, with-
out explicit regard for theoretical foundations, as it tries to 
maximize predictive accuracy. One can also argue that from 
a procedural standpoint, there are five relatively common 
elements of machine learning that distinguish it from tra-
ditional statistics in their systematic application: (1) data 
preprocessing, (2) feature engineering, (3) data splitting 
between training and test sets, (4) cross-validation, and (5) 
use of tuning parameters (Kuhn and Johnson 2013). This is 
not to say that traditional statistics has not applied any of 
these steps, generally speaking; but perhaps, that they have 
been less central and widespread in their application.
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Data preprocessing tends to focus on, among other trans-
formations, the centering and scaling of predictor features 
by subtracting their mean and dividing them by their dis-
persion statistic, often the standard deviation. Removal 
of skewness is also often applied to the data by replacing 
raw input feature values with log, square root, inverse, or 
Box-Cox transformations. The treatment of missing values 
is also confronted head-on with imputation techniques that 
quite often lean on other predictive machine learning tech-
niques, like k-nearest-neighbors. One of the main reasons 
behind these manipulations of the raw data is to contribute 
to the smoothness, speed, and numerical stability of the high 
computational demands associated with machine-learning 
parameter estimation.

Feature engineering is also not unique to machine learn-
ing, but ubiquitous relative to traditional statistics. In fact, 
techniques like principal components or factor analysis have 
been commonplace in applied statistics as ways to reduce 
dimensionality of models, resulting in among other benefits 
lower multicollinearity and overfitting. However, machine 
learning has taken this further with its foundational reliance 
on non-linear transformations like polynomials, hinge func-
tions and kernels. These approaches often seek not to reduce 
dimensionality, but rather grow it (sometimes in ways that 
generate negative degrees of freedom) to capture nuances 
that improve a model’s predictive performance. Often, mul-
tiple versions of engineered features are tested in the model 
iteratively, leveraging cross-validation (discussed below).

Splitting the data into training and test sets relies on ran-
dom (and in some cases stratified, to maintain proportional 
distribution of feature values) sampling of the original data 
set. Its intent is primarily to evaluate a model on data it has 
not seen before, as a true gauge of a model’s predictive abil-
ity. One can understand that this is important to machine 
learning since its application is heavily oriented towards 
actionable prediction, particularly amongst practitioners. 
In traditional statistics or econometrics, models are often 
evaluated on the full dataset, and less frequently on an out-
of-sample set aside from the full dataset.

Cross-validation is perhaps one of the most salient depar-
tures of machine-learning techniques. The training dataset 
itself is split into multiple training subsets. This is, therefore, 
analogous to splitting the original full dataset into training 
and test sets. But a key difference is its reliance on resam-
pling techniques rooted in bootstrapping (Efron and Tibshi-
rani 1993). It involves randomly dividing the training set 
observations with resampling into two parts: a training sub-
set and a validation set (more commonly, multiple validation 
sets). The model is fit on the training subset and the fitted 
model is then used to predict responses for the observations 
in the validation set. Resampling, refitting and evaluation of 
the model are done multiple times. Two common resampling 
techniques used for cross-validation are leave-one-out and 

k-fold. A key benefit of cross-validation is the estimation 
of how sensitive a model is to small changes in input data. 
Cross-validation results are often summarized with the mean 
or some other form of aggregation of the multiple model 
performance scores. Another application of cross-validation 
is to compare the performance of multiple somewhat differ-
ent versions of a model to select the best performing one. 
This is related to the next key element of machine learning: 
tuning parameters.

Tuning parameters (also called hyperparameters) are fun-
damental to machine learning, and a significant departure 
relative to traditional statistics. Tuning parameters shape 
model and/or loss/objective functions to select model param-
eter values. They typically do not have analytical solutions, 
and instead rely on numerical search algorithms. Thus, tun-
ing parameters require an iterative trial-and-error approach 
or numerical optimization algorithm across a preselected 
number or range of values to evaluate. As described above, 
this is done through cross-validation. Cross-validation to 
find optimal tuning parameter values is executed as follows:

– Step 1: Identify number of alternative models to run, 
based on tuning parameters to be tested.

– Step 2: For each model alternative

o Step 2.1: Split the training data into a training subset 
and one or a number of validation-sets.

p Step 2.2: Fit the model to the training subset data.
q Step 2.3: Estimate performance of model against 

validation sets.

– Step 3: After all model alternatives have been run, aggre-
gate, and contrast results of all model alternatives.

– Step 4: Select the best performing model, as shaped by a 
specific set of potential tuning parameters.

– Step 5: Re-fit the best performing model on the entire 
training dataset to update model parameters.

