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Abstract
This research delves into the empirical performance of deterministic option pricing models in the dynamic financial landscape 
of India. The primary focus is on uncovering pricing discrepancies and discerning whether these disparities arise from inher-
ent limitations in the theoretical foundations of the models or are influenced by the trading behaviors of market participants. 
The investigation centers on the analysis of call and put option contracts for the Nifty Index and Bank Nifty Index, both 
extensively traded on the National Stock Exchange (NSE) of India. The study’s findings highlight that models developed to 
address the theoretical constraints of the benchmark Black–Scholes model demonstrate noteworthy performance. However, 
the complexity of these models does not consistently translate into enhanced pricing efficiency. Notably, the Black–Scholes 
and Practitioner Black–Scholes models exhibit superior performance across various moneyness-maturity categories. Fur-
thermore, the research underscores the substantial impact of option contract liquidity on the efficiency of the pricing models. 
Specifically, highly traded at-the-money and out-of-the-money option contracts exhibit a higher level of pricing accuracy.
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Introduction

In the realm of option pricing, deterministic and stochastic 
option pricing models serve as crucial tools for estimating 
the value of financial derivatives, each grounded in distinct 
theoretical foundations (Black and Scholes 1973; Bates 
2022). Deterministic models, such as the Black–Scholes, 
are based on the assumption that market variables, including 
the underlying asset’s price, interest rates, and volatility, fol-
low predictable and continuous paths (Smith 1976; Versluis 
2010). These models provide a simplified and closed-form 
solution for option valuation, making them computationally 

efficient and easily applicable. On the other hand, sto-
chastic models, such as the Heston model (1992) and the 
Cox–Ross–Rubinstein model (1985), incorporate random 
elements and volatility clustering, allowing for a more 
nuanced representation of market dynamics and accommo-
dating the inherent uncertainty and irregularities observed 
in real-world financial markets (Motoczyński and Stettner 
1998; Kim 2010). Stochastic models, with their capacity to 
capture the complexities of market movements more accu-
rately, provide a more realistic portrayal of option prices 
under dynamic market conditions (Romo 2017; Stilger et al. 
2021). However, the justification for empirical testing of 
both deterministic and stochastic option pricing models is 
paramount. For deterministic models, empirical testing helps 
evaluate the consistency of the model's assumptions with 
observed market behavior, providing insights into any poten-
tial discrepancies and limitations of the simplified assump-
tions (Brandt and Wu 2002; Aboura 2013; Singh 2014a). It 
also aids in identifying any systematic biases or structural 
deficiencies that may affect the model's reliability in practi-
cal applications. Similarly, for stochastic models, empirical 
testing is vital in assessing the model's ability to capture the 
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complexities of market dynamics, such as volatility clus-
tering and other stochastic processes (Kim and Kim 2004; 
Jang et al. 2014; Dammak et al. 2023). Through empirical 
validation, researchers can fine-tune model parameters and 
refine the underlying assumptions to ensure that the deter-
ministic and stochastic models accurately represent the vola-
tility patterns and price movements observed in real-world 
financial markets. Empirical testing allows for the validation 
and calibration of these models using historical market data, 
enabling researchers to assess the models' predictive power 
and accuracy in estimating option prices (Navatte and Villa 
2000; Aboura 2013; Singh 2014b).

The choice between deterministic and stochastic mod-
els is often driven by the need for simplicity and speed in 
the case of deterministic models, versus the requirement for 
a more accurate representation of market dynamics in the 
case of stochastic models (Moon, et al., 2009). Researchers 
and practitioners opt for deterministic models when market 
conditions are relatively stable, and the focus is on rapid and 
efficient option pricing (Singh 2014a, 2014b). On the other 
hand, in situations where market volatility and randomness 
play a significant role, stochastic models are preferred for 
their ability to capture complex market behavior and pro-
vide a more comprehensive understanding of option pric-
ing dynamics (Mastroeni 2022). It is important to note that 
the selection of the appropriate model should be informed 
by the specific requirements of the valuation task at hand 
and the underlying market conditions. By examining histori-
cal data, researchers and practitioners have tried to find the 
option pricing models, accurately capturing market dynam-
ics and investor behavior (Singh and Pachori 2013a, b; Singh 
2015a). Through empirical testing, researchers and practi-
tioners have tried to reveal market anomalies or pricing inef-
ficiencies that the deterministic and stochastic option models 
may fail to account for (Van Der Ploeg 2006; Leccadito and 
Russo 2016). Both deterministic and stochastic option pric-
ing models have their strengths and limitations, and their 
suitability depends on the context and nature of the financial 
market being evaluated.

For the current study, the selection of determinis-
tic option pricing models over stochastic option pricing 
models for empirical analysis of option contracts can be 
substantiated by several key arguments. Firstly, determin-
istic models, such as the Black–Scholes and Practitioners 
Black–Scholes model, offer simplicity and computational 
efficiency, allowing for quick and straightforward valua-
tion calculations, which are particularly valuable in time-
sensitive financial decision-making (Arnold 2001; Singh 
et al. 2011). These models provide closed-form solutions, 
making them easier to interpret and apply in practical sce-
narios. Secondly, in stable market conditions with mini-
mal volatility fluctuations, deterministic models can yield 
reliable estimates of option prices (Feng et al. 2015; Feng 

et al. 2018). When underlying market parameters remain 
relatively constant, the assumption of constant volatility, 
characteristic of deterministic models, can closely align 
with observed market behavior, thereby enhancing the 
models' suitability for empirical analysis. Lastly, determin-
istic option pricing models have a well-established history 
of success in certain contexts, especially for European-
style options, and have been extensively tested and applied 
in various financial markets (Luo et al. 2022). Another 
important reason for adopting the deterministic model for 
the Indian derivative market is the reduction in the vola-
tility of spot post-derivative introduction. Thus, the vari-
ance remains less random. Hence, adoption of stochastic 
volatility in modeling option pricing would not bear the 
same price prediction as it happens in the Western Market 
(Bandivadekar and Ghosh 2003).

Before testing the same in the Indian financial market, one 
needs to review scholarly works and research articles that 
shed light on the distinct characteristics of the Indian mar-
ket and the challenges associated with directly comparing 
it to international markets. Nandamohan and Kumar (2019) 
brought attention to specific structural differences and mar-
ket inefficiencies in the Indian stock market when compared 
to global markets. Their emphasis on these distinctions 
underscores the necessity for context-specific analyses tai-
lored to the Indian market's unique dynamics and regulatory 
environment. Additionally, the research by Mohan and Ray 
(2017) delves into the regulatory and policy framework of 
the Indian financial sector, revealing significant variations 
from other global markets. This underscores the impor-
tance of tailored research approaches specific to the Indian 
context, as regulatory and policy frameworks play a piv-
otal role in shaping market dynamics. Understanding these 
variations is crucial for formulating strategies that align 
with the Indian financial environment. Moreover, Patil and 
Bagodi (2021) study adds another layer to the justification by 
demonstrating the influence of cultural and behavioral fac-
tors on investor decision-making in the Indian market. This 
emphasizes the importance of understanding local investor 
preferences and risk attitudes in the formulation of market-
specific strategies. Cultural nuances and investor behavior 
contribute to the unique characteristics of the Indian market, 
further justifying the need for tailored research approaches. 
Furthermore, Singh and Ahmad's (2011b) work, utilizing 
GARCH class volatility models, highlights the volatil-
ity characteristics of the Nifty Index, often considered the 
barometer of Indian Capital Markets. Additionally, Singh's 
(2015b) exploration of extreme up and down limits (jumps) 
in the Indian capital market further justifies the study. These 
extreme market movements can have a substantial impact 
on pricing models and risk assessment. Singh's work draws 
attention to the need for nuanced analyses that account for 
such extreme events in the Indian market, emphasizing the 
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unique challenges and opportunities presented by the mar-
ket's behavior.7

