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Abstract
We introduce a robust regression estimator for time series factor models called the mOpt estimator. This estimator minimizes 
the maximum bias due to outlier generating distribution deviations from a standard normal errors distribution model, and at 
the same time has a high normal distribution efficiency. We demonstrate the efficacy of the mOpt estimator in comparison 
with the non-robust least squares (LS) estimator in applications to both single factor and multifactor time series models. For 
the case of single factor CAPM models we compared mOpt and LS estimates for cross sections of liquid stocks from the 
CRSP database in each contiguous two-year interval from 1963 to 1980. The results show that absolute differences between 
the two estimates greater than 0.3 occur for about 18% of the stocks, and differences greater than 0.5 occur for about 7.5% 
of the stocks. Our application of the mOpt estimator to multifactor models focuses on fitting the Fama-French 3-factor and 
the Fama-French-Carhart 4-factor models to weekly stock returns for the year 2008, using both the robust t-statistics associ-
ated with the mOpt estimates and a new statistical test for differences between the mOpt and LS coefficients. The results 
demonstrate the efficacy of the mOpt estimator in providing better model fits than the LS estimates, which are adversely 
influenced by outliers. Finally, since model selection is an important aspect of time series factor model fitting, we introduce 
a new robust prediction errors based model selection criterion called the Robust Final Prediction Error (RFPE), which makes 
natural use of the mOpt regression estimator. When applied to the 4-factor model, the RFPE finds as the best subset model 
the one that contains the Market, SMB and MOM factors, not the three Fama-French factors Market, SMB and HML. We 
anticipate that RFPE will prove to be quite useful for model selection of time series factor models.

Keywords Robust regression · Time-series factor models · Betas · Factor returns · Bias · Variance · Efficiency · Model 
selection

Introduction

The purpose of this paper is to introduce and encourage the 
use of a theoretically motivated and intuitive robust regres-
sion estimator for asset factor models, as a standard practice 
complement to the universal use of least squares to fit factor 
models. While the robust estimator proposed is equally use-
ful for cross section and time series factor models, we focus 
in this paper on demonstrating the estimator’s value in the 
context of time series factor models.

In data oriented terms, a robust regression estimator is 
one that is not much influenced by outliers and that provides 

a good fit to the bulk of the data. In spite of the fact that 
least squares (LS) is a best linear unbiased estimator (BLUE) 
and a maximum-likelihood estimator (MLE) in the case of 
normally distributed errors, the minimization of a quadratic 
function of the residuals causes least squares to be quite 
lacking in such robustness. A small fraction of highly influ-
ential outliers often results in least squares regressions anal-
ysis conclusions that are quite misleading about the relation-
ship between stock returns and explanatory factors, and on 
the other hand a robust regression that controls for outliers 
can lead to a clear understanding of the relationship for the 
large majority of the data.

Over several decades, a body of knowledge about the 
statistical properties and computational methods for vari-
ous robust regression methods has accumulated in the 
academic statistics research literature, with the books by 
Hampel et al. (1986), Rousseeuw and Leroy (1987), the 
Huber and Ronchetti (2009) second edition of Huber (1981), 
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and Maronna et al. (2019) being the primary references. 
However, this good news is counter-balanced by the bad 
news that today there are simply too many different types of 
robust regression estimators, including not only maximum-
likelihood type M-estimators and MM-estimators discussed 
herein, but other distinct families of estimators such as 
the Rousseeuw least-trimmed-squares (LTS) discussed in 
Rousseeuw and Leroy (1987) and used by Knez and Ready 
(1997), and bounded-influence estimators. Furthermore, 
even the best known and most frequently used family of 
regression M-estimator has far too many variants based on 
different choices of optimization loss function. For example, 
the SAS software product offers 10 M-estimator variants 
with names: Andrews, Bisquare, Cauchy, Fair, Hampel, 
Huber, Logistic, Median, Talworth, Welsch.1 It is therefore 
not surprising that there is currently no consensus what-
so-ever concerning which robust regression estimator one 
should use, even within the family of regression M-estima-
tors. Correspondingly there is not a common benchmark 
method for comparison purposes, as there is in the case of 
least squares. It seems clear that the existence of a large 
number of robust regression alternatives that are not very 
well justified theoretically, along with the lack of a common 
benchmark, has been and continues to be a serious impedi-
ment to the routine use of robust regression in many quanti-
tative fields, and in asset management in particular.

As a solution to the conundrum of too many robust 
regression estimators, we introduce a theoretically well-jus-
tified robust regression estimator called an mOpt estimator, 
originally introduced in Chapter 5 of Maronna et al. (2019) 
and the Konis and Martin (2021) article, and extensively 
demonstrate the method’s efficacy in fitting time series fac-
tor models. The mOpt estimator is obtained by replacing 
the quadratic function of regression residuals with a special 
bounded function of robustly scaled residuals, and its math-
ematical foundation was provided in the important technical 
papers of Yohai and Zamar (1997) and Svarc et al. (2002). 
Like all good robust regression methods and unlike least 
squares (LS), the mOpt estimator results in good factor 
model fits to most of the data and clearly identifies outliers. 
The mOpt method also results in accurate t-statistics that 
are representative of a large majority of the data. The mOpt 
estimator has the property that it minimizes the maximum 
estimator bias over a family of distributions that contains the 
normal distribution and an infinite number of non-normal 
outlier generating distributions, subject to a constraint of 
specified high normal distribution efficiency. A high nor-
mal distribution efficiency constraint means that the robust 
regression coefficient estimates will have variances that are 

not much larger than those of least squares (LS) when the 
regression model has normally distributed errors. From a 
data point of view, the mOpt estimator has an appealing 
intuitive representation as a weighted least squares estima-
tor based on a smooth weighting function that is zero for 
robustly scaled regression residuals that are greater than 3.0 
in magnitude. Such data with scaled residual greater than 
3.0 are deemed to be outliers, and in the idealized case of 
normal distribution data are very infrequently declared to 
be outliers.

For the applications of robust regression estimators 
in single-factor time series models there are a number of 
relevant prior research results. The first two of these were 
Sharpe (1971) and Cornell and Dietrich (1978), both of 
whom focused on mean-absolute deviation (MAD) estima-
tors, and based on their empirical studies concluded that the 
MAD estimator does not yield much improvement over LS. 
Subsequent papers by Chan and Lakonishok (1992), Mills 
and Coutts (1996) and Cloete et al. (2002) established supe-
rior performance of several regression quantile based beta 
estimators in the presence of fat-tailed non-normality and 
outliers, but those estimators have seen little common use. 
Martin and Simin (2003) introduced robust beta M-estima-
tors similar to the one we discuss herein, and showed that 
they result in attractive beta point estimates and forecasts. 
The very interesting paper by Genton and Ronchetti (2008) 
focuses on robust forecasting of beta that combines Vasicek 
(1973) shrinkage with a regression M-estimator variant.2 
Finally, Bailer et al. (2011a) extends the work of Martin and 
Simin (2003) to a large cross section of U.S. stocks, and is a 
point of departure for the robust single factor models portion 
of the current paper.

It is curious that in spite of the existing published research 
on robust estimation of CAPM betas, the literature is quite 
silent on the topic of robust fitting of multifactor models.3 In 
particular, there is no mention what-so-ever of robust regres-
sion in any of the many papers on empirical asset pricing 
articles that use time series factor models, such as Fama and 
French (1993), Carhart (1997), Fama and French (2015), 
Hou and Dijk (2018), and Hou et al. (2020). This is also the 
case in the extensive and growing literature on anomalies, 
such as Fama and French (2008), Hou et al. (2020), and Feng 

1 See Table 104.5 in The ROBUSTREG Procedure at: https:// suppo 
rt. sas. com/ rnd/ app/ stat/ proce dures/ robus treg. html.