This paper’s objective is to determine whether machine 
learning models are superior to traditional statistical models 
at predicting consumer choice. More specifically it com-
pares beer SKU consumer choice predictive ability of a 
traditional (called naïve moving forward) multinomial logit 
model against six of its relatively more relevant machine-
learning classification alternatives, in a realistic setting. The 
six alternatives are a machine-learning-based multinomial 
logit model (called learning multinomial logit moving for-
ward), random forests, gradient boosting, neural networks, 
support vector machines and a learning ensemble method. 
The paper does not go in-depth into each technique and 
rather limits itself on describing the functional forms relative 
to the problem at hand, the objective/loss function, and tun-
ing parameters to maximize model predictive performance. 
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There are better sources for a comprehensive treatise of the 
approaches leveraged in this paper (Hastie et al. 2009). The 
data used for the analyses is grocery scanner panel data for 
beer category purchases from Information Resources, Inc.’s 
academic dataset (Bronnenberg et al. 2008). The metrics 
applied to determine performance of the different models 
are Sensitivity, Accuracy and Cohen’s Kappa. These three-
performance metrics are some of the most commonly used 
ones for classification problems, such as brand or product 
choice prediction.

Data

In order for models to capture product and individual het-
erogeneity, this study combines panel and store scanner 
data for beer category purchases, similar to Chintagunta 
and Dubé (2005), from the U.S. by Information Resources, 
Inc. (Bronnenberg et al. 2008). This dataset is offered and 
maintained by the marketing research firm Information 
Resources (IRI), in the U.S. It is intended to enable aca-
demic researchers with the ability to study important topics 
in marketing and economics that are of concern to prac-
titioners, policy-makers, and scholars. Well-recognized in 
the consumer-packaged goods space amongst academicians, 
it has broadly been applied to marketing research. Twelve 
years of weekly store-level data (2001 to 2012) for chain 
grocery and drug stores in 47 markets is provided. It also 
offers panel purchase and demographic data for two of IRI’s 
BehaviorScan markets (11 years, for the same categories). 
While not used in this paper, TNS advertising data for two 
categories for some early years is also provided. For the 
purpose of this paper, three full years of data from 2001 
to 2003 are used. However, the first year is used to provide 
historical values used as predictors for 2002. Thus, for the 
modeling exercise, a third of the observations are lost to cre-
ate lagged variables for observations in years 2002 and 2003. 
As a result, the modeling relies on 35,391 observations, with 
no missing values. The dataset contains 149 beer category 
SKUs, ranging from 40 to 1,548 observations for each class 
value, and an average of 237.5. The dataset was constrained 
to only contain SKUs with at least 40 observations. SKUs 

are coded as SKU1-SKU149, rather than by product name. 
The models try to forecast a panelist’s next purchase based 
on a number of predictor features, including prior purchase 
choices. Predictor features include the last choice made by 
a panelist in terms of brand, volume content, number of 
units in the package, and package type (Table 1). These are 
all treated as class features, and their descriptive statistics 
are shown in Table 1. Last brand purchased has a total of 
62 levels, with at least 51 observations each. Last volume 
content purchased has three levels (96, 144 and 196 oz), 
with a minimum of 263 observations each. Last package 
units purchased has also three levels (6, 20 and 35 units), 
with a minimum of 4,934 observations. Last package type 
purchased has only two levels (can or glass). Table 2 con-
tains two additional continuous predictor features: number 
of category purchases made in the prior year and number of 
days since last purchase. The minimum value for number 
of category purchases made in the prior year is zero days, 
the maximum is 119 days, and the average is 18.9 days. For 
number of days since last purchase, the minimum observed 
value is zero days, the maximum 151 and the average 7.0.

A third set of predictor features are demographic char-
acteristics of panelists (Table 3). In the dataset, there are 
3,404 unique panelists. The panelist observational frequen-
cies range from one to 243 observations. The demographic 
features included are income, family size, residence type, 
age and education. All of them are treated as class features. 
For income, we have three levels: less than $35,000, $35,000 

Table 1  Consumption habits: 
class features

Feature Description Observations Number of 
classes

Minimum class 
observations

Maximum 
class observa-
tions

SKU SKU classes 35,391 149 40 1,548
LBR Brand last consumed 35,391 62 51 3,894
LOZ Total SKU volume in ounces 35,391 3 263 30,191
LCT Number of units in SKU 35,391 3 4,934 15,248
LPK Package type (can or glass) 35,391 2 10,529 24,863

Table 2  Consumption habits: continuous features

Feature Description Observa-
tions

Mini-
mum 
value

Maxi-
mum 
value

average 
value

PYCAT Number of 
purchases 
by panelist 
in prior 
year

35,391 0 119 18.9

LP Number 
of days 
since last 
purchase

35,391 0 151 7.0
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to $65,000 and more than $65,000. The level with the small-
est sample representation is more than $65,000 with a total 
of 27.5% of the observations. Family size has also three lev-
els: one, two and greater than three. Of these three levels, 
the weakest representation is one, with 12.1% of the obser-
vations. Residence has two levels: owner and renter. The 
renters account for 17.0% of the observations in the dataset, 
while the rest are owners. Age has three levels: less than 45, 
between 45 and 54, and older than 54. The class with the 
least representation in the dataset is less than 45 years old 
with 15.5% of the observations. Finally, education has also 
three levels: basic, high-school, and at least some college. 
All are evenly distributed, with at least some college having 
the fewest observations (28.4%).