These studies collectively suggest that the Indian financial 
market possesses distinct structural, regulatory, and behav-
ioral characteristics that warrant a more context-specific 
approach to research and analysis. In the context of the 
unique attributes and complexities of the Indian financial 
market, previous studies have emphasized the need for a 
context-specific approach to research and analysis, indicat-
ing the limitations of direct comparative analyses with other 
global markets like the US and China (Lao and Singh 2011). 
Direct comparative analyses with other global markets, such 
as the US and China, may not fully account for the intrica-
cies and idiosyncrasies of the Indian market, emphasizing 
the significance of conducting targeted research and devel-
oping strategies tailored to the specific attributes of the 
Indian financial landscape.

For the above-mentioned reasons, the empirical inves-
tigation of the pricing performance of deterministic option 
pricing models is critical in the context of the dynamic and 
rapidly evolving financial landscape of India for several com-
pelling reasons. Firstly, in the past decade, India's financial 
markets have experienced significant growth and transforma-
tion in recent years, driven by regulatory reforms, technologi-
cal advancements, and increasing investor participation. In 
2022, according to the Futures Industry Association (FIA), 
the National Stock Exchange of India (NSE) emerged as the 
world's largest derivatives exchange in terms of the number of 
contracts traded. Conducting empirical investigations of option 
pricing models in this dynamic environment can help assess 
the models' effectiveness in capturing the unique characteris-
tics of the Indian market, including price movements, volatility 
patterns, and investor behavior. Secondly, India's economy is 
influenced by a complex interplay of domestic and global fac-
tors, making it crucial to evaluate the performance of option 
pricing models in the context of diverse economic conditions 
and market dynamics. Empirical investigations can shed light 
on the models' robustness and accuracy in pricing Indian 
options, considering the impact of factors such as interest rate 
fluctuations, currency movements, and geopolitical events on 
option prices. Furthermore, given the increasing prominence 
of derivative instruments in India's financial ecosystem, par-
ticularly in the context of risk management and investment 
strategies, empirical investigations of option pricing models 
can provide valuable insights for market participants, includ-
ing investors, financial institutions, and regulatory authorities. 
Understanding the strengths and limitations of these models in 
the Indian market can contribute to more informed decision-
making, improved risk management practices, and the devel-
opment of effective hedging strategies, thereby fostering stabil-
ity and resilience in the Indian financial system. Additionally, 
as India continues to witness rapid technological advance-
ments and shifts in trading practices, empirical investigations 

can help assess the adaptability of option pricing models to 
emerging market trends, such as algorithmic trading, high-fre-
quency trading, and the increasing use of financial technology 
platforms. Analyzing the performance of these models in the 
context of evolving market structures and trading methodolo-
gies can facilitate the development of more sophisticated and 
accurate pricing frameworks tailored to the specific needs of 
the Indian financial landscape. By comparing model-generated 
prices with observed market prices, we tried to identify any 
systematic biases or discrepancies, thus improving the models' 
predictive power.

This research endeavors to fill the gap in the existing lit-
erature by examining the pricing performance of a range of 
deterministic option pricing models in the Indian market 
context. By conducting a comprehensive analysis over a 
twelve-year period, encompassing varying market condi-
tions, including bull, bear, neutral, and volatile phases, this 
study aims to identify a model that serves as a benchmark for 
pricing Indian option chain data across different moneyness 
and maturities. To achieve this, the study adopts a two-step 
modeling procedure, focusing on the analytical determina-
tion of model parameters and the subsequent assessment of 
pricing performance through error metrics.

Given the potential biases in pricing error assessment, 
this research imposes three critical restrictions to ensure the 
robustness and reliability of the findings. By considering 
only liquid option contracts, utilizing closing prices of the 
Nifty and Bank Index, and employing the nonlinear least 
squares method for parameter estimation, the study aims to 
minimize errors resulting from market volatility and less 
traded option contracts, ultimately contributing to a compre-
hensive understanding of the pricing dynamics in the Indian 
derivative market.

The subsequent sections of this paper provide an over-
view of the financial characteristics of the Nifty and Bank 
Nifty Index data, along with the data screening methodology 
employed to identify liquid option contracts. Furthermore, 
the paper delves into the underlying price mechanisms of 
the deterministic models under examination, presenting an 
in-depth exploration of the estimation methodology and the 
error techniques utilized for model assessment. Finally, the 
study presents a detailed analysis of the pricing errors of the 
deterministic models, drawing pivotal conclusions from the 
empirical research and concluding with a comprehensive 
synthesis of the study's key findings.

Data and its financial characteristics

To assess the empirical performance of the previously 
defined option pricing models, this research draws on data 
from the National Stock Exchange (NSE) of India, the larg-
est exchange in Asia. Established in 1992, the NSE serves 
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as a prominent platform for efficient and competitive trading 
opportunities in equities for Indian and foreign investors. 
Over the years, the NSE has expanded its trading capabili-
ties to include equity derivatives, bonds, and mutual funds, 
solidifying its position as one of the leading financial futures 
and option exchanges in Asia. Notably, the NSE has consist-
ently ranked among the top 10 exchanges globally in terms 
of trading volume over the past five years.

The study focuses on the time series data of the Nifty and 
Bank Nifty, two benchmark indices of the NSE, and their 
corresponding option chain data. The historical data utilized 
in this study spans from January 2009 to July 2020, deliber-
ately excluding the turbulent period of 2008 characterized 
by heightened market volatility. The exclusion of 2008 from 
the analysis is attributed to computational complexities and 
substantial price bias that render the option data from that 
period unsuitable for robust empirical analysis. Additionally, 
before 2007, the trading volume of Nifty option contracts 

was relatively low, and the trading of Bank Nifty Index 
option contracts had only just commenced. The gradual rise 
in the popularity of these option contracts necessitated a 
more comprehensive and standardized database, leading to 
the adoption of the 2009–2020 period for the study.

The option chain data of the Nifty and Bank Nifty Index 
encompasses crucial elements such as option type (call or 
put), strike price, option closed prices, index closed price, 
and time to maturity. The growth trajectory of derivatives 
contracts traded on the NSE is presented in Figs. 1 and 2, 
which outline the trading turnover statistics for four major 
categories, including index futures, stock futures, index 
options, and stock options. Notably, the trading turnover of 
stock futures is observed to be the highest, closely followed 
by index futures, while the number of contracts traded in 
index options contributes significantly to the overall deriva-
tives market, as illustrated in Fig. 2. Furthermore, Fig. 3 
highlights the stark disparity between the trading turnover 

Fig. 1  Business Turnover Statis-
tics of Derivatives Contracts
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in the NSE capital market segment and the derivatives seg-
ments, emphasizing the substantial role played by the deriva-
tives market in the overall trading landscape.