2 The historical introductory section of Genton and Ronchetti (2008) 
is highly recommended.
3 Factor model fitting based on t-distribution models, e.g., as in 
Galea et al. (2020) and references therein, fail to qualify as a robust 
regression method in that they can suffer from arbitrarily large bias 
under the commonly used mixture distribution model that we discuss 
in Sect.  2. Furthermore, fitting such distributions well requires very 
large sample sizes for t-distribution with unknown degrees of free-
dom.

https://support.sas.com/rnd/app/stat/procedures/robustreg.html
https://support.sas.com/rnd/app/stat/procedures/robustreg.html
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et al. (2020), and the use of robust time series factor model 
fitting for research on anomalies is overdue.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses the mOpt robust regression method, and 
points out a basic lack of robustness of the well-known 
Huber robust regression method. Section 3.1 focuses on 
single factor CAPM beta model estimation for the universe 
of CRSP database (“Center for Research in Security Prices, 
LLC”) To Editor: the previous reference in quotes would be 
best as a footnote. RDM liquid stocks from 1963 to 2018, 
for which extensive empirical analysis of the distribution of 
LS versus robust mOpt betas reveals frequent substantial 
adverse influence of outliers on the LS betas. Section 3.2 
focuses on mOpt and LS fits of the Fama-French 3-factor 
(FF3) and the Fama-French-Carhart 4-factor (FFC4) mul-
tifactor models to stock returns, using classical t-statistics 
and adjusted R-squared inference values for the LS fits and 
robust versions thereof for the mOpt fits. The results show 
that mOpt robust fit is better than the LS fit for the FF3 
model, and for the FF4 the mOpt fit is substantially better 
than that of LS. Section 3.2 also introduces a new robust test 
for significant differences between mOpt and LS coefficients 
and demonstrates its usefulness in comparing robust mOpt 
fits of the FF3 and FF4 models. Section 4 introduces a robust 
final prediction error (RFPE) criteria for model selection, 
and demonstrates its efficacy. Section 5 provides a brief dis-
cussion and summary. The Appendices contain supplemen-
tal details concerning the mOpt robust regression method.

Efficient bias robust regression for time 
series factor models

We begin in Sect. 2.1 by defining the time series factor models 
to which we will apply our efficient bias robust mOpt regres-
sion estimator. Then Sect. 2.2 discusses general maximum-
likelihood type M-estimators, which are defined in terms of a 
loss function �(x) applied to scaled prediction residuals, and 
presents the coefficient estimates asymptotic covariance matrix 
formula, which is used in defining mOpt efficiency relative 
to the LS and in computing M-estimator coefficient stand-
ard errors. Section 2.3 introduces the intuitively appealing 
bounded loss function �mOpt(x) that defines the mOpt regres-
sion M-estimator, shows that the estimator has a weighted least 
squares representation with data-dependent weights, where the 
latter are generated by a smooth weight function that is zero for 
scaled prediction residuals that are larger than 3.0 in absolute 
value. Section 2.4 discusses the important mOpt estimator bias 
robustness property of minimizing the maximum asymptotic 
bias for distributions in a Tukey-Huber family of two-compo-
nent mixture distributions, one of which is a normal distribu-
tion and the other is any distribution function, many of which 
generate outliers that give rise to M-estimator bias. Finally, 

Sect. 2.5 shows that the well-known Huber robust regression 
estimator, which is defined in terms an unbounded function 
�Huber(x) , lacks bias robustness in comparison to mOpt.

Time series factor models

Throughout this paper we assume that asset returns are gener-
ated by a time series factor model of the form

where the rt are the (typically excess) returns of a specific 
asset at time t, � = (�0, �1,… , �K)

� is a K + 1 dimensional 
vector of unknown regression coefficients, the �t are the 
regression errors, and

is a time series of K dimensional random factor returns.
Examples of the above time series factor model include: (1) 

the CAPM model where K = 1 , rt = re
t
 is the asset return in 

excess of a risk=free rate, and f1,t = re
M,t

 is the market return in 
excess of a risk-free rate; (2) the Fama-French 3-factor model 
(FF3) where K = 3 with f1,t = re

M,t
 , f2,t the small-minus-big 

(SMB) factor return, and f3,t the high-minus-low (HML) factor 
return. The Fama-French-Carhart 4-factor model (FFC4) adds 
the Carhart (1997) Momentum factor to FF3 model, and other 
multifactor models including the Fama and French (2015) 
5-factor model (FF5), and the Hou et al. (2015) q-factor model. 
When dealing with a cross section of N assets, say stocks, 
one replaces rt, �0, �1,… , �K , �t with rit, �i0, �i1,… , �iK , �it for 
i = 1, 2,… ,N.

General regression M‑estimators

A regression M-estimator �̂ for the model (1) is defined as a 
solution to the minimization problem

where �(x) is a symmetric rho function for which �(0) = 0 
and �(x) is non-decreasing for x > 0 . The ŝ above is a robust 
estimate of the scale parameter s, which is computed prior to 
the above optimization as described in the last paragraph of 
Sect. 2.3. The corresponding estimating equation obtained 
by differentiating the above summation expression with 
respect to � is:

(1)

rt = 𝛽0 + f1,t𝛽1 + f2,t𝛽2 +⋯ + fK,t𝛽K + s𝜖t

= �̃ �
t
� + s𝜖t

=
(

1, � �
t

)

� + s𝜖t, t = 1, 2,… , T

(2)�t =
(

f1,t, f2,t,… fK,t
)�
, t = 1, 2,… , T

(3)�̂ = argmin
�

[

T
∑

t=1

𝜌

(

rt − �̃ �
t
�

ŝ

)]
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where �(x) = ��(x) is the corresponding psi function, and

are the robustly scaled regression residuals.
Robust regression M-estimators were originally intro-

duced by Huber (1973), and are extensively discussed in 
Chapters 4 and 5 of Maronna et al. (2019). The least squares 
estimator �̂LS is a special non-robust case of an M-estimator 
obtained with the quadratic rho function �(x) = x2∕2 and 
correspondingly �(x) = x . The least absolute deviation 
(LAD) estimator �̂LAD is obtained when �(x) = |x|.4

Regression M‑estimator covariance matrix

It can be shown that under rather general conditions an 
M-estimator �̂ = ̂�(𝜓) based on a sample size T is asymp-
totically normal with a (K + 1) × (K + 1) covariance matrix

where

is the moment matrix of the �̃t in (1), the formula for v(� ,F0) 
is given by (8), �� is the moment matrix of the factor returns 
vector �t , and �f = E(�t).

The scalar quantity v(� ,F0) is the variance of an M-esti-
mator of location introduced by Huber (1964), who derived 
the expression

(4)
T
∑

t=1

�̃t𝜓

(

rt − �̃ �
t
�̂

ŝ

)

= 0

(5)𝜖t =
rt − �̃ �

t
�̂

ŝ

(6)�f̃ (𝜓) = v(𝜓 ,F0)�
−1

f̃

(7)�f̃ = E
(

�̃t �̃
�
t

)

=

(

1 ��
f

�f ��

)

where F0 a standard distribution of the �t in (1), for exam-
ple a standard normal or a standard t-distribution. A for-
mal statement of the asymptotic normality of a regression 
M-estimator with asymptotic covariance matrix of the form 
(6) is provided in Section 5.3.1.3 Maronna et al. (2019), and 
a proof of the result is provided in Section 10.2.2.

Use of a standard matrix inversion formula for partitioned 
allows one to express the inverse of the moment matrix (7) 
in the form

where �f is the covariance matrix of the factor returns 
� �
t
= (f1,t, f2,t,… fK,t).5 For a time series factor model (1) with-

out an intercept �0 the right-hand side of the above expres-
sion reduces to �−1

f
.

It is important to note that the regression M-estimator 
covariance matrix (6) depends on the choice of rho function 
�(x) , and hence the corresponding psi function �(x) , only 
through the scalar expression (8). In the special case of the 
LS estimator where �LS(x) = x and F0 is a standard normal 
distribution Φ , v(�LS(x);Φ) = s2 which is the variance of s�1 . 
Standard errors for the regression M-estimator coefficients 
are obtained in the usual way by dividing estimates of the 
diagonal elements of (6) by the sample size T and taking 
the square root of the results. For details see Appendix A3.