The fourth and final set of features that the models will 
leverage for predicting next SKU purchase are marketing 
variables (Table 4). Specifically, whether the SKU is only 
featured on the retailer circular, only on a prominent display 
in the store, both and whether the SKU is on price promo-
tion. These four features are treated as dummies, and they 
all have zero or one values. In the case of feature only, there 
are 1,054 observations with value equal to one, while display 
only, feature-and-display and price reduction take the value 
one in 5,224, 2,280 and 4,089 occasions, respectively.

For all but the naïve multinomial logit model, data is pre-
processed by centering and scaling each continuous feature. 
This is done as a way to free this benchmark model from 
one of the key systematic data treatments so commonly 
applied in machine learning, but less so in traditional mod-
eling. As mentioned before, there are many occasions when 
researchers and practitioners apply preprocessing to the data 
before running traditional multinomial models. Centering 

is achieved by subtracting the mean from each observation, 
while scaling relies on dividing each observation by the 
standard deviation of the feature values. The data is then 
randomly split into training (80%) and test (20%) datasets, 
while preserving the proportion of the product categories 
in the full dataset (thus, this is a stratified random split). 
The 80/20 split while somewhat arbitrary is considered a 
good rule of thumb by Kuhn and Johnson (2013). Predic-
tions on the test dataset are used as the ultimate arbiter of 
model performance. With the exception of the naïve mul-
tinomial logit model (the baseline comparison or proxy for 
traditional statistics), training data is split again (this time 
with resampling) into a training and tenfold cross valida-
tion datasets, following best practices (Kuhn and Johnson 
2013). Estimation of feature and tuning parameters is based 
on tenfold cross validation of the training dataset. The cross 
validation selects parameters that maximize the model with 
the greatest level of Accuracy (% of times the model predicts 
product choice observations accurately) against the training 
validation samples.

Models

The conceptual problem of predicting a consumer’s brand 
(that can be extended to SKU) choice can be framed in the 
form of a classification model (Russell 2014). Approaches 
supporting this type of models first predict the probability of 
each of the categories of a qualitative response feature, Yi, as 
the basis for making the classification. In its simplest form

Table 3  Panelist demographic 
features

Feature Description Observations Number of 
classes

Minimum class 
frequencies (%)

Maximum 
class frequen-
cies

IN Income level 35,391 3 27.5 39.6
FS Family size 35,391 3 12.1 44.9
RE Residence type 35,391 2 17.0 83.0
AGE Age group 35,391 3 15.5 60.5
EDU Education level 35,391 3 28.4 40.8

Table 4  Store marketing 
features

Feature Description Observations Number of 
classes

Observa-
tions with 
Dummy = 1

FO Circular feature-ad only 35,391 2 1,054
DO Display only 35,391 2 5,224
FAD Feature-ad and display 35,391 2 2,280
PR Price reduction 35,391 2 4,089
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expresses the probability that the i-th choice falls in the 
k = 1,…,K  kth category, where X is a set of predictor fea-
tures, and i = 1,…,N is an index of all N observations in the 
dataset. In our case, Y ∈ {SKU1, …, SKU149}. X is com-
posed of consumption habit, demographic, and marketing 
predictor features. Consumption habits include last choices 
made for four class features: brand choice made, volume 
content, number of units in the package, and package type. 
Consumption habits in X also include number of category 
purchases made in the last year and number of days since the 
last category purchase. Panelist demographic characteristics 
included in X are class features income, family size, resi-
dence, age and education. The last set of features included in 
X are store marketing conditions: whether the SKU is only 
featured in the retailer circular, only on a prominent display 
in the store, both and whether the SKU is on price reduction.

The function f(X) can take on a number of forms depend-
ing on the approach selected. In addition, for the machine-
learning approaches, the final model can include the full set, 
just a subset, or an augmented set of the initial X predictor 
elements through feature engineering. Further, X can be 
transformed linearly or non-linearly in a number of ways. 
What follows is seven different ways of turning the con-
ceptual abstraction of Eq. (1) into concrete model specifi-
cations and parameter estimations. The description of the 
approaches below focuses on defining the response model 
f(X) and the objective or loss function optimized to estimate 
model parameters, laying out the iterative processes to evalu-
ate parameters and the tuning parameters involved.

Naïve multinomial logit

The model is expressed as a log-linear functional form 
between the response and the predictor features, for ease 
of use (Venables and Ripley 2002). To make sure that the 
probabilities add up to one, f(X) is transformed by a softmax 
function (Bridle 1990):

The parameters of this model are estimated by minimiz-
ing the deviance function below:

The corresponding classifier (that turns probabilities into 
classes) is G(x) = argmaxk fk(Xi) (Hastie et al. 2009). This is 
a loss function without regularization, and therefore, without 
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tuning parameters, of the type that is more commonplace in 
machine-learning rather than in traditional statistics (as this 
multinomial model is trying to represent). Parameters are esti-
mated using maximum likelihood. Throughout the paper, we 
treat the performance of this model and its estimation proce-
dure as the benchmark the rest of the models and their estima-
tion approaches are compared against.