Figure 4 exhibits the time series and its return plot of the 
Nifty and Bank Nifty Index. The figure shows that during 
the study period, the market exhibited several episodes of 
bull and bear runs.

Figure 5 presents a frequency plot illustrating the log-nor-
mal return series of both the Nifty and Bank Nifty indices. 
The log-normal return series is derived from the end-of-day 
closed prices of the Nifty and Bank Nifty indices. Alongside 
the frequency plot, Fig. 5 also provides key statistical met-
rics, including the mean, median, mode, standard deviation, 
skewness, and kurtosis, elucidating the characteristics of the 
daily log-normal return series of these indices. Notably, the 

figure highlights that the log-normal return distribution of 
the Nifty and Bank Nifty indices deviates significantly from 
a normal distribution, exhibiting heavy tails and elevated 
peaks, indicative of a leptokurtic distribution.

The non-log-normal nature of the return distribution 
depicted in Fig. 5 is further emphasized by the compari-
son with a normal distribution of identical mean and vari-
ance, revealing a clear departure from the assumptions 
of normality. This departure from normality is of critical 
importance, particularly in the context of the Black–Scholes 
model, as it introduces significant pricing biases, especially 
in the valuation of deep-in-the-money and deep-out-of-the-
money option contracts. Understanding these deviations is 
crucial as they challenge the fundamental assumptions of the 
Black–Scholes model, emphasizing the need for alternative 

Fig. 3  Comparison of Business 
Turnover of NSE Capital and 
Derivative Trading Turnover
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models that can better account for the observed market 
dynamics and distributional characteristics of asset returns.

Option data screening procedure

During the analysis of the option chain contracts of Nifty 
and Bank Nifty indices for the sample period from January 
2009 to July 2020, it becomes evident that a substantial por-
tion of the option contracts exhibit low liquidity, with either 
minimal trading or no trading activity at all. The prevalence 
of such illiquid option contracts prompts the adoption of a 
rigorous screening procedure to ensure the reliability and 
accuracy of the data, mitigating potential pricing errors asso-
ciated with liquidity-related biases.

To effectively filter out the illiquid option chain data, the 
following screening criteria are implemented:

(a) Option chain contracts with zero open interest. (b) 
Option chain contracts with less than 50,000 outstanding 
open interest (for Bank Nifty option chain contracts, less 
than 10,000 outstanding open interest). (c) Option chain 
contracts with no change in open interest. (d) Option chain 
contracts with moneyness greater than 1. (e) Option chain 
contracts with moneyness less than − 1. (f) Option chain 
contracts with less than 5 days to maturity. (g) Option chain 
contracts with more than 90 days to maturity

Furthermore, to minimize potential biases resulting from 
last-minute price fluctuations, the study utilizes the end-of-
day closed prices as input parameters for all the models, 
instead of relying on last-traded prices. The use of closing 
prices for Nifty and Bank Index Options, along with their 
underlying assets, ensures the stability and consistency of 
the data, mitigating the impact of any temporary market 
volatility.

Finally, the filtered option chain dataset undergoes a com-
prehensive examination (Eqs. 1 and 2) to ascertain compli-
ance with lower boundary conditions, ensuring the dataset's 

adherence to the established screening criteria and further 
reinforcing the robustness of the analytical framework.

where St is the current asset price, K is the strike price, r is 
the risk-free interest rate, C(St ,t) is the call price at time t, 
and P(St ,t) is the put price at time t. If a call or Put price is 
not found to satisfy the lower boundary condition, i.e., Eqs. 1 
and 2, it is considered an invalid observation and thus dis-
carded. Table 1 provides the number of contracts excluded 
after each filter criteria applied For Nifty and Bank Nifty 
Index Options. Table 1 shows that for Nifty Index options, 
only 2–3% of the data are useful for the research, while for 
Bank Nifty Index options, 5–6% of the data are helpful for 
research, remaining is redundant.

Figure  6 (Panel A1, A2, B1, and B2) presents the 
moneyness histogram of the filtered Nifty and Bank Nifty 
call and put option contracts. Figures show a maximum 
concentration around at-the-money contracts, i.e., the most 
traded and liquid option contracts. After at-the-money, the 
concentration is higher on out-of-the-money contracts for 
Nifty Index call options. In comparison, the concentration 
is higher for Nifty Index put option contracts on the in-the-
money option side. The concentration of Bank Nifty Index 
options is the same on either side of at-the-money option 
contracts.

Based on the above analysis. For finding the pricing 
efficiency of the selected option pricing models in differ-
ent moneyness and maturity categories, the filtered data are 
categorized into five moneyness (Deep-out-of-the-Money, 
Out-of-the-Money, At-the-Money, In-the-Money, Deep-
In-the-Money) and three maturities (short, medium, long) 
categories. To categories, the option contracts falling in the 

(1)St − Ke−r(T−t) ≤ C
(
St, t

)
(forcalloptions)

(2)Ke−r(T−t) − St ≤ P
(
St, t

)
(for put options)
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moneyness region of [− 1,1] have been chosen for call and 
put option analysis. After that, segregation was performed 
based on the above moneyness-maturity criteria. For distrib-
uting the option chain across the five mentioned moneyness 
categories, the paper utilizes the normal distribution method; 
depending on the deviation across the mean of the fitted 
normal distribution, the filtered option contracts have been 
divided across the moneyness chain as per the following 
criteria.

Where SD: Standard Deviation. For segregating the 
option chain across short, medium, and long maturity option 
contracts, the time to expiration is distinguished as

After applying the above filtering criteria, the option con-
tract data set will be placed in one of 15 moneyness-maturity 
categories. Utilizing the same, the paper will find the pricing 
superiority of BS, PBS, GC, and CEV option pricing models 

−1 < Deep − Out − of − the −Money < Mean −1.5 ∗ Std. Dev

Mean −1.5 ∗ SD < Out − of − the −Money < Mean − 0.5 ∗ SD

Mean − 0.5 ∗ SD < At − the −Money < Mean + 0.5 ∗ SD

Mean + 0.5 ∗ SD < In − the −Money < Mean + 1.5 ∗ SD

Mean + 1.5 ∗ SD < Deep − In − the −Money < 1

5 Days ≤ Short Term ≤ 30 Days

30 Days < Medium Term ≤ 60 Days

60 Days < Long Term ≤ 90 Days

in each moneyness-maturity category. This would help answer 
whether a single model could be a touchstone to price the 
option contracts of all moneyness-maturity categories.

Option pricing models

This section briefly summarizes all option pricing models used 
in the paper for pricing competitiveness.