The mOpt robust regression estimator

The robust regression estimator that we use throughout 
the paper, and recommend in general, is a regression 
M-estimator based on the rho function �mOpt(x) and psi 
function �mOpt(x) shown in Fig. 1. We call the estimator 

(8)v(� ;F0) = s2
EF0

�2
(

�1
)

E2

F0

� �
(

�1
)

(9)�−1

f̃
=

(

1 + ��
f
�−1

f
�f − ��

f
�−1

f

−�−1
f
�f �−1

f

)

Fig. 1  Bounded �mOpt (x) and 
corresponding �mOpt (x) for 
which �mOpt (x) = 0 and �mOpt (x) 
is constant for |x| ≥ 3.00

5 We note that 𝜎2�−1

f̃
 is the known expression for the covariance of 

the least-squares special case of an M-estimator with �2 the variance 
of s�t.

4 A regression M-estimator (3) is a maximum-likelihood estimator 
(MLE) �̂MLE when ŝ is replaced by a known s and the rho function is 
�mle(x) = −logf0(x) where f0(x) is the probability density of the �t , and 
correspondingly the psi function is �mle(x) = −f �

0
(x)∕f0(x) . In applica-

tions where s is unknown and is replaced by a consistent estimator ŝ , 
the regression coefficient vector estimate is asymptotically an MLE.
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an mOpt estimator because it is motivated by an efficiency 
constrained optimal bias robustness property described 
in Sect. 2.4. The rho and psi functions in Fig. 1 have the 
following intuitive appeal for fitting factor models. The 
actual distribution of the �t in (1) is typically approxi-
mately normal in the central part of the distribution, but 
has an unknown fat-tailed and typically skewed distri-
bution outside the central region. Correspondingly, the 
rho function is quadratic for a large portion of the central 
region (−3, + 3) where it behaves like the least squares loss 
function, and is constant outside the interval (−3, + 3) , 
where it is indifferent to the size of the scaled regres-
sion residuals in (3). This behavior represents an agnostic 
assignment of equal losses to all pairs (rt, �̃ �t ) for which the 
absolute value of the robustly scaled residuals is larger 
than 3.00. Correspondingly, the mOpt psi function has 
value zero for all such pairs (rt, �̃ �t ) , which therefore have 
no influence on the regression parameter estimates �̂mOpt . 
An M-estimator psi function that is zero outside some 
finite interval is called a redescending psi function in the 
robust statistics literature.6

A general formula for �mOpt(x) that depends on a tuning 
parameter c is given in Appendix A1, where it is seen that 
�mOpt(x) = 0 for |x| ≥ c . Since the rho function �mOpt(x) is 
the integral of the psi function �mOpt(x) , it follows that the 
rho function has a constant value for |x| ≥ c . The parameter 
c controls the normal distribution efficiency of the mOpt 
estimator, where efficiency is defined as the ratio of the 
asymptotic variance of the least squares estimator to that 
of the mOpt estimator, often expressed as a percent. A 
formula for the normal distribution efficiency of the mOpt 
estimator in terms of the tuning constant c is given in 
Appendix A2. Since an LS estimator has the minimum 
possible variance for normal distributions, an mOpt estima-
tor has an efficiency less than 100%. The choice of an mOpt 
value for c controls a trade off between normal distribu-
tion efficiency and robustness toward outliers. Increasing 
the value of c results in the rho function �mOpt(x) becom-
ing closer to the least squares quadratic rho function, with 
correspondingly higher normal distribution efficiency but 
less robustness toward outliers, and conversely. Through-
out this paper, as in Fig. 1, the mOpt estimator is based on 
the choice c = 3.0 , which results in a normal distribution 
efficiency of 95%.

For the 95% efficient mOpt estimator that we use through-
out this paper, and recommend in general, the ratio of the 
asymptotic mOpt variance to least squares variance is 1.0526 

(to 4 digits), which means that the ratio of asymptotic stand-
ard deviations is 1.026 (to 3 digits). This suggests that in 
practice the standard errors (SE) of an mOpt estimator will 
be only about 2.6% larger than that of the least squares esti-
mator. Thinking of the normal distribution excess standard 
error (SE) as an “insurance premium” to be paid in order to 
provide protection against bias and inflated variability due to 
outlier generating non-normal distributions, an SE premium 
of 2.6% seems quite “inexpensive. We propose that a 95% 
normal distribution efficiency mOpt estimator be used as a 
benchmark for evaluating the performance of not only an 
LS alternative, but also other robust regression estimator 
alternatives.

Iteratively reweighted least squares and MM‑estimator

A regression M-estimator psi function �(x) defines a weight 
function

that allows one to express the solution �̂ of the estimating 
Eq. (4) in the form of a weighted least squares (WLS) esti-
mate. To see that this is the case, note that (4) can be written 
in the form

where the wt are the data-dependent weights:

Thus the estimate �̂ may be expressed in the nonlinear 
weighted least squares (WLS) mathematical form:

(10)w(x) =
�(x)

x

(11)
T
∑

i=1

wt �̃t

(

rt − �̃ �
t
�̂
)

= 0

(12)wt = wt(�̂; ŝ) = w

(

rt − �̃ �
t
�̂

ŝ

)

.

Fig. 2  The mOpt weight function ( c = 3.00)

6 The mOpt regression estimator is a leading example of an M-esti-
mator that is not a maximum-likelihood estimator. A justification 
of this claim is the fact that there exists no probability density func-
tion f0(x) that integrates to 1 and has the positive constant value 
f0(x) = exp(−�(x)) for all |x| ≥ c.
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The weight function wmOpt(x) = �mOpt(x)∕x for our mOpt 
estimator �̂mOpt is shown in Fig. 2.

The mOpt weight function gives a weight of 1 to all suf-
ficiently small robustly scaled residuals (rt − �̃ �

t
�̂mOpt)∕ŝ , 

and smoothly transitions to zero weight for scaled residuals 
whose absolute is greater than 3.00. All asset and factor 
returns pairs (rt, �̃ �t ) whose scaled residuals have absolute 
values larger than 3.0 are said to be rejected. In this regard, 
the mOpt robust regression estimator has the highly intui-
tive appeal that it is robust smoothed version of non-robust 
classical 3-sigma edit rule, according to which all data val-
ues in a sample that differ from the sample mean by at least 
3 times the sample standard deviation are deleted. Under the 
assumptions that the residuals in (1) are normally distributed 
and the estimates ŝ and �̂mOpt are equal to the true parameter 
values, the probability that a pair (rt, �̃ �t ) is rejected by the 
mOpt estimator is the probability that a standard normal 
random variable is larger than 3.00 in magnitude, which is 
only .27%. Thus, such data pairs are rejected only very rarely 
in the highly idealized case of normally distributed residuals.

An important aspect of the mOpt WLS version (13) is 
that it lends itself to the iteratively-reweighted least squares 
(IRWLS) computation, whose mathematical representation 
is

with an initial estimate �̂
0
 . It is shown in Section 9.1 of 

Maronna et al. (2019) that for M-estimators based on rho 
functions with a similar shape as �mOpt(x) , the IRWLS algo-
rithm converges to a solution of the estimating Eq. (4). How-
ever, such a solution may yield only a local minimum of the 
objective function in (3).

The above IRWLS algorithm needs a highly robust initial 
estimate �̂

0
 that helps insure that a global minimum of (3) 

is achieved. An estimator that serves this purpose well is an 
S-estimator that was introduced by Rousseeuw and Yohai 
(1984), and is described in Section 5.4.1 of Maronna et al. 
(2019). An S-estimator is a special form of M-estimator that 
jointly estimates the regression coefficient � and the error 
term scale parameter s, and has a high breakdown point but a 
low normal distribution efficiency of about 29%. The S-esti-
mator regression coefficient estimate is used as the initial 
estimate of the IRWLS algorithm (14) and the S-estimator 
scale estimate ŝ is used in computing the robustly scaled 
prediction residuals given by (5). The breakdown point (BP) 
of an estimator is the largest fraction of data outliers whose 

(13)�̂ =

(

T
∑

i=1

wt

(

�̂; ŝ
)

�̃t �̃
�
t

)−1( T
∑

i=1

wt(�̂; ŝ)�̃trt

)

.