Learning multinomial logit

In this version of the model, the basic multinomial logit 
model leverages data preprocessing by scaling and centering 
it to improve estimation process smoothness. It also relies on 
regularization to prevent overfitting by adding a decay tuning 
parameter (λ) to the deviance function in Eq. (3):

λ is the only tuning parameter in this algorithm that is esti-
mated using standard tenfold cross-validation (Kuhn and 
Johnson 2013), thus incorporating an additional machine-
learning element to the estimation. The parameters are esti-
mated using maximum likelihood.

Random forests

Random forests (Breiman 2001) are a derivation of bagging, 
which in turn is a bootstrap version of the classification and 
regression tree (CART). Random forests’ advantage over bag-
ging is that they rely on less correlated individual classifica-
tion trees. Each time a split is considered, a random sample of 
mtry < rank(X) predictor features is selected as split candidates 
from the full set of predictors (James et al. 2013). We can 
express the random forest model as

where and b = 1, …, B is the index for number of random 
trees to estimate, B. In practice, each tree produces a class 
prediction for each observation D̂b(X) . Then the final classi-
fication is solved by majority vote across all b = 1, …, B trees

Each individual tree leverages a traditional classification 
tree approach, using the Gini criterion to guide the splitting 
by Breiman et al. (1984), as in

(4)
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where p̂nk is the proportion of class k observations in node 
n, and where I(yi = k) is an indicator conditional function 
that takes a unit value if the classifier, k, holds and zero 
if it does not. Observations in each node n are assigned to 
class k(n) = argmaxkp̂nk , the majority class in node n, using 
a greedy algorithm (i.e., making the locally optimal choice 
at each stage). The distribution of observations minimizing 
the Gini Index, GI, is:

Cross validation is leveraged again to estimate tuning 
parameters mtry and B.

Gradient boosting

Gradient boosting relies on weak classifiers that build on each 
other to produce an ensemble classifier with a lower predictive 
error (Kuhn and Johnson 2013). Based on Friedman (2001), 
the approach initializes a tree to fko(X) = 0, k = 1,…, K. Then, 
it iterates z = 1,…,Z times to generate trees, fkz(X), that build 
on each other at every z step, estimating the probability of an 
observation belonging to a class:

This ratio is taken to ensure that probabilities for all classes 
add up to one. f(X) defines a tree with a constant value for each 
terminal node. To estimate the parameters of fk(x) and fh(x), the 
algorithm uses the following deviance loss function:

where I(y = Gk) is an indicator conditional function that takes 
a unit value if the classifier, Gk, holds and zero if it does not. 
The classifier assigns classes based on what class k gets the 
greatest pk(X) value. An interesting aspect of gradient boost-
ing is that during each iteration, z, the error is estimated as 
rikz = Yik-pk(Xi), i = 1,..,N. The value of Yik takes a unit value 
if it belongs to class k, and zero otherwise. Then, a regres-
sion tree using the Xi features is fit to the errors rikz, giving 
terminal regions Rvkz, with v = 1,…Vm terminal nodes. Rvkz 
is the set of X values that define each terminal node. From 
here, Friedman (2001) computes:

This parameter is used to update the fk(X) of the z iteration, 
such as
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One can think of fkZ(X) as the final gradient boost tree 
solution, f̂k(X).

Four tuning parameters are used in this process: number 
of boosting iterations, Z, maximum weak learner tree depth, 
d, shrinkage, or speed of learning, γ and minimum terminal 
node sample size, u. The tuning parameters estimated via 
cross-validation are Z, d, s, and u.

Neural networks

Neural networks is a multi-stage classification (in our case) 
approach. The relationship between the response and pre-
dictor features in the data is intermediated by features engi-
neered by the approach, called hidden units, H. A hidden 
unit in a single layer neural network can be described as 
(Hastie et al. 2009)

where e = 1,…,E are the number of hidden units in the hid-
den layer, and σ(X) is a function of the linear component 
�0e + �T

e
X that allows for non-linearities. Then, a linear com-

bination of the engineered features, Tk, is generated for each 
response variable class:

A final transformation step estimates the response func-
tion. In a multinomial case like the one in this paper, the 
function is akin to the multinomial logit, here called a soft-
max function (Bridle 1990), identical to the one seen in the 
multinomial model above in Eq. (4):

In addition, following the same algorithm as in the one 
used in the multinomial logit model, the objective function 
to be minimized yielding estimates for all parameters (α0m, 
αm, β0k and βk) is a deviance loss function:

And the corresponding classifier is G(X) = argmaxk fk(X). 
Similar to the one used in the learning multinomial logit 
model, the loss function in this case allows for regulariza-
tion, in the form of a weight decay, λ, that penalizes inclu-
sion of additional parameters (ϴ ∈ {α0m, αm, β0k and βk}) in 
the model, thus reducing the chance for overfitting
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Cross-validation is used to zero into the two tuning 
parameters involved in the algorithm, H and λ.