The Black–Scholes (BS) option pricing model

The model hardly needs any introduction. It is the most popu-
lar option pricing model due to its computational simplicity. 
In the model, all other parameters are directly observable from 
the market except volatility. The formula for European style 
call and put option (Eqs. 3 and 4) contract on a stock paying 
no dividends is defined as

Where C and P denote the price of a call and put option, 
S denotes the underlying Index price, K denotes the option 
exercise price, t is the time to expiry in years, r is the risk-free 
rate of return, N(d) is the standard normal distribution func-
tion, and �2 is the variance of returns on the Index. The d1 and 
d2 are defined as

Although the model revolutionized the trading of options 
across the globe, its practical untenable theoretical shortcom-
ings, mainly the assumption that volatility is constant over 
the life of the option and underlying asset price follow a log-
normal distribution, inspired researcher to look for alternative 
volatility models as an input in BS and advance option pricing 
models improving its pricing bias. Singh and Ahmad (2011b, 
2011c) tested the performance of the BS model using a set of 
GARCH family volatility models and VIX. The paper shows 
that the VIX version of BS models outperforms the GARCH 
versions.

The practitioner Black–Scholes (PBS) model

The parabolic smile shape of the Black–Scholes implied 
volatility and its dependence on moneyness and maturity 
has motivated researchers to model implied volatility as a 

(3)CBS = SN(d1) − Ke−rtN(d2)

(4)PBS = Ke−rtN
(
−d2

)
− SN(−d1)

(5)d1 =
ln[S∕K] + [r + 0.5�2]t

�
√
t

(6)d2 =
ln[S∕K] + [r − 0.5�2]t

�
√
t

= d1 − �
√
t

Table 1  Filter Statistics of Nifty and Bank Nifty Index Options

For Bank Nifty Index Options, daily trading filtering criteria is < 
10000

Filter Statistics of Nifty and Bank Nifty Index Options

Nifty Index 
Options

Bank Nifty 
Index Options

Call Put Call Put

Total Call Contracts 2929116 2928479 991365 991365
Filtering Criteria
No Trading Volume/Open 

Interest
2341494 2254259 785403 786167

Daily Trading Open Interest 
< 50K

390062 481186 120945 118610

No Change in Open Interest 81584 91073 1968 2688
Maturity < 5 Days 12356 11107 24997 26224
Maturity > 90 Days 18606 15278 0 1
Moneyness < − 1 0 11 0 0
Moneyness > 1 539 0 0 0
No Arbitrage Relationship 20157 17938 46 23
Rejected Data 2864798 2870852 933359 933713
Rejected Data (%) 97.80 98.03 94.15 94.18
Remaining Data 64318 57627 58006 57652
Remaining Data (%) 2.20 1.97 5.85 5.82
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quadratic function of moneyness and maturity. Dumas et al. 
(1998) describe this as the deterministic volatility func-
tion (DVF). In the Indian context, several linear and quad-
ratic versions of the DVF model have been tested by Singh 
(2013a). Based on the outcome of the same, and for the ease 
of implementation, from the several possible specifications 
of DVFs, we have considered only one, defined as 

where σiv = BS implied volatility, K = strike price, T = 
time to maturity and a0, a1, a2, a3, a4, a5 are model param-
eters. Each of these specifications stipulates a different 

(7)�iv = a0 + a1K + a2K
2 + a3T + a4T

2 + a5KT

form of the volatility function. The PBS is a special case of 
Black–Scholes.

The Gram–Charlier (GC) model

To account for the impact of excess skewness and kurto-
sis of the underlying asset into the option price, Backus 
et al. (2004) developed a model popularly known as GC. 
The model uses the framework of Gram–Charlier distribu-
tion. For option pricing modeling, while allowing nonzero 
skewness and excess kurtosis, the GC distribution retains 
the tractability of the normal distribution. Their formula for 
pricing the call option is
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where �(x) is the standard normal density function, �(k)(x) 
is the kth derivative of �(x) , �1,t and �2,t denotes the t-period 
excess skewness and kurtosis, respectively, R is continu-
ously compounded n-period interest rate, d is identical to 
that of BS formula, and K is the strike price of the option. 
In the case of zero excess skewness and kurtosis, the terms 
inside the square brackets in (1) become zero, and the GC 
formula for the call price reduces to Black–Scholes.

The constant elasticity of variance (CEV) model

To incorporate the empirical evidence that the returns to 
stock and its volatility are correlated with each other, Cox 
(1975) and Cox and Ross (1976) proposed an option pricing 
model popularly known as constant elasticity of variance 
(CEV) model. The model is complex enough to allow for 
changing volatility and simple enough to provide a closed-
form solution for options with only two parameters. Ema-
nuel and MacBeth (1982) and Singh et al. (2011a) tested 
the empirical performance of the CEV and BS model. The 
formula developed by Cox and Ross (1976) is simplified 
further by Schroder (1989). Schroder (1989) expressed the 
CEV call option pricing formula in terms of the noncentral 
Chi-square distribution:

When �<2,

When �>2,

Q(z;v, k) is a complementary noncentral Chi-square distri-
bution function with z,v , and k being the evaluation point of 
the integral, degree of freedom, and non-centrality, respec-
tively, where

C is the call price; S is the stock price; � is the time to 
maturity; r is the risk-free rate of interest; K is the strike 
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price; � and � are the parameters of the formula. The evalu-
ation of the infinite sum of each noncentral Chi-square dis-
tribution can be computationally slow when neither z or k 
are too large.

Methodology

In all the models selected for the current research, except 
parameters that are directly available from market quotes 
like strike price, underlying index price, time to expiry, and 
risk-free interest rates, all other parameters are required to 
estimate daily. The model’s parameters are updated on a 
daily basis, i.e., estimated for each day option chain. The 
estimation of the model’s parameters is done using the 
nonlinear least squares (NLLS) method, which requires a 
modest optimization technique. The following optimization 
function is used.

where n is the number of data points in a single-day option 
chain, this helps incorporate the market feedback into model 
prices, i.e., the set of present-day information for next-day 
price estimation. The procedures followed here represent 
a substantial generalization of the widespread mechanism 
of obtaining implied parameters from market data. The 
best-known algorithms for multidimensional unconstrained 
optimization are the Nelder–Mead Simplex search method 
(Nelder and Mead 1965). The method belongs to the gen-
eral class of direct search methods (Kolda et al. 2003). The 
method is simple and easy to use. Its fast approximation to 
achieve local minima makes it favorable for higher com-
putation. In the present case, the same algorithm has to be 
iterated across the entire dataset; thus, eventually, for each 
day option chain, the optimization is run, thus consuming 
execution time. As the overall dataset consists of a day-to-
day option chain, thus the final objective function, better 
termed the performance metric, is quite sensitive to initial 
parameters. Thus, it requires tuning. For the same, the par-
ticle swarm optimization method algorithm is used. The 
particle swarm optimization algorithm is an evolutionary 
algorithm with reasonable accuracy. The algorithm proposed 
by Kennedy and Eberhart is a metaheuristic algorithm based 
on the concept of swarm intelligence capable of solving 
complex mathematics problems existing in engineering. 
Additionally, as the technique utilizes liquid market option 
prices, the same helps minimize the pricing bias resulting 
from market attributes like low liquidity and overwriting 
deep-in-the-money and deep-out-the-money options by the 
contract writers.

(14)f (�) = min
�

∑n

i=1

(
CObserved − CComputed

)2
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Parameter estimation

The unknown parameters of all selected option pricing mod-
els are extracted using the respective pricing formula. This 
must be done numerically for all the models, as the formu-
las cannot be directly solved for unknown parameters. In 
order to find the unknown parameters numerically, we have 
used the objective function f(w), defined as the squared loss 
function.