(14)

�̂
k+1

=

(

T
∑

i=1

wt(�̂
k
; ŝ)�̃t �̃

�
t

)−1( T
∑

i=1

wt(�̂
k
; ŝ)�̃trt

)

, k = 0, 1, 2,…

value can tend to infinity without taking the estimator to the 
boundary of the parameter space, which is infinity in the 
case of regression, and a high-breakdown point estimator is 
one with a breakdown point of 0.5, or approximately so.7 An 
M-estimator that uses a high BP but inefficient initial estima-
tor is called an MM-estimator, whose theoretical properties 
were developed by Yohai (1987). The regression estimator 
used for the examples in this paper and recommended in 
general, is an mOpt MM-estimator, but for simplicity we 
just refer to it as the mOpt estimator.8 The mOpt estimator 
may be computed using the function lmrobdetMM in the 
RobStatTM R package that is available at CRAN https:// 
cran.r- proje ct. org/ web/ packa ges/ RobSt atTM/ index. html.

Efficient bias robustness of the mOpt regression 
estimator

Here, we describe an efficient bias robustness property of 
the mOpt regression estimator that does not exist for any 
other robust regression estimator, and in particular does 
not exist for any of the 10 SAS M-estimators mentioned in 
Sect. 1. The bias robustness optimality of the mOpt estima-
tor is obtained with respect to the Tukey-Huber family of 
distributions

for (rt, �t) , where N is a normal distribution for the regres-
sion model errors s�t , G(�) is a fixed multivariate distribution 
function of factor returns �t , and H(r, � ) is an unrestricted 
joint distribution.9 When � = 0 the distribution F0(r, � ) gen-
erates data with normally distributed errors and the MLE 
of � is the least squares estimator, but when 𝛾 > 0 many 
distributions H(r, � ) result in F� (r, � ) generating outliers 
with probability � . Correspondingly, when 𝛾 > 0 both LS 
and M-estimators will be biased for some H(r, � ) . The opti-
mality problem is to find a regression M-estimator Opt that 
minimizes the maximum asymptotic bias with respect to 
all possible H(r, � ) , subject to a constraint of a user speci-
fied high normal distribution efficiency. The latter constraint 
insures that the Opt performance is only slightly worse than 

(15)
F𝛾 (r, � ) = (1 − 𝛾)N

(

r − � ��
)

G(�) + 𝛾H(r, � ), 0 ≤ 𝛾 < 0.5

7 For example, the sample mean has a breakdown point BP = 0 and 
the sample median has a breakdown point BP ≈ 0.5 and exactly 0.5 
as the sample size tends to infinity. So the sample median is a high 
breakdown point estimator. For details concerning estimator break-
down points, see Sections 5.2 and 5.3.1 of Maronna et al. (2019).
8 Details concerning the mOpt computational method are provided in 
Sections 5.5 and 5.7.4 of Maronna et al. (2019).
9 The family of distributions (15) is a regression model generaliza-
tion of the Tukey–Huber distributions introduced by Tukey (1960) in 
the context of robust estimation of a mean, and by Huber (1964) in 
his seminal paper on robust estimation of a location parameter.

https://cran.r-project.org/web/packages/RobStatTM/index.html
https://cran.r-project.org/web/packages/RobStatTM/index.html
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least squares when � = 0 in the Tukey-Huber regression 
model. Yohai and Zamar (1997) solved this problem locally 
for small � , and the mOpt estimator we discuss here is a very 
slight modification of the Opt estimator that is needed to 
insure convergence of the IRWLS algorithm in Sect. 2.3.1. 
Later, Svarc et al. (2002) solved the global optimality prob-
lem for all 0 < 𝛾 < 0.5 , and their  show that the Yohai and 
Zamar Opt local solution is a remarkably good approxima-
tion to the global solution.

The huber estimator lack of robustness

It was shown by Martin et al. (1989) that the asymptotic bias 
of an M-estimator with an unbounded rho function �(x) is 
unbounded with respect to all possible H(r, � ) in the Tukey-
Huber family 15, but such bias is bounded for an bounded 
�(x) . Thus, it is not surprising that the Opt function discov-
ered later by Yohai and Zamar (1997) has a bounded rho 
function, as does the mOpt variant. On the other hand, the 
well-known Huber (1973) regression estimator based on the 
rho function

is the leading example of a regression M-estimator based on 
an unbounded rho function. The corresponding Huber psi 
function is the monotonic function:10

The monotonicity of the Huber psi function has the undesir-
able consequence, unlike the mOpt estimator redescending 

(16)𝜌Huber(x;c) =

{

0.5x2, |x| ≤ c

c|x| −
1

2
c2, |x| > c

(17)𝜓Huber(x;c) =

{

x, |x| ≤ c

c ⋅ sgn(x), |x| > c .

psi function, that it does not reject outliers. The Huber rho 
and psi functions are displayed in Fig. 3 for the tuning con-
stant choice c = 1.345 that results in an estimator with 95% 
normal distribution efficiency.

The Huber regression estimator is quite popular, partly 
because of the seminal min-max variance robustness prop-
erty established for estimation of a location parameter in 
Huber (1964) and inherited by the Huber (1973) regression 
M-estimator, but the more so because unlike the non-convex 
function �mOpt(x;c) , the function �Huber(x;c) is convex. Con-
sequently, the Huber regression M-estimator may be easily 
computed using readily available convex optimization soft-
ware.11 None-the-less, the Huber estimator can have arbitrar-
ily large bias for distributions in the Tukey-Huber family, 
and this theoretical property has quite practical applications 
relevance, as is demonstrated by examples in Sect. 3.1 where 
outliers cause the Huber regression estimator to be as badly 
biased as least squares (see Fig. 5).

While theoretical demonstration of unbounded bias for 
regression M-estimators with unbounded rho functions in 
Martin et al. (1989) is highly technical, the following simple 
heuristic argument shows why the unbounded rho and mono-
tonic psi function of the Huber regression estimator is vul-
nerable to arbitrarily large bias due to outliers of unbounded 
size. Consider the single factor model (18) with intercept 
�0 = 0 , arbitrary �1 , and residual scale parameter s = 1 . In 
that case the Huber M-estimator equation is:

Suppose that the factor return at any given time, say for 
example f1 at t = 1 , takes on an arbitrarily large absolute 

T
∑

t=1

ft𝜓huber

(

rt − 𝛽1ft
)

= 0.

Fig. 3  Huber Rho and Psi function for c = 1.345

10 The function sgn(x) is the sign function which is equal to -1 for 
x < 0 , +1 for x > 0 , and 0 for x = 0.

11 For example, see the CVXR code at https:// cvxr. rbind. io/ cvxr_ 
examp les/ cvxr_ huber- regre ssion/.

https://cvxr.rbind.io/cvxr_examples/cvxr_huber-regression/
https://cvxr.rbind.io/cvxr_examples/cvxr_huber-regression/
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value with a corresponding arbitrary asset return value r1 . 
For any pair of values r1and f1 with r1 ≠ 𝛽1f1 and f1 arbitrar-
ily large, the term f1𝜓huber(r1 − 𝛽1f1) will be non-zero and 
arbitrarily large, thereby dominating 

∑T

t=2
ft𝜓huber(rt − 𝛽1ft) . 

Consequently, the solution of the above estimating equation 
will in the limit, as f1 gets arbitrarily large, be the solution of

which is 𝛽1 = r1∕f1 . Since this estimate can take on any value 
determined by the ratio r1∕f1 , 𝛽1 can have an unbounded bias 
B = r1∕f1 − �0 . Note that this does not happen in the case of 
the redescending psi function �(x) = �mOpt(x) because for 
fixed r1 the term f1𝜓huber(r1 − 𝛽1f1) will be zero for arbitrar-
ily large |f1|.

Robust time series factor models

The mOpt robust regression fitting method can be applied 
in a wide variety of time series factor models, including 
single-factor index models and multi-factor models such as 
the macro-economic models of Chen et al. (1986), the style 
analysis models introduced by Sharpe (1988) and discussed 
in Sharpe (1992), and an increasingly wide variety of empir-
ical asset pricing factor models. Early examples of the latter 
are the Fama and French (1993) three-factor model (FF3) 
and the Fama-French-Carhart four-factor model (FFC4) that 
adds the Carhart (1997) momentum factor to the FF3 model. 
More recently introduced empirical asset pricing models 
include the Fama and French (2015) five-factor model (FF5), 
and the q-factor and augmented q-factor models discussed 
in Hou et al. (2015) and Hou et al. (2020). See also Feng 
et al. (2020) who refer to the wide variety of factor models 
as “The Factor Zoo”. Given the large number of time series 
factor models that currently exist in the literature, and the 
likelihood of more in the future, the potential value of mOpt 
robust fitting of these models is considerable.