Support vector machines

Support vector machines (SVM) are an extension of 
maximal margin classifiers and support vector classifiers 
to accommodate non-linear separation boundaries, also 
expanding the feature space beyond a two-class setting, 
using kernels. Kernels, in this context, are inner prod-
uct functions of predictor features, often represented as 
K(x,x’) =  〈 xi,xi’〉, capturing the similarity of two obser-
vations. Kernels facilitate a computational approach that 
allow for inclusion of large numbers of features, most of 
them engineered.

This form of hinge functions, h(X), can be characterized 
by nonlinearities often in the form of polynomials, radial 
and neural network functions. The model becomes:

The goal is to find parameter values that maximize the 
margin, π, which in SVM parlance is the distance between 
the classification separation boundary and the closest data 
point. This can be captured as a constrained optimization 
of the form:

where ξ is a slack factor to allow some error in the classifi-
cation preventing overfitting and C is an arbitrary constant. 
This optimization problem can be turned into a more trac-
table convex optimization expression (Hastie et al. 2009)

by making � =
1

‖�‖ . It can be taken a step further and turn 
the expression into

The arbitrary constant C is treated as a tuning param-
eter. The constrained optimization can be solved using a 
Lagrangian
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where αi and μ are Lagrangian multipliers. By setting the 
first derivatives to zero, analytic expressions of the param-
eters are generated:

The approach then substitutes these first-order solutions 
into the Lagrangian above, to get the optimization for the 
Lagrangian dual objective function:

leading to

where S is the collection of indices for which α is equal to 
zero. α is different from zero for only X values in the training 
set that are closest to the boundary and are predicted with 
the least amount of certainty. This reduces the feature space 
for which to estimate parameters more manageable from a 
computational standpoint.

Ensemble learning

Ensemble learning is becoming a widely used approach in 
machine learning (Bajari et al. 2015; Sagi and Rokach 2018). 
It can take a range of forms but at its core it is built by combin-
ing a collection of underlying models. Some of the machine-
learning models applied in this paper are themselves ensemble 
models, like random forests and gradient boosting. That is, 
their final estimate is built from weaker models developed 
during the estimation process. For the ensemble learning 
model, this paper uses an approach similar to random for-
ests. It takes estimates the predictions of all machine-learning 
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models on the test observations, and applies a majority vote 
rule approach:

When ties occur, the best performing model is used for 
the final prediction.

Results

The objective of this paper is to provide a comparison point 
as to how machine-learning techniques stack-up in their 
ability to predict consumer SKU choices relative to each 
other and a more traditional statistical technique. While 
classification models produce both continuous probability 
estimates and the associated predicted class, the focus is 
typically the latter. That makes sense since it tends to be 
the observable event. As mentioned earlier, the performance 
of the classification forecast is done out-of-sample, rather 
than the in-sample. There are several metrics used to the 
determine class forecast performance on test observations. 
We rely on three commonly used ones including Accuracy 
(percentage of observations correctly classified), Kappa 
(similar to Accuracy but it removes the probability that 
an accurate prediction occurs by chance), and Sensitivity 
(proportion of observations of class k predicted correctly). 
Their values are estimated against a test dataset, instead of 
the training dataset. Following machine learning’s modeling 
emphasis on predictive ability rather than interpretation of 
model parameters, just tuning parameters for each model 
are reported. Tuning parameters for the seven models are 

ŜKUi,Ensemble =majority vote
{
ŜKUi,Naive Multinomial, ŜKUi,Learning Multinomial ,

ŜKUi,Random Forests, ŜKUi,Neural Network,

ŜKUi,Gradient Boosting, ŜKUi,Support Vector Machine

}

captured in Table 5, while Table 6 contains sensitivities by 
approach and Table 7 summarizes Accuracy and Kappa val-
ues by approach.

The naïve multinomial logit model is used as the bench-
mark to evaluate performance of subsequent machine learn-
ing models. It does not have any tuning parameters by design 
and thus does not have any records in Table 5. Sensitivity 
ranges from 0.00 to 0.89, with an average value of 0.22, 
while Accuracy is 0.37. However, we can see in Fig. 1 that 
prediction Accuracy for this model improves significantly as 
SKU observations increase.

Kappa is equal to 0.36, coming close to the Accuracy 
estimate. The closeness between these two numbers is likely 
a result of the large number of classes being predicted. With 
as many classes as the ones included in this analysis (149), 
the likelihood of an accurate prediction being the result of 
chance becomes small. Thus, the closeness between Accu-
racy and Kappa. This is further validated by the fact that we 
see the same dynamic in results for all approaches presented 
below. These performance statistics portray our naïve multi-
nomial model as relatively poor at predicting next SKU pur-
chase by a panelist. However, this low performance should 
not be surprising, since the model attempts to estimate next 
purchase choice by each panelist (out of 3,404) at the SKU 
level (out of 142), which is a relatively demanding forecast-
ing task.