The value of the set of parameters is the value that pro-
duces zero difference between the observed price and the 
model price. Squaring the difference ensures that a mini-
mization algorithm such as the Nelder–Mead or particle 
swarm does not produce large negative values for f(w). Due 
to their deterministic nature and only one unknown param-
eter which needs to be estimated, implementing the BS and 
PBS Models is straightforward. For PBS, we need to choose 
an appropriate deterministic volatility function first and then 
need to estimate its parameters (Singh 2013a, 2013b, 2013c; 
Singh and Pachouri 2013a, 2013b, Singh 2014b). To find 
the parameters of the PBS model, the objective function f 
(w) is defined as

Parameters of the GC model are inferred using the fol-
lowing objective function, defined as

Parameters of the CEV model are inferred using the fol-
lowing objective function, defined as

Applying the above, parameter estimates of models 
were obtained. The volatility and other parameter estimates 
obtained for the current day are then used to value the next 
day’s options. To see how well a model performs, we will 
look at the relative price error generated by the model con-
cerning the market. A negative/positive relative price error 
would mean that the model either underprices or overprices 
the specific option contract. The degree of relative error will 
help us know whether the model approximates the market. A 
sizeable relative error would mean the model is providing a 
poor approximation to the market. To know the comparative 
competitiveness of option pricing models, the paper utilizes 
the concept of following two performance metrics,

Average Price Error
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Mean Absolute Price Error

Where n is the total number of observations in the com-
plete dataset. CComputed

i
 is the predicted price of the option, 

CObserved
i

 is the actual market price, observed from the NSE 
trading data platform. Using this concept, instead of argu-
ing the correctness of a particular model, we focus on their 
relative pricing competence with respect to out-of-sample 
market price.

Empirical analysis

Implied volatility analysis

Tables 2, 3, 4, 5 present the implied volatility's relation-
ship with the time to maturity and moneyness across the 
comprehensive sample dataset of Nifty and Bank Nifty 
Index call and put options. The average implied volatility 
values outlined in these tables reveal a systematic variation 
relative to the time to moneyness, demonstrating a clear 
trend where the implied volatility progressively increases 
on either side of the at-the-money (ATM) position, notably 
from ATM to deep out-of-the-money (DOTM) and from 
ATM to deep in-the-money (DITM) options. This finding 
is consistent with existing empirical evidence and con-
firms the existence of a smile/smirk pattern within Nifty 
and Bank Nifty Index option contracts. The magnitude of 
implied volatility suggests potential underpricing of short-
term DOTM and overpricing of long-term DOTM options 
under the Black–Scholes (BS), Practitioners Black Scholes 
(PBS), and Garman–Kohlhagen (GC) models for both 
Nifty and Bank Nifty contracts. Furthermore, it indicates 
that the BS and PBS models may result in the underpricing 
of short-term DITM options and the overpricing of long-
term DITM options, with a similar trend potentially appli-
cable to all other moneyness-maturity groups. Notably, the 
tables also demonstrate that the implied volatility experi-
ences the most significant increase for long-term options 
concerning the exercise price, suggesting that long-term 
DITM and DOTM options might be subject to substantial 
mispricing under the Garman–Kohlhagen and constant 
elasticity of variance (CEV) models. The subsequent sec-
tion serves to validate these observations.
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Table 2  Implied Volatility 
Statistics of Nifty Index Call 
Options (Sample Period-15 
January 2009 to 30 July 2020)

Model Name DOTM OTM ATM ITM DITM Overall

BS Average 0.209 0.159 0.156 0.166 0.169 0.172
Std. Dev. 0.113 0.066 0.066 0.071 0.072 0.078

PBS Average 0.268 0.182 0.2 0.27 0.272 0.238
Std. Dev. 0.135 0.071 0.079 0.113 0.308 0.141

CEV Average 0.24 0.168 0.167 0.198 0.292 0.213
Std. Dev. 0.304 0.388 0.502 0.342 0.498 0.407

GC Average 0.223 0.162 0.158 0.167 0.17 0.176
Std. Dev. 0.16 0.084 0.082 0.089 0.088 0.101

Total 11370 18534 15949 8011 10454 64318

Table 3  Implied Volatility 
statistics of Nifty Index Put 
Options

Model Name DOTM OTM ATM ITM DITM Overall

BS Average 0.247 0.204 0.183 0.202 0.257 0.219
Std. Dev. 0.096 0.08 0.069 0.08 0.141 0.093

PBS Average 0.536 0.309 0.172 0.089 0.113 0.244
Std. Dev. 0.202 0.112 0.086 0.113 0.271 0.157

CEV Average 0.653 0.401 0.18 0.291 0.292 0.363
Std. Dev. 0.16 0.26 0.155 0.281 0.213 0.214

GC Average 0.26 0.215 0.193 0.216 0.291 0.235
Std. Dev. 0.119 0.1 0.086 0.104 0.206 0.123

Total 3310 12834 26983 10857 3643 57627

Table 4  Implied Volatility 
statistics of Bank Nifty Index 
Call Options

Model Name DOTM OTM ATM ITM DITM Overall

BS Average 0.256 0.19 0.184 0.2 0.205 0.207
Std. Dev. 0.121 0.08 0.079 0.093 0.105 0.096

PBS Average 0.293 0.205 0.204 0.235 0.299 0.247
Std. Dev. 0.148 0.081 0.084 0.104 0.183 0.120

CEV Average 0.229 0.193 0.187 0.217 0.295 0.224
Std. Dev. 0.18 0.187 0.19 0.195 0.16 0.182

GC Average 0.278 0.201 0.194 0.214 0.22 0.221
Std. Dev. 0.164 0.105 0.116 0.149 0.154 0.138

Total 14630 15838 15322 5726 6490 58006

Table 5  Implied Volatility 
statistics of Bank Nifty Index 
Put Options

Model Name DOTM OTM ATM ITM DITM Overall

BS Average 0.271 0.222 0.208 0.208 0.252 0.232
Std. Dev. 0.135 0.093 0.082 0.083 0.129 0.104

PBS Average 0.369 0.254 0.208 0.172 0.151 0.231
Std. Dev. 0.172 0.09 0.081 0.091 0.18 0.123

CEV Average 0.226 0.283 0.247 0.117 0.166 0.208
Std. Dev. 0.19 0.098 0.203 0.184 0.284 0.192

GC Average 0.279 0.229 0.214 0.213 0.266 0.240
Std. Dev. 0.162 0.108 0.094 0.097 0.156 0.123

Total 10232 9716 15235 13948 8521 57652
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Pricing performance analysis