We illustrate mOpt versus LS fitting first for the single 
factor model that is used extensively by practitioners and 
financial data service providers to compute least squares 
CAPM beta estimates. For the CAPM betas we show first 
by a few striking examples, and then by extensive empirical 
analysis of the cross sections of mOpt and LS beta estimates 
based on two-year intervals of weekly returns, that LS beta 
estimates are often considerably biased by outliers that have 
little influence on the mOpt estimates. In particular, we show 
that LS and mOpt betas differ in absolute value by at least 
0.3 for roughly 26% of microcap stocks, 14% of smallcaps 
and 7% of bigcaps, and differ by at least 0.5 for roughly 
12% of microcap stocks, 5% of smallcaps and 2% of bigcaps 
Then we present striking examples of multifactor models 
applications of the mOpt versus LS fits of stock returns for 

f1𝜓huber

(

r1 − 𝛽1f1
)

= 0

the FF3 model and the FFC4 model. We also introduce a 
test for a significant difference between mOpt and LS coef-
ficient estimates, and apply it to both the single factor and 
the multifactor models. Finally, we introduce a new robust 
model selection criteria called RFPE as an alternative to 
the non-robust AIC based method, and illustrate the use of 
RFPE versus AIC in selecting a best subset of the FFC4 
model factors.

Single factor time series models

A single factor model has the form

where rt is an equity return and ft a factor return that is typi-
cally a market proxy or an active manager’s index bench-
mark such as the S&P500, Russell 1000, Russell 2000, 
or Russell 3000, among many others. When ft is a market 
return rM,t , and both the equity return and market return are 
excess returns relative to a risk-free rate, this is the time 
series version of the CAPM.

Here, we extend the robust beta M-estimators study of 
Bailer et al. (2011b) in the following ways: (a) we use the 
improved mOpt estimator based on the analytic form of 
�mOpt(x) and its integral �mOpt(x) , rather than a polynomial 
approximation of these functions; (b) we demonstrate by 
example a robustness inadequacy of the Huber M-estimator 
rho and psi functions discussed in Sect. 2.5; (c) we extend 
the study period from 1963–2009 to 1963–2018, and com-
pute mOpt and LS betas using weekly return for cross sec-
tions of liquid stocks on 28 contiguous two-year intervals. 
We define liquid stocks as those that have at least 100 non-
zero returns in a two-year interval. The numbers of such 
stocks in each two-year window vary from a minimum of 
1,725 for 1963-1964 to a maximum of 7,126 for 1996-1998, 
with an average of 4,207 stocks over all two-year intervals.

We begin with the two examples in Fig. 4 that display 
the results of computing robust mOpt and LS beta esti-
mates using two years of weekly returns for the stocks with 
tickers OFG and DD. The legend gives the beta estimate 
values with their standard errors in parentheses. The dot-
ted lines, parallel to the solid line mOpt fit, define strips 
outside of which the stock and market returns pairs are 
rejected by the mOpt estimator, and as such have no influ-
ence on the fit. The rejected data points, which we define 
to be outliers, are indicated by the open circle symbols. 
For the OFG stock results in the left-hand plot, the mOpt 
estimator rejects 8 outliers, 6 of them barely so. In this 
example the mOpt robust method provides a very good 
fit to the bulk of the data in spite of the huge outlier in 
the upper-right part of the figure, but the LS estimator 
is quite adversely influenced by that outlier and fails to 

(18)rt = � + �ft + s�t t = 1, 2,… , T
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provide a good fit to the bulk of the data. The difference 
of 2.26 between the LS and mOpt beta estimates of OFG 
would be of concern to any financial analyst or portfolio 
manager. Furthermore, the 2.26 difference in the OFG LS 
and mOpt slopes is a littler over 9 times the mOpt robust 
standard error value of 0.25, indicating that the difference 
between the LS and mOpt beta estimates is very highly 
significant for OFG.

The results for the stock with ticker DD in the right-hand 
plot of Fig. 4, in which there is a huge outlier in lower left 
corner of the plot, is dramatically different from the left-
hand plot in that the mOpt and LS fits are essentially identi-
cal for the stock DD. That huge outlier is due to the October 
19, 1987 (“Black Monday”) U.S. market crash, when the 
Dow Jones fell 22.6%. The mOpt robust estimator does not 
reject that outlier because it is consistent with the mOpt 
fit of DD returns to the market returns for the rest of the 

non-outliers data. This is a general property of the mOpt 
estimator that makes good sense.

Huber estimator lack of robustness examples

The lack of robustness of the Huber regression estimator dis-
cussed in Sect. 2.5 manifests itself in Huber beta estimates 
having slopes that are sometimes quite close to those of the 
LS estimate model fits. This behavior is illustrated in the two 
plots of Fig. 5, where the Huber estimators are almost the 
same as the LS estimators, and therefore provide no protec-
tion against outliers bias. It is the vulnerability to leverage 
outliers that cause Huber estimate to be so close to the LS 
estimate in the figure, where a leverage outlier in the present 
context is loosely defined to be a market return and stock 
return pair for which the market return is extreme and the 
data pair is not consistent with the a robust fit to the bulk of 

Fig. 4  mOpt and LS fits for OFG and DD

Fig. 5  mOpt, Huber and LS fits
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the data.12 In this regard, the October 20, 1987 market return 
in the lower-left of the right-hand plot of Fig. 4 is a market 
return outlier but it is not a leverage outlier since the market 
return and stock return pair is consistent with the robust fit 
to the bulk of the data.

While the Huber beta estimate is sometimes close to the 
LS beta estimate, as in the extreme case of the nearly equal 
betas in Fig. 5, it turns out the Huber beta estimate is also 
sometimes close to or nearly equal to the mOpt beta esti-
mate. In order to quantify the extent to which the Huber beta 
estimate is close to the LS beta estimate, we computed the 
percent of the stocks in each of the 28 cross sections studied 
for which the Huber beta is closer to the LS beta than the 
mOpt beta. The percent ranges from a minimum of 34% and 
a maximum of 47%, which we regard as a substantial lack of 
robustness of the Huber estimators. Consequently, the Huber 
estimator should only be used with full recognition of this 
limitation, and we strongly recommend instead the mOpt 
estimator when considering a robust regression estimator 
in practice.

The cross section distribution of robust mOpt and LS betas

The existence of differences between robust mOpt betas 
and LS betas, such as those discussed above, motivated us 

to carry out a detailed empirical analysis of the behavior 
of these two beta estimates for large cross sections of U.S. 
stocks from the CRSP database. Specifically, we computed 
mOpt and LS betas using two years of weekly returns of 
“liquid” stocks during each of the 28 contiguous two-year 
intervals during 1963 to 2018. Here, we take liquid stocks 
to be all those in the CRSP database that have at least 100 
non-zero returns in a two-year interval. Then, we split the 
mOpt and LS beta estimates into microcap, smallcap and 
bigcap groups, where we follow Fama and French (2008) 
and Hou et al. (2020) in using the 20th and 50th percentiles 
of the NYSE capitalization data as breakpoints.

Figure 6 shows the time series of the resulting biennial 
microcap, smallcap and bigcap group counts. The rapid 
growth of microcap stocks from the early 1980’s to the late 
1990’s is striking, as is the abrupt subsequent reversal to 
declining numbers of microcaps that was precipitated by 
the dot-com bubble collapse. From the early 1990’s until 
just before the onset of the financial crisis in 2007, the rela-
tive growth of microcap, smallcap and bigcap stocks was 
such that they had approximately constant percentages of 
the market during that time period. Then, after the momen-
tary decrease in the number of small and bigcap stocks and 
increase in the number of microcap stocks during the 2007-
2008 crisis, the counts of the three cap groups were fairly 
constant. The dominant numbers of microcap stocks from 
the mid 1980’s onward are of interest here because microcap 
stock returns are more volatile and prone to outliers than 
smallcap and bigcap stocks, and this leads one to anticipate 
that the adverse influence of outliers on LS beta estimates 
will be most severe and frequent for microcap stocks, some-
what less frequent for midcaps, and even less frequent for 
bigcaps.