The learning multinomial logit model’s optimal decay 
tuning parameter, λ, equals 0.0001, which is a relatively 
low penalization. Sensitivity estimates for the SKUs being 
predicted have a similar range to that observed for the naïve 
multinomial logit model, with only a slightly greater mean. 
Accuracy and Kappa for this model also show moderate 
improvement relative to the benchmark. Accuracy’s trend 
improves for SKUs with larger number of observations, as it 
was the case for the naïve multinomial logit model (Fig. 1). 
Based on these results, we can conclude that the learning 
multinomial model performs better than the naïve multino-
mial model, overall. The improvement in performance by the 
learning multinomial logit model is a result of just applying 
data preprocessing and regularization.

Table 5  Tuning parameters by approach

Approach Parameter Value

Naïve multinomial NA NA
Learning multinomial λ 0.0001
Random forests mtry 68

B 50
Neural networks H 7

λ 0.3
Gradient boosting Z 50

d 0
s 0
u 0.3

Support vector machine σ 0
C 1

Ensemble learning NA NA

Table 6  Sensitivity statistics by approach

Approach Minimum Average Maximum Variance

Naïve multinomial 0.00 0.22 0.89 0.06
Learning multinomial 0.00 0.37 0.89 0.05
Random forests 0.00 0.62 1.00 0.04
Neural networks 0.00 0.05 0.85 0.03
Gradient boosting 0.00 0.63 1.00 0.05
Support vector machine 0.00 0.10 0.85 0.04
Ensemble learning 0.17 0.68 1.00 0.03
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The random forest model selected the tunning parameter 
mtry to be 68 and B equal to 50. Sensitivity estimates for 
the SKUs being forecast show a sizable relative improve-
ment vs. the naïve multinomial logit model, and even its 
learning counterpart. The same can be said about Accuracy 
and Kappa values. Accuracy is relatively strong for even the 
lower range of class observations (Fig. 1), but as shown for 
the prior approaches, it also benefits from a greater number 
of observations.

The neural network model’s optimal tunning parameters 
are H = 7 hidden layers and λ = 0.3 decay (Table 6). Accu-
racy and Kappa are markedly worse than the performance 
of the naïve multinomial logit model. Also, the range of 
sensitivities is only slightly narrower, but lower on average. 
This approach shows the weakest performance at the lower 
range of class observations, with sizable improvements as 
observations grow (Fig. 1), however. The neural network 
model thus shows the greatest need for observations to per-
form well, as far as this dataset is concerned.

The gradient boosting model has four tuning parameters 
with optimal levels estimated at Z = 50, d = 0, s = 0 and 
u = 0.3 (Table 5). Accuracy and Kappa resulting from the 
application of gradient boosting are relatively high, just shy 
of the values reached by the random forest model, and better 
than for the benchmark naïve multinomial logit model. Sen-
sitivity is on average also greater than for even the random 
forest. Accuracy shows relatively robust levels even with 

few observations (Fig. 1), while still benefiting from greater 
number of observations.

The support vector machine has two tuning parameters 
σ and C. Their optimal values are estimated to be σ = 0 and 
C = 1 (Table 5). The Accuracy and Kappa levels for the SVM 
model are the lowest of all tested approaches, including the 
naïve multinomial logit benchmark model, while sensitiv-
ity is only slightly better than for the worst performer, the 
neural network model. Performance is volatile across the 
entire range of SKU observations (Fig. 1), without con-
sistent improvements as the number of observations grow. 
SVM proves to be weakest and least stable approach for the 
dataset used in this paper. It is worth noting that at 1,500 
observations per SKU (Fig. 1), the SVM approach failed to 
converge, stressing further its relatively unstable behavior 
for this dataset.

The ensemble model has no tuning parameters since it 
is a simple majority vote algorithm. Its range of sensitivi-
ties across predicted SKUs is the narrowest and highest on 
average of all models evaluated. Its superior performance 
is also reflected by the highest Accuracy and Kappa lev-
els: Accuracy is six percentage points better than the next 
best model’s (the random forest model). Furthermore, Fig. 1 
shows that the ensemble model’s SKU choice prediction out-
performs consistently every other model at any number of 
SKU observations predictions.