Average price error statistics of Nifty and Bank Nifty Index 
options

The results of this section reveal nuanced patterns for 
Nifty Index call option contracts, where all models con-
sistently underprice short-term deep out-of-the-money 
(DOTM) and out-of-the-money (OTM) option contracts. 
However, the degree of underpricing is notably higher 
for DOTM contracts compared to OTM contracts. Con-
versely, the remaining three categories of option contracts, 
namely at-the-money (ATM), in-the-money (ITM), and 
deep in-the-money (DITM), are consistently found to be 
overpriced by the models. Notably, the degree of overpric-
ing for ATM contracts surpasses that of ITM, followed 
by DITM contracts. The minimal pricing error observed 
for DITM option contracts primarily stems from their 
higher intrinsic value and low time value, contributing 
to a reduced degree of price error. Conversely, DOTM 
and OTM option contracts lack intrinsic value and exhibit 
an exceptionally low time value, leading the models to 
underprice these contracts. Traders and participants often 
attempt to sell DOTM and OTM contracts at rates lower 
than the norm, whereas the inverse holds for ITM and 
DITM option contracts. Additionally, the degree of trading 
volume associated with these contracts justifies the under-
pricing of DOTM and OTM contracts, and the overpricing 
of ITM and DITM option contracts. As ATM contracts 
represent the most liquid contracts with a consistently high 
probability of expiring in-the-money, sellers of these con-
tracts consistently demand a higher premium. The Practi-
tioners Black–Scholes (PBS) model demonstrates the low-
est pricing error for DOTM and OTM contracts, while the 
Black–Scholes (BS) model exhibits superior performance 
for ATM, ITM, and DITM option contracts. In the medium 
term, all contracts are identified as overpriced by the 
models, with the degree of pricing error decreasing from 
DITM to OTM option contracts. Specifically, the higher 
premium demanded by sellers of OTM contracts to offset 
the risk of conversion to ITM, due to increased time value, 
could account for the overpricing observed. The constant 
elasticity of variance (CEV) model presents the lowest 
price error for DOTM and OTM contracts, while the BS 
model continues to excel for the other three categories of 
option contracts. Concerning long-term option contracts, 

all contracts demonstrate overpricing by the models. How-
ever, a declining trend in the degree of pricing error is 
observed from DOTM to DITM contracts, with DOTM 
contracts exhibiting the highest price error, followed by 
OTM, ATM, ITM, and DITM contracts. The overpricing 
can be attributed to the potential scenario where call buy-
ers exercise the contract, leading call sellers without the 
stocks to fulfill delivery obligations at elevated prices, 
resulting in significant losses. Consequently, these sell-
ers demand higher premiums to mitigate these risks. The 
prevalent high time value of money further contributes to 
the observed overpricing for these contracts. Additionally, 
the limited trading volume, indicative of reduced buyer 
participation, contributes to the heightened price error. 
Within this category, the Garman–Kohlhagen (GC) model 
demonstrates the lowest price error for DOTM and OTM 
contracts, while the Black–Scholes model continues to 
demonstrate superior performance for the other three cat-
egories of option contracts. Descriptive statistics for the 
model exhibiting the lowest average price error within the 
specific moneyness-maturity category for Nifty Index call 
option contracts are presented in Table 6.

Regarding Nifty Index Put Option contracts, the models 
are observed to consistently underprice all option con-
tracts, except for in-the-money (ITM) contracts. This trend 
persists across short, medium, and long-term option con-
tracts, with the highest degree of underpricing noted for 
deep out-of-the-money (DOTM) contracts, followed by 
out-of-the-money (OTM), at-the-money (ATM), and deep 
in-the-money (DITM) options. One potential explanation 
for this trend could be that put sellers maintain sufficient 
funds to purchase the stock from the put buyers, anticipat-
ing that the contract will only be exercised when the index 
or stock price falls below the strike price. This approach 
allows them to offset any losses with the lower prices of 
the index or stock. Additionally, given the higher like-
lihood of ITM contracts transitioning to ATM or DITM 
status, sellers of these contracts demand a higher risk pre-
mium from buyers, resulting in overpricing. The degree 
of pricing error is noted to increase from short-maturity 
to long-maturity contracts, although the degree of change 
is gradual. In the short term, Practitioners Black–Scholes 
(PBS) demonstrates consistent performance across all cat-
egories of option contracts, except for DITM, where the 
Black–Scholes (BS) model proves superior. For medium 
and long maturities, PBS performs better for DOTM and 

Table 6  Descriptive Statistics 
of the Model Providing Lowest 
Average Price Error for Nifty 
Index Call Options

DOTM OTM ATM ITM DITM

Short Term PBS (− 5.433) PBS (− 0.979) BS (0.305) BS (0.086) BS (0.055)
Medium Term CEV (− 1.068) CEV (0.719) BS (0.154) BS (0.128) BS (0.108)
Long Term GC (0.437) GC (0.043) BS (0.182) BS (0.130) BS (0.018)
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OTM contracts, while showcasing competitive perfor-
mance for the remaining three categories, namely ATM, 
ITM, and DITM. Descriptive statistics for the model 
offering the lowest average price error within the specific 
moneyness-maturity category for Nifty Index put option 
contracts are presented in Table 7.

The findings regarding Bank Nifty call index options 
reveal a mixed pattern. Specifically, the short-term at-the-
money (ATM), out-of-the-money (OTM), and deep out-
of-the-money (DOTM) contracts consistently demonstrate 
underpricing across all models, while in-the-money (ITM) 
and deep in-the-money (DITM) option contracts are con-
sistently observed to be overpriced by the models. Notably, 
the degree of underpricing for Bank Nifty call contracts is 
comparatively lower in contrast to Nifty Index call contracts. 
Conversely, both medium- and long-term option contracts 
are consistently overpriced across all models. In the medium 
term, the degree of overpricing is observed to decline from 
DOTM to DITM options, with DOTM options exhibit-
ing the highest degree of overpricing, followed by OTM, 
ATM, ITM, and DITM options. A similar trend is noted 
for long-term maturity contracts, with the exception of ITM 
contracts. This divergence could be attributed to the com-
bination of low trading volume and heightened volatility. 
The Black–Scholes (BS) model demonstrates the highest 
accuracy, indicated by the lowest price error, for short-matu-
rity option contracts. In contrast, the constant elasticity of 
variance (CEV) model prevails for medium-term contracts, 
while the Garman–Kohlhagen (GC) model is preferred for 
long-term contracts. Descriptive statistics for the model dis-
playing the lowest average price error within the specific 
moneyness-maturity category for Bank Nifty Index call 
option contracts are provided in Table 8.

The pricing dynamics for Bank Nifty Index put option 
contracts also exhibit a mixed trend. Short-term Bank Nifty 
Index put contracts align closely with Bank Nifty Index call 
contracts. However, a precisely opposite pricing pattern 
emerges for medium- and long-term contracts. Notably, in 
the medium term, with the exception of in-the-money (ITM) 

contracts, all other contracts are consistently undervalued. 
The degree of underpricing is most pronounced for deep 
out-of-the-money (DOTM) contracts, followed by out-of-
the-money (OTM), at-the-money (ATM), and deep in-the-
money (DITM) contracts. Similarly, for the long term, all 
contracts demonstrate underpricing across the models, with 
the degree of underpricing intensifying from ITM to DOTM 
contracts. In contrast to Bank Nifty Index call options, the 
Practitioners Black–Scholes (PBS) model is identified as the 
most accurate in pricing Bank Nifty Index put option con-
tracts with the lowest pricing error. For long and medium 
option contracts, the GC model emerges as the preferred 
choice. Descriptive statistics for the model presenting the 
lowest average price error within the specific moneyness-
maturity category for Bank Nifty Index put option contracts 
are furnished in Table 9.