With the preceding anticipated behavior in mind, we turn 
to Fig. 7 display of the boxplot representation of the cross 
section distribution of mOpt robust betas for each contigu-
ous two-year interval between 1963 and 2018. The solid dot 
in each boxplot represents the cross section median of the 
betas for each two-year interval, the empty circle symbol 
represents the average of the betas, and the ends of the boxes 
are located at the lower and upper quartiles of the data.

The most striking features of the robust mOpt betas box-
plots in Fig. 7 are: (a) They reveal interactions between beta 
and firm size, with almost all mOpt median betas less than 
1 for microcaps, a little more than one half of mOpt median 
betas less than 1 for smallcaps, and most betas quite close 
to 1 for bigcaps; (b) the temporal patterns of the distribu-
tions of mOpt betas for the microcap and smallcap groups 
are strikingly similar from 1963 through end of the collapse 
of the dotcom bubble in 2002, and over that time interval 
both groups have most median betas less than 1 and often 
considerably so. Then for 2002 through 2018 the microcap 
and smallcap mOpt betas have similar increasing temporal 

Fig. 6  Biweekly liquid CRSP stocks market capitalization group 
counts and percentages

12 Our usage of the term leverage outlier here is non-standard. For 
a discussion of leverage data in regression diagnostics, see Belsley 
et al. (1980)
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patterns, with the medians of the microcaps remaining below 
one and settling around 0.75 toward the end of that interval, 
while during that time period the medians of the smallcaps 
drift to slightly above 1; (c) the mOpt beta medians of the 
bigcap group only deviate substantially from being close to 
one during 1963–1964, 1995–1996, and most substantially 
during the time period 1999–2002 when the dotcom bubble 
collapsed and subsequent rebound initiation. The temporal 
pattern of the cross section distributions of the bigcap and 
smallcap stocks are strikingly similar from 1999 through 
2018.

Figure 8 displays the boxplots of the paired differences 
between LS and mOpt betas, i.e., LS beta minus mOpt beta 
for each stock, with horizontal dotted lines at +0.3 and -0.3. 
These lines were chosen for the following reasons: (a) Data 
values that fall outside the “whiskers” of a boxplot are by 
convention deemed outliers, which are plotted as individual 
points. For the bigcap boxplots in the lower panel, the aver-
age locations of the whiskers are at about + 0.3 and – 0.3, 
and so beta differences larger than +0.3 and smaller than 
– 0.3 for bigcaps are considered to be LS minus mOpt beta 
outliers. We then use +0.3 and – 0.3 as boundary lines for 
the smallcap and microcap as well because those choices 
clearly reveal the increased dispersion and skewness of the 

LS minus mOpt betas distributions and outliers, relative to 
the bigcaps; (b) We believe that a broad range of consum-
ers of beta estimates, who have the market beta value of 
1 as a reference point, will find that LS minus mOpt beta 
differences with absolute values greater than 0.3 will be a 
useful alert that outliers are likely to be influencing the LS 
estimate, and that the asset returns data should be examined 
for influential outliers, and possible firm financial conditions 
or market conditions that may give rise to such outliers.

It is clear in Fig. 8 that the cross section distributions of 
the paired differences between the LS and mOpt betas tend 
to be concentrated on positive values to various degrees, 
with this effect most substantial for microcaps for all 28 
two-year intervals during 1963 to 2018, and most striking 
for the 1975–1976, 1987–1988, 2007–2008 intervals asso-
ciated with major market events, where well over 25% of 
LS betas are larger than the mOpt robust betas by at least 
0.3.13 For smallcaps, the clear tendency for LS and mOpt 

Fig. 7  mOpt robust betas cross 
section distribution boxplots 
computed using two-year inter-
vals of liquid weekly returns of 
stocks in the CRSP database

13 The 1975–1976 interval was in the aftermath of the 1973–1974 
market crash and recession that lasted until early 1975, the 1987–
1988 interval contained the Black Monday market crash of October 
19, 1987, and of course 2007–2008 contained the financial crisis.
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beta differences to be concentrated on positive values in the 
early years diminishes over time, and is essentially absent 
after 2002, and a similar comment applies to the bigcap beta 
differences.

We also notice from Fig. 8 that for each two-year interval 
there exist at least some and often many stocks for which 
the absolute difference between LS and mOpt beta esti-
mates exceed not only the value 0.3, but also the value 0.5. 
In order to quantify the frequency of such differences, we 
tabulated for each two-year interval the percent of stocks 
in each market cap group and and the market for which 
the absolute difference of LS versus mOpt betas exceeds 
level thresholds of both 0.3 and 0.5. We then computed the 
average of these percentages over all the two-year inter-
vals between 1963 and 2018, and display the results in the 

Cap Group Percent columns of Table 1. The results clearly 
reveal that the problem of outlier bias influence on LS betas 
is most frequent for microcaps, less so for smallcaps, rela-
tively infrequent for bigcaps, and significant for the overall 
market. The market wide exceedance frequencies of 18.1% 
and 7.5% for thresholds 0.3 and 0.5, respectively, are results 
that practitioners should be aware of. The Positive/Negative 
Exceedances ratios in Table 1, that range from 2.7 to 4.2, 
reflect the positive skewness of the distribution of LS minus 
mOpt betas.

One may argue that relative differences in LS and mOpt 
betas are more meaningful than absolute differences, which 
is reasonable enough when both betas are larger than 1. 
However, when both betas are small, relative differences 
are not so meaningful, e.g., for LS and mOpt betas are .2 

Fig. 8  LS minus mOpt beta dif-
ferences cross section distribu-
tion boxplots using the same 
returns data as for Fig. 7

Table 1  1963–2018 average percent of stocks in marketcap groups and in the market for which the absolute differences of LS and mOpt betas 
exceed thresholds of 0.3 and 0.5, along with ratios of positive to negative exceedances

Threhold Cap group percent Positive/negative excedances ratio

Micro Small Big Market MicroPN SmallPN BigPN MarketPN

0.3 26.2 14.1 6.8 18.1 3.3 3.2 2.7 3.8
0.5 11.9 4.7 1.8 7.5 3.8 4.2 3.5 3.2
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and .05 the relative difference is 3.0. So in Table 2 we dis-
play exceedance ratios of the absolute difference between 
LS and mOpt betas relative to mOpt betas for not only 
all mOpt estimates, but also only for mOpt betas whose 
absolute values are at least 0.5. It is not surprising that the 
cap group ratios are substantially smaller when we only 
look at mOpt betas with absolute value larger than 0.5. We 
also find the interesting fact that the values in the “|mOpt 
Beta|> 0.5” rows of Table 2 are rather similar overall to 
those in Table 1.

Thin trading consideration

The downward bias of the median behavior of the mOpt 
beta estimates, which is also the case for LS estimates, 
raises the question of the extent to which this is due to 
thin trading bias. We studied this issue using the Dimson 
(1979) method, corrected as in Davidson and Josev (2005), 
for both mOpt and LS beta estimators. It turns out that 
this correction indeed reduces the thin trading bias, but it 
also inflates the variability of the betas, and correspond-
ingly results in larger exceedance percentages than those 
in Table 1. Our study of a robust Dimson method needs to 
be extended to include the Scholes and Williams (1977) 
correction method.

Multifactor time series models

Our examples in this section are focused on fitting the FF3 
and FFC4 time series models to and asset returns time series 
rt . The FFC4 model has the form

where re
t
 is a time series of the asset excess returns relative 

to a risk-free rate, f e
MKT ,t

 is a time series of market excess 
returns, fSMB,t are the returns of the Fama-French “small 
minus big” (SMB) size factor portfolio, fHML,t are the 
returns on the “high minus low” (HML) value factor portfo-
lio, fMOM,t are the returns on the Carhart (1997) momentum 

(19)re
t
= � + f e

MKT ,t
�1 + fSMB,t�2 + fHML,t�3 + fMOM,t�4 + �t

factor portfolio, and � is an intercept. The FF3 model is 
obtained by dropping the term fMOM,t�4.14

It is common practice to use time series factor models 
such as the FF3 and FFC4 models for analysis where rt is a 
portfolio return. However, the models can also be used for 
individual stocks with returns rt , where for example the goal 
might be to select stocks that have desired exposures, or 
lack thereof, to one or more of the factors. Here we examine 
the mOpt and LS fits of the FF3 and FFC4 models to the 
weekly excess returns of the stock with ticker FNB for the 
year 2008. Figure 9 displays the pairwise scatter plots of 
the FNB, MKT, SMB, HML and MOM data. Given the tur-
bulence of the 2007-2008 market crisis, it is not surprising 
to see bivariate outliers, some of which may also be 3 or 4 
dimensional outliers.