Table 7  Accuracy and Kappa estimates by approach

Performance metric Naive multi-
nomial

Learning 
multinomial

Random forests Neural networks Gradient boost-
ing

Support vector 
machine

Ensem-
ble learn-
ing

Accuracy 0.37 0.48 0.70 0.18 0.69 0.11 0.76
Kappa 0.36 0.45 0.70 0.16 0.69 0.10 0.76

Fig. 1  Method accuracy by 
number of SKU observations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

250 500 750 1,000 1,250 1,500 1,750

A
cc

ur
ac

y

Number of SKU Observations
Naïve Multinomial Learning Multinomial Random Forest Neural Network
Gradient Boosting Support Vector Machines Ensemble



 J. Martínez-Garmendia 

Discussion

Machine learning is bringing a great deal of due diligence 
to our analyses in marketing research. Its focus is largely 
directed towards improved model predictive performance. 
Particularly, it is doing so by turning researchers to evaluate 
multiple forms of a conceptual model, and different alter-
native techniques to estimating parameters in one single 
swoop. That systematization of alternative approach test-
ing is done with computationally intensive automated algo-
rithms based on tuning parameters and cross-validation. This 
is a move away from parametric and towards non-parametric 
methods that do not make explicit assumptions about the 
functional form of f(X). Non-parametric methods, however, 
often have higher observational requirements and come 
at also higher computational costs. Machine learning also 
increases the likelihood that a model will perform well in a 
new environment, by splitting observations between training 
and test datasets. This emphasis is of particular importance 
to applied research in the commercial fields of marketing, 
reducing risk for decision-makers.

In this paper, we compare a naïve multinomial logit prod-
uct purchase predictive model against six other alternatives: 
learning multinomial logit, random forests, neural networks, 
gradient boosting, support vector machines and an ensemble 
learning algorithm. The results show that random forest and 
gradient boosting, in that order, perform best among the six 
single model approaches (excluding the ensemble model). 
However, some machine-learning approaches, namely neural 
networks and support vector machines, resulted in weaker 
predictive performance. In fact, both neural network and 
support vector machine approaches perform worse than even 
the naïve multinomial logit benchmark model, on average. 
However, neural network’s relative performance improves 
significantly with greater observations, surpassing naïve 
multinomial logit model’s performance at the higher end 
of observations (Fig. 1). On the other hand, support vector 
machine’s performance remains low and somewhat volatile 
across the spectrum of observations (Fig. 1). That is likely 
a result of the fact that support vector machines is perhaps 
the most data demanding of all methods tested in this paper, 
given its reliance on large number of kernels.

An important finding is that the ensemble learning algo-
rithm, that combines predictions from all the other six mod-
els, displays the best predictive performance, six percent-
age points above the next best approach. This is a result of 
ensemble learning’s ability to increase predictive accuracy 
for SKU classes that prove to be difficult to predict by single 
models. Conventional wisdom would make us believe that 
the approach of choice should be to rely on the best-perform-
ing single model. Thus, marketing researchers may need to 
consider not only testing a wide range of machine-learning 

models to answer specific questions, but also taking one step 
further to generate ensemble solutions as a potential best-
in-class approach to generate robust answers in any obser-
vational conditions.

The results of this paper resonate with findings in simi-
lar studies. For example, Bajari et al. (2015) demonstrated 
that machine learning methods led to superior predictive 
accuracy relative to the more traditional linear regression 
or logit models when applied to aggregate demand data. 
Further, they also found that an ensemble model in the 
form of a linear combination of the underlying models can 
improve fit even further, as it is also shown in this paper. 
The focus of their work was explaining longitudinal continu-
ous aggregated salty-snacks demand at the store level, rather 
than predicting individual consumer choice events like in 
this paper. This is evidence of the robustness of machine-
learning across categories and aggregation levels. There are 
also studies that point to traditional choice models, like the 
multinomial logit model used as a benchmark in this paper, 
as superior to machine learning. Feldman et al. (2022) find 
that gradient boosting underperforms relative to a traditional 
multinomial logit model challenger. They make the side-
by-side comparison between the two approaches for two of 
Alibaba’s marketplaces (Tmall and Taobao), using a ran-
domized field experiment. Specifically, they expose two 
randomized sets of consumers coming to their websites to 
product recommendations generated by one of the two mod-
els: one set of consumers was exposed to product recom-
mendations from the gradient boosting model and another 
set of consumers to recommendations from the multinomial 
logit model. They then compare the revenue generated per 
customer visit between the two cells. The results showed a 
28% lift in revenue per customer when the recommenda-
tions were driven by the multinomial logit model, relative 
to when gradient boosting was making the recommenda-
tions. This finding is a lesson that suggests that we should 
not always take it as a given that machine learning tech-
niques are superior. Instead, multiple comparisons should be 
made against out-of-sample or test datasets. Even better, the 
comparisons should be made by applying randomized field 
experiments such as Feldman et al. (2022) do. The benefit 
of this approach is threefold: (1) we can feel confident of 
the causality behind the results, (2) the model performance 
comparison is done in a realistic setting that considers opera-
tional elements, marketplace dynamics and consumer behav-
ior, and (3) it is measured against business outcomes rather 
than statistical measures like accuracy.