Mean absolute price error statistics of Nifty and Bank Nifty 
Index options

The findings in this section present the mean absolute pric-
ing error (MAPE) for call and put options across Nifty 
index and Bank Nifty Index option contracts. Notably, for 
short-maturity Nifty Index call options, the Practitioners 
Black–Scholes (PBS) model demonstrates the lowest pric-
ing error, exhibiting the least pricing discrepancies across 
all moneyness categories, namely, deep out-of-the-money 
(DOTM), out-of-the-money (OTM), at-the-money (ATM), 
in-the-money (ITM), and deep in-the-money (DITM) con-
tracts. Conversely, the constant elasticity of variance (CEV) 
model yields the lowest pricing error for medium and long-
term contracts across all maturities. Within the short-matu-
rity category, the pricing error decreases from DOTM to 
DITM contracts, primarily driven by heightened volatility 
resulting from sell-side pressure among buyers attempting 
to salvage remaining time value in contracts failing to transi-
tion to ITM or DITM. However, the standard deviation of 
error for OTM options is notably higher, attributable to their 
increased trading volume. A similar trend is observed for 

Table 7  Descriptive Statistics 
of the Model Providing Lowest 
Average Price Error for Nifty 
Index Put Options

DOTM OTM ATM ITM DITM

Short Term PBS (− 1.548) PBS (− 1.239) PBS (− 0.562) PBS (0.070) BS (− 0.020)
Medium Term PBS (− 2.059) PBS (− 0.257) BS (− 0.568) BS (0.047) BS (− 0.033)
Long Term PBS (− 0.160) PBS (− 2.264) BS (− 0.212) BS (0.201) BS (− 0.029)

Table 8  Descriptive Statistics 
of the Model Providing Lowest 
Average Price Error for Bank 
Nifty Index Call Options

DOTM OTM ATM ITM DITM

Short Term BS (− 0.425) BS (− 0.087) BS (− 0.228) BS (0.095) BS (0.046)
Medium Term CEV (0.877) CEV (0.514) CEV (0.429) CEV (0.395) CEV (0.338)
Long Term GC (4.530) GC (3.182) GC (2.227) GC (3.795) GC (1.528)
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medium-term option contracts, with the pricing error follow-
ing a downward trajectory from DOTM to DITM contracts, 
although the standard deviation of error for DOTM contracts 
is relatively higher. This could be attributed to the compara-
tively lower trading volume of DOTM contracts, leading 
to substantial bid-ask price disparities. Interestingly, apart 
from the CEV model, all models exhibit comparable pricing 
errors across different maturities. In the case of long-term 
option contracts (expiring in more than 60 days), a pattern 
akin to the medium-term contracts is observed, where the 
pricing error for ITM and DITM contracts increases from 
short to long-term, whereas for OTM and DOTM contracts, 
the error decreases, with the exception of the Black–Scholes 
(BS) model. This asymmetry is attributed to buyers' reluc-
tance to close positions on certain contracts, leading to 
amplified bid-ask prices and subsequent pricing errors. In 
contrast, sellers of OTM and DOTM contracts are inclined 
to swiftly close positions to prevent their conversion to ATM 
or ITM status before contract expiry, resulting in signifi-
cant pricing discrepancies. The descriptive statistics for the 
model exhibiting the lowest mean absolute price error in the 
specific moneyness-maturity category for Nifty Index call 
option contracts are provided in Table 10.

The observed pattern for Nifty Index call option contracts 
is largely echoed in Nifty Index put option contracts. Specifi-
cally, the Practitioners Black–Scholes (PBS) model emerges 
as the top performer for short-term contracts, including deep 
out-of-the-money (DOTM), out-of-the-money (OTM), 
and at-the-money (ATM) options. Conversely, for in-the-
money (ITM) and deep in-the-money (DITM) contracts, the 
Black–Scholes (BS) model demonstrates the most favora-
ble price performance. Notably, in this category, the BS, 

constant elasticity of variance (CEV), and Gram–Charlier 
(GC) models exhibit closely contested pricing biases. For 
medium- and long-term contracts, the PBS model con-
tinues to exhibit superior performance, consolidating its 
position as the clear frontrunner. Across in-the-money and 
deep in-the-money option contracts, all models perform 
comparably, with no significant performance discrepancies 
observed. In the context of Nifty Index put option contracts, 
Table 11 offers descriptive statistics for the model showcas-
ing the lowest mean absolute price error within the specific 
moneyness-maturity category.

In the context of Bank Nifty Index call options, the 
short-maturity contracts exhibit superior performance with 
the Practitioners Black–Scholes (PBS) model. Conversely, 
for medium- and long-term maturities, the Gram-Charlier 
(GC) model effectively mitigates price biases across all 
moneyness categories. Additionally, mirroring the trend 
observed in Nifty index call options, the pricing error 
diminishes from deep out-of-the-money (DOTM) to deep 
in-the-money (DITM) contracts. Notably, the degree of price 
bias for in-the-money (ITM) and deep in-the-money option 
contracts remains relatively consistent across all moneyness 
maturities for all models. The detailed descriptive statistics 
for the model exhibiting the lowest mean absolute price error 
within the specific moneyness-maturity category for Bank 
Nifty Index call option contracts are presented in Table 12.

The outcomes pertaining to Bank Nifty Index put options 
mirror those observed for Nifty Index put options. Notably, 
the Practitioners Black–Scholes (PBS) model demonstrates 
the highest pricing accuracy across all moneyness-maturity 
contracts. Similar to Nifty Index put options, an escalation 
in price error is evident for in-the-money (ITM) and deep 

Table 9  Descriptive Statistics 
of the Model Providing Lowest 
Average Price Error for Bank 
Nifty Index Put Options

DOTM OTM ATM ITM DITM

Short Term PBS (− 2.758) PBS (− 1.751) PBS (− 0.410) PBS (0.640) PBS (− 0.035)
Medium Term GC (− 2.092) GC (− 1.133) GC (− 0.213) GC (0.165) GC (− 0.041)
Long Term GC (− 1.899) GC (− 1.147) GC (− 1.067) GC (− 0.453) GC (− 0.049)

Table 10  Descriptive Statistics 
of the Model Providing Lowest 
Mean Absolute Price Error for 
Nifty Index Call Options

DOTM OTM ATM ITM DITM

Short Term PBS (5.807) PBS (3.077) PBS (1.117) PBS (0.239) PBS (0.139)
Medium Term CEV (5.982) CEV (2.572) CEV (0.517) CEV (0.287) CEV (0.196)
Long Term CEV (4.127) CEV (1.426) CEV (0.451) CEV (0.283) CEV (0.240)

Table 11  Descriptive Statistics 
of the Model Providing Lowest 
Mean Absolute Price Error for 
Nifty Index Put Options

DOTM OTM ATM ITM DITM

Short Term PBS (2.892) PBS (2.808) PBS (2.262) BS (0.360) BS (0.123)
Medium Term PBS (4.562) PBS (3.164) PBS (1.049) PBS (0.405) PBS (0.156)
Long Term PBS (3.543) PBS (2.746) PBS (1.040) PBS (0.502) PBS (0.277)
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in-the-money (DITM) contracts from short- to long-term 
maturities, while a decline in price error is observed for 
deep out-of-the-money (DOTM), out-of-the-money (OTM), 
and at-the-money (ATM) contracts over the same maturity 
period. The descriptive statistics for the model exhibiting 
the lowest mean absolute price error within the specific 
moneyness-maturity category for Bank Nifty Index put 
option contracts are presented in Table 13.