The results of the LS and mOpt fits of the FF3 and FFC4 
models to the FNB returns are displayed in Table 3 coef-
ficient estimates, standard and robust t-statistics, and stand-
ard and robust adjusted R-squared values.15 Since we are no 
longer in the context of new factor significance discovery, 
we use the usual absolute t-value threshold of 1.96 for a 
t-statistic to be significant. For both models the intercept 
estimates of both the LS and mOpt fits are equal to zero to 
two significant digits, and correspondingly the t-statistics 
values are all quite insignificant. The main differences in 
FF3 LS and mOpt model fits are that the mOpt fit has a 
slightly higher robust adjusted R-squared, and for the HML 
factor the mOpt slope is a little over twice that of the LS 
slope and correspondingly the mOpt t-statistic value is con-
siderably larger than that of the LS estimate.

For the FFC4 model the LS fit t-statistics for the HML 
and MOM factors are now both insignificant, leaving only 
the MKT.RF and SMB as significant factors, but the mOpt fit 
t-statistics are significant for all but the HML factor, whose 

Table 2  1963–2018 average 
percent of stocks in market cap 
groups and the market for which 
an absolute difference of LS 
and mOpt betas relative to the 
mOpt beta exceed thresholds of 
0.3 and 0.5, along with ratios of 
positive to negative exceedances

Threshold Cap group percent Positive/negative exceedances ratio

Micro Small Big Market MicroPN SmallPN BigPN MarketPN

All mOpt Betas
0.3 41.0 21.9 11.4 28.8 3.1 5.3 4.8 3.4
0.5 27.8 12.3 5.0 18.4 3.3 6.1 7.6 3.6
|mOpt Beta|>0.5
0.3 27.3 13.6 6.8 17.6 4.0 6.9 5.5 4.2
0.5 13.7 5.1 1.8 7.9 5.7 10.2 6.4 6.1

14 The time series of the four factors in the model (19) are available 
at Professor Ken French’s website.https:// mba. tuck. dartm outh. edu/ 
pages/ facul ty/ ken. french/ data_ libra ry. html.
15 For the robust adjusted R-squared, see Section 5.12.3 of Maronna 
et al. (2019).

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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t-statistic is quite insignificant, and its MOM slope is nega-
tive. This latter result is not surprising in view of the fact, 
illustrated in Fig. 9, that the HML and MOM factors are 
negatively correlated, and MOM replaces HML in the FFC4 
model. Table 3 also reveals that the FFC4 mOpt fit has the 
highest adjusted R-squared among the LS and mOpt fits of 
both the FF3 and FFC4 models, and overall, the results in 
the table lead to the sense that the FFC4 model is preferred 
to the FF3 model. However, a proper robust model selection 

method is needed for this purpose, and we discuss this in the 
next section.

It is useful to compare the mOpt and LS fits of the FFC4 
model using Fig. 10 model fit residuals normal QQ plots 
(quantile-quantile plots), where the one on the left is for the 
LS fit and the one on the right is for the mOpt fit. The dotted 
lines in the figure are the point-wise 95% confidence inter-
vals. The QQ plot for the LS fit in the left panel has a number 
data points in the central region that deviate from a straight 

Fig. 9  Pairwise scatter plots of FNB 2008 weekly returns and corresponding MKT, SMB, HML, MOM factors

Table 3  mOpt and LS fits of 
FF3 and FFC4 models to FNB 
2008 weekly returns

Alpha MKT SMB HML MOM AdjRSQ

FF3-LS 0.01(0.9) 0.83(4.2) 0.96(2.1) 0.83(2.5) 0.5
FF3-mOpt 0.01(0.7) 0.91(4.3) 1.01(2.1) 1.71(4) 0.53
FFC4-LS 0.01(0.9) 0.85(3.5) 0.97(2.1) 0.86(1.8) 0.03(0.1) 0.49
FFC4-mOpt 0.01(1.6) 0.7(4.5) 0.81(2.6) 0.2(0.4) -0.91(-3.3) 0.57
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line and are near or outside the dotted line for the bulk of 
the data, which indicates that the model fit is not very good, 
and there is no indication of residuals outliers. On the other 
hand, the majority of the data points in the mOpt QQ plot in 
the right panel fall along a straight line that is well within the 
dotted lines, thereby indicating a good model fit for most of 
the data, and the extreme regions of the qqplot reveal a num-
ber of positive and negative residuals outliers that are well 
outside the dotted lines. This is the typical behavior of the 
residuals from an mOpt robust estimate relative to an LS esti-
mate, i.e., the robust regression fit is very good for the bulk 
of the data in the middle of the distribution and outliers are 
clearly revealed, but this is not the case for a LS regression.

In addition to above visual assessment of comparative LS 
and mOpt robust fits, and standard statistical assessment as 
provided in Table 3, one can use a significance test statistic 
to test for a non-zero difference between and LS and mOpt 
fits. For estimators �̂LS and �̂mOpt that converge in proba-
bility to the true parameter vector � = (�1,… , �K) , it was 
shown by Maravina and Martin (2012) that the difference 
△�̂ = �̂LS − �̂mOpt converges in distribution to a zero mean 
multivariate normal distribution with covariance matrix

where �� is the covariance matrix of factor returns appear-
ing in (9), and

(20)�△�̂ = 𝛿2�−1
�

where u = s�1 in (18).16 It follows that the quadratic form 
△�̂

�
𝛿2�−1

�
△ �̂ has an asymptotic chi-squared distribution 

with K degrees of freedom, and the significance test statistic

has an approximate chi-squared distribution with K degrees 
of freedom. For our applications here where we use two 
years of weekly returns, a normal distribution approximation 
will suffice for Δbeta , and hence a chi-squared approximation 
for DK will suffice for computing p values.

The p values obtained by applying the above test statistic 
for the FF3 and FFC4 models are displayed in Table 4. For 
the FF3 model, the △�̂�K difference and the HML coeffi-
cient difference are both significant with common p values 
of 0.000 to three digits. This is not too surprising in view of 
the large difference between the LS and mOpt HML coef-
ficients in Table 3, but neither of the MKT and SMB factor 
LS and mOpt coefficient differences are significant. On the 
other hand for the FFC4 model the △�̂�K difference is is 
quite significant with a p value 0.011, and the MOM fac-
tor difference is highly significant with a p value 0.003, but 
none of the differences in the MKT, SMB and HML factors 
are significant.

Robust time series model selection

While the robust regression results in Table 3 suggest that 
the FFC4 is a better factor model than the FF3, use of a 
proper model selection method that penalizes for over-fitting 
is needed when searching for a “best” model. The normal 
distribution theory based Akaike information criterion (AIC) 
criterion introduced by Akaike (1973) is commonly used 
for this purpose. In the case of time series linear regres-
sion models with sample size T and number of variables 
p ≤ pmax , the AIC model selection method chooses the 
model order p that minimizes Tlog(�̂�) + p , where �̂�2 is the 

(21)�2 = E

(

s�mOpt(u∕s)

E� �
mOpt

(u∕s)
− u

)2

(22)DK = △�̂
�

(

�𝛿2

T
�̂−1

�

)

△ �̂

Fig. 10  Normal qqplots of residuals from robust LS and mOpt fits of 
the FFC4 model to FNB 2008 weekly returns

Table 4  Tests for differences between the mOpt and LS overall model 
and individual coefficients

p values

MODEL MKT SMB HML MOM

FF3 Fit 0.000 0.476 0.822 0.000
FFC4 Fit 0.011 0.432 0.656 0.199 0.003

16 The expression for �2 takes into account the covariance between 
the LS and mOpt estimators, and the higher the correlation between 
LS and mOpt estimators the smaller the �2 will be. In the estimator 
version of the above expression, where the expectations are replaced 
by sample averages, the ui in the first term will be the mOpt fit residu-
als, the ui in the second term will be the LS fit residuals, and the esti-
mate ŝ of s will be the robust residuals scale estimate computed by 
the mOpt estimator.
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average of the squared regression residuals. The AIC cri-
terion lacks robustness in two ways, the first is the lack of 
robustness of the least squares coefficient estimates used to 
compute the residuals, and the second is that outliers can 
adversely influence the average of the squared residuals.17 
We propose to replace AIC with a robust final prediction 
error (RFPE) method that makes natural use of the mOpt 
robust regression method.