Both researchers and practitioners will find value in the 
flexibility, ease-of-use, and scalability of machine learning 
methods for a wide variety of marketing research problems, 
not just product purchase prediction. Machine learning may 
have already advanced more amongst practitioners in the 
marketing research space. This could in part be because it 
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focuses on prediction vs. explanation and validation of theo-
retical constructs of consumer behavior. Marketer incentives 
may skew more towards getting it right, than in understand-
ing the underlying dynamics of consumer choice processes. 
As a result, the implications of continued improvements 
in consumer product choice predictions with machine-
learning loom large for the industry. Both consumers and 
suppliers, in the form of either manufacturers and/or retail-
ers, can benefit from improvements to consumer product 
choice prediction. By applying machine-learning techniques 
uncertainty of future demand can be reduced, according to 
the results presented in this paper. This can improve sup-
ply chain efficiencies on both the manufacturer and retailer 
sides significantly—which is an area that continuously tries 
to find ways to smooth operations and reduce waste. Better 
forecasts of consumer choice can help manufacturing invest-
ment allocations and assortment optimizations. Inventory 
of idle product costs and penalties incurred in by manufac-
turers for not meeting supply needs by the retailer will be 
reduced. Another area improved predictions will impact is a 
decline in opportunity costs from not having product at the 
ready to meet consumer choices. Consumers that are unable 
to find their preferred choice, will result in lower levels of 
satisfaction. Thus, a direct effect of better planning result-
ing from improved consumer choice predictions will then 
prevent loyalty erosion on brand and retailer. Academia’s 
mission, on the other hand, tends to be more focused on 
validation of consumer behavior theories. It is often argued 
that traditional methods are better at uncovering the whys 
behind observed consumer behavior, while machine learning 
approaches are better at predicting it. Traditional models are 
relatively easier to interpret, while machine learning models 
tend to be more convoluted and difficult to wrap one’s head 
around. Conventional wisdom may be worth being chal-
lenged in future research, though. There is room to investi-
gate whether machine learning models can yield even richer 
understanding and new hypotheses about consumer behav-
ior than traditional models. They could do so by leveraging 
these models in simulation runs under alternative scenarios. 
The findings could then be confirmed with the application of 
designs of experiments to truly establish causality. Compar-
ing the learnings of this two-step approach (machine learn-
ing based simulations first, followed by design of experi-
ments) relative to those from traditional statistical modeling 
may be worth considering.

Conclusion

It is concluded based on the analysis presented in this paper 
that machine-learning techniques in general are superior to a 
traditional approach in predicting consumer product choices, 

but their performance can vary depending on the approach, 
and presumably the dataset. In addition to their intrinsic 
inherent strengths, machine learning techniques consistently 
follow a series of steps that make them formidable relative 
to traditional statistical approaches. These steps include data 
preprocessing, feature engineering, data splitting between 
training and test sets, cross-validation, and use of tuning 
parameters (Kuhn and Johnson 2013). The result of such 
painstaking process is more flexible relationships between 
predictor and predicted features, and less over-fitting. The 
net benefit of such due-diligence is better out-of-sample 
predictions.

A salient aspect of the findings in this paper is that 
ensemble models that rely on both machine learning and 
traditional modeling approaches are particularly robust. Best 
practices in both academic and applied marketing analyt-
ics should involve implementation of multiple modeling 
approaches, including traditional and machine learning 
techniques, to analyze every individual study. This set of 
multiple diverse models should then be leveraged to generate 
an ensemble model. This meta-modeling technique is likely 
to be the most robust, as shown by this and similar papers 
(Bajari et al. 2015). There is room for further research when 
it comes to the development and performance of ensemble 
models in the marketing analytics space. There are a variety 
of ways to build this type of models-of-models: combination 
methods (like majority vote used in this paper), diversity, 
ensemble pruning, boosting, clustering, and bagging are just 
a few of them. Thus, identifying which methods work best 
for marketing and consumer analytics is a fertile ground for 
future research.

The chain reaction unleashed by enhanced predictions 
has two large implications: one to consumers and another 
to supply chain stakeholders including manufacturers, dis-
tributors, and retailers. Better predictions of future consumer 
behavior will anticipate supply needs. With that foresight, 
meeting those supply needs will then result in fewer out-
of-stocks encountered by consumers looking for their pre-
ferred products. Fewer out-of-stocks will likely translate into 
a build-up of consumer satisfaction levels. This buttressing 
of satisfaction on the part of consumers will likely result 
in improved loyalty for products, manufacturers, and retail-
ers. A final consequence of this sequential domino reaction 
started with improved predictions of consumer preferences 
is that the loyalty increase will help supply chain stakehold-
ers, including manufacturers and retailers, generate better 
business results.

Although outside of the scope of this paper, an area that 
may be worth challenging is the maxim that machine learn-
ing models are catered for prediction, while traditional sta-
tistical models are better at testing hypotheses. If it is estab-
lished that machine learning models can predict consumer 
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behavior better, it stands to reason that they should be able 
to test hypotheses better also. The way to test hypotheses 
may require simulations of conditions we are interested in, 
based on more complex single or ensemble models that may 
not have theoretical underpinnings. This is a departure from 
traditional parametric hypothesis testing, but necessary in 
a world where complex dynamics are recognized (often 
beyond our ability to understand) and captured. In any case, 
one can also argue that for true causal hypothesis testing, 
executions of experimental designs may be needed rather 
than stopping at just observational data driven traditional or 
machine learning model generated results.
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