The statistical findings presented above highlight a nota-
ble challenge in finding a single model that adequately prices 
Nifty and Bank Nifty Index call and put option contracts 
across fifteen distinct moneyness and maturity categories. 
Despite this, the Black–Scholes (BS) and Practitioners 
Black–Scholes (PBS) models emerge as favorable options 
for estimating the prices of these option contracts, standing 
out against the Gram–Charlier (GC) and constant elasticity 
of variance (CEV) models. The study's results align with and 
validate findings from previous research. Rubinstein (1985) 
conducted Nonparametric Tests of Alternative Option Pric-
ing Models on the 30 Most Active CBOE Option Classes 
from August 23, 1976, through August 31, 1978. His study 
revealed that short-maturity out-of-the-money calls are 
priced significantly higher relative to other calls than the 
Black–Scholes model would predict. Additionally, the study 
found striking price biases relative to the Black–Scholes 
model, which were statistically significant but reversed 
themselves after long periods of time. These results suggest 
that no single option pricing model developed thus far seems 
likely to explain this reversal. Singh and Pachori (2013b) 
extended this understanding during the period 2007–2009, 
finding that the quadratic version of the PBS consistently 
outperformed other models for both error metrics and across 
various moneyness/time-to-maturity buckets. This trend is 
further supported by Singh’s (2013a, 2013b) study con-
ducted for the period 2006–2011, where it was observed that 
the PBS approach significantly outperforms the traditional 
Black–Scholes model in most moneyness-maturity groups. 
The robustness and applicability of the BS and PBS models 
lie in their analytical simplicity, contributing significantly 

to their consistent performance. Singh (2015b) focused on 
the quest for an impeccable option-pricing model that could 
meet the requirements of option traders and practitioners 
during tumultuous periods in the future. However, his find-
ings concluded that no model completely replicates market 
prices. This resonates with the current study's acknowledg-
ment of the limitations of any single model in accurately 
pricing options across diverse moneyness and maturity cat-
egories. In summary, the study's results underscore the com-
plexity of option pricing, revealing the inadequacy of any 
single model to cover the nuances of Nifty and Bank Nifty 
Index options across various moneyness and maturity clas-
sifications. Despite this, the Black–Scholes and Practitioners 
Black–Scholes models stand out as reliable options, in line 
with earlier research. The recognition of the limitations of 
existing models aligns with the broader understanding in the 
literature that no single model can entirely replicate market 
prices under all conditions. This collective body of research 
emphasizes the ongoing need for exploration, refinement, 
and understanding of various option pricing models to better 
navigate the complexities of financial markets.

Conclusion

Using data from the two most popular option instruments, 
namely Nifty and Bank Nifty call and put option contracts, 
this study conducts extensive empirical analysis to evalu-
ate the pricing performance of four fundamental determin-
istic option pricing models during the period from 2009 
to 2020, excluding the turbulent year of 2008 to mitigate 
significant pricing errors. Our empirical findings indicate 
that no single model consistently outperforms the others 
across different moneyness-maturity groups, with none 
fully replicating market prices. Notably, the Practition-
ers Black–Scholes (PBS) option pricing model, leverag-
ing volatilities obtained from the Black–Scholes model 
implied by market option prices, exhibits improved pricing 
accuracy compared to the other models. This enhancement 

Table 12  Descriptive Statistics 
of the Model Providing Lowest 
Mean Absolute Price Error for 
Bank Nifty Index Call Options

DOTM OTM ATM ITM DITM

Short Term PBS (2.682) PBS (2.246) PBS (0.915) PBS (0.546) PBS (0.334)
Medium Term GC (3.347) GC (1.708) GC (1.020) GC (0.630) GC (0.513)
Long Term GC (5.649) GC (4.285) GC (2.737) GC (3.795) GC (1.620)

Table 13  Descriptive Statistics 
of the Model Providing Lowest 
Mean Absolute Price Error for 
Bank Nifty Index Put Options

DOTM OTM ATM ITM DITM

Short Term PBS (2.151) PBS (1.437) PBS (1.288) PBS (1.227) PBS (0.405)
Medium Term PBS (1.991) PBS (1.657) PBS (1.071) PBS (1.283) PBS (0.454)
Long Term PBS (1.899) PBS (1.923) PBS (1.475) PBS (1.441) PBS (1.212)
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is primarily attributed to the PBS model's capacity to 
simultaneously capture information from both historical 
asset prices and current option prices. Internal parameter 
consistency analysis reveals the PBS and Constant Elastic-
ity of Variance (CEV) models to be the least misspecified, 
while pricing errors for deep out-of-the-money (DOTM) 
and out-of-the-money (OTM) options are higher for the 
Black–Scholes (BS) and Garman–Kohlhagen (GC) models 
and lower for the PBS and CEV models. Moreover, our 
results suggest that the PBS and CEV models are most 
effective in pricing short- and medium-term in-the-money 
(ITM) and deep in-the-money (DITM) Nifty index and 
Bank Nifty Index call and put options. Notably, the PBS 
model reduces the BS pricing bias by 10–20%, but its per-
formance does not significantly surpass that of the GC 
and CEV models. While the computational complexity of 
the CEV and GC models may pose challenges, the study 
recommends the utilization of the BS and PBS models for 
pricing Nifty index options due to their simplicity, with 
the CEV and GC models serving as viable alternatives. 
Additionally, traders can leverage the BS and PBS mod-
els for forecasting option prices of the Nifty index and 
Bank Nifty Index call and put options, thereby capital-
izing on the price differentials between the model and the 
market by strategically establishing an arbitrage position. 
The study underscores the absence of a one-size-fits-all 
model, emphasizing the necessity of developing a tailored 
model that accounts for the distributional characteristics 
of option chains within the Indian derivative market. This 
customization entails the examination and incorporation of 
higher moments into the Black–Scholes model, as well as 
the evaluation of stochastic models with volatility jumps 
as a potential solution to address asymmetry issues. How-
ever, it is imperative to conduct cross-comparisons with 
deterministic models, warranting the development of a 
more tailored algorithm to minimize error in option pric-
ing. As the ongoing advancements in technology and the 
increasing interconnectedness of global financial mar-
kets introduce new dimensions of risk and uncertainty, 
demanding a comprehensive evaluation of the performance 
of option pricing models in addressing these complexities 
is the need of time. Empirical investigation is imperative 
in identifying any potential limitations or biases in the 
existing models and in facilitating the development of 
more robust frameworks that can better account for the 
intricacies of modern financial systems. Future work may 
facilitate the identification of potential market anomalies 
or pricing inefficiencies that may arise due to technologi-
cal advancements or regulatory changes, providing crucial 
insights for the refinement and enhancement of these mod-
els to better reflect current market dynamics.
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