The RFPE method was motivated by the final prediction 
error (FPE) method introduced by Akaike (1969) in the 
context of estimating the order of an autoregressive time 
series. The FPE method chooses the autoregression order 
k that minimizes

where �̂�2

k
 is the average of the squared residuals from the 

least-squares fit. For linear regression models the FPE crite-
rion is used by considering a maximal linear model that has 
K predictor variables, computing FPE(k) for subset models 
indexed by Ck with k ≤ K predictor variables, and finding 
the subset C∗

k
 that minimizes FPE(k) . However, the FPE cri-

terion lacks robustness for the same reasons that the AIC 
lacks robustness

The RFPE robust model selection method is defined as 
follows using the mOpt regression estimator in an intuitive 
manner.18 Let

where the robust residuals scale estimate ŝ is computed for 
the maximal model Cmax with K predictor variables �̃Cmax,t

 . 

(23)
FPE(k) = �̂�2

k

T + k

T − k

≈ �̂�2

k

(

1 + 2
k

T

)

for k ≪ T

(24)�̂Ck
= argmin

�

[

T
∑

t=1

𝜌mOpt

(

rt − �̃ �
Ck ,t

�

ŝ

)]

This serves to provide a smallest robust scale that serves 
as an equitable scale reference across models with differ-
ent predictor variables. With robust residuals for the subset 
model Ck defined as

the RFPE is defined as

where

Note that if �mOpt(r) is replaced with the least squares rho 
function �(r) = r2 , then �(r) = 2r , � �(r) = 2 , and RFPE(Ck) 
is the same as the approximate version of (23).19

Ideally, one would like to choose a best model by evaluat-
ing RFPE(Ck) for all subsets of the full model CK . But this is 
often infeasible due the computing time required by a very 
large number of subsets unless K is rather small. However, 
a backward step-wise RFPE criterion selection method is 
feasible for the mOpt estimator, and is available in the the R 
package RobStatTM.20 We illustrate the use of the method 
for the problem of finding a best subset of the FFC4 factors 
for modeling the FNB stock returns, with the results shown 
in Table 5.

The Full Model columns of the table show the RFPE 
value 0.221 of the full FFC4 model in the All row, and sub-
sequent rows show the RFPE values for each of the 3-factor 

𝜖Ck ,t
= rt − �̃ �

Ck ,t
�̂Ck

, t = 1, 2,… , T .

(25)RFPE(Ck) =
1

T

T
∑

t=1

𝜌mOpt

(

𝜖Ck ,t

ŝ

)

+
k

T

A

B

(26)

A =
1

T

T
∑

t=1

𝜓2

mOpt

(

𝜖Ck ,t

ŝ

)

,

B =
1

T

T
∑

t=1

𝜓 �
mOpt

(

𝜖Ck ,t

ŝ

)

.

Table 5  RFPE backward step wise model selection from FNB ~ 
MKT + SMB + HML + MOM

Full model MKT+SMB+MOM

Factor RFPE Factor RFPE

ALL 0.221 ALL 0.217
MKT 0.235 MKT 0.248
SMB 0.234 SMB 0.23
HML 0.217 MOM 0.26
MOM 0.23

Table 6  AIC backward step wise model selection from FNB ~ MKT 
+ SMB + HML + MOM

FULL MODEL MKT+SMB+HML

Factor AIC Factor AIC

ALL – 294.6 ALL – 296.5
MKT – 284.5 MKT – 282.6
SMB – 292.1 SMB – 293.9
HML – 293 MOM – 292.4
MOM – 296.5

17 Similar comments apply to the Bayesian information criterion of 
Schwarz (1978) and Akaike (1978).
18 The same definition applies to other bounded rho function robust 
regression estimators.

19 Details concerning the derivation of (25) and (26) are available in 
Sections 5.6.2 and 5.13.7 of Maronna et al. (2019).
20 In particular, the function step.lmrobdetMM implements the 
method using as input the lmrobdetMM fitted model.
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models obtained by deleting each of the MKT, SMB, HML 
and MOM factors one at a time. Since the RFPE value 0.217 
obtained by deleting the HML factor is the smallest RFPE 
among all three deletions and it is smaller than the full four-
factor model RFPE value 0.221, this factor is deleted and 
results in the new All row value in the MKT+SMB+MOM 
columns of the table. Since none of the single factor dele-
tions of MKT, SMB and MOM result in a smaller value of 
RFPE than 0.221, the process stops with those three factors 
as the best subset of the four FFC4 factors. This result is 
quite consistent with FFC4-mOpt row of Table 3, where the 
HML factor is quite insignificant.

We also used least-squares based AIC model selection for 
the FFC4 factors, and the results are shown in Table 6. The 
AIC method results in deleting the MOM factor leaving the 
three factors MKT, SMB and HML as the best model. This 
is in reasonable agreement with the LS fit of the full FFC4 
set of factors to FNB that finds MOM quite insignificant and 
HML close to significant with a t-statistic value 1.8, but in 
disagreement with the above RFPE best set of factors where 
MOM is retained instead of HML. This shows that AIC, like 
LS, suffer from the adverse influence of outliers and can not 
serve as a reliable method for model selection.

While the above example is quite simple it suggests pos-
sible considerable usefulness of routine selection of time 
series factor model factors with RFPE. Among the many 
possible applications, one would be to model portfolio or 
asset style drift over time using RFPE model selection on a 
moving time window.

Summary and discussion

We introduced a theoretically well-justified mOpt robust 
regression method in the context of time series factor mod-
els. The efficacy of the mOpt regression in providing a good 
fit to the bulk of the data is demonstrated for both single 
factor and multifactor models where LS fits are adversely 
influenced by outliers. We also showed that the well-known 
Huber robust regression estimator is lacking in bias robust-
ness, both theoretically and in applications.

For the case of single factor model CAPM betas, we com-
pared the mOpt and LS estimates for two-year intervals of 
weekly returns of liquid stocks from the CRSP database for 
1963 to 2018. The lack of robustness toward outlier of the 
LS estimator is manifested in absolute beta value differences 
between mOpt and LS estimates of at least 0.3 for about 18% 
of the liquid stocks in the market, and at least 0.5 for about 
7.5% of those stocks. Our analysis showed that the lack of 
robustness of the LS estimator is revealed most frequently 

for microcap stocks, less frequently for smallcaps, and con-
siderably less frequently for bigcaps. Such differences can 
be of concern to a wide range of users of beta estimates.

For the Fama-French three-factor model (FF3) and the 
Fama-French-Carhart four-factor model (FFC4) fits to 
weekly stock returns that we studied, the mOpt estimator 
continues to produce good fits to the bulk of the data that 
differ significantly from LS fits. An important feature of 
mOpt is that in addition to robust coefficients, it computes 
robust t-statistics. For the FF3 model, the robust t-statistics 
lead to same significant Market, SMB and HML factors 
as the LS fit classical t-statistics. But for the FFC4 model 
the robust t-statistics result in significant Market, SMB 
and MOM factors, whereas the LS classical t-statistics 
only lead to significant Market and SMB factors. We also 
introduced a new test of significant difference between 
mOpt and LS estimates, and illustrated its usefulness in 
the context of FF3 and FFC4 model fitting. Finally, the 
new Robust Final Prediction Error (RFPE) model selec-
tion criterion produces better fitting factor models than the 
well-known normal distribution based AIC method, which 
is quite non-robust toward outliers.

The above results are only first steps in understanding the 
use of mOpt robust regression estimators, robust t-statistics, 
and RFPE model selection for time series multifactor mod-
els. Additional directions for further research include the 
following. The first is to carry out an in-depth empirical 
study of the relative performance of the mOpt versus LS 
fits of the FF3 and FFC4 models, and the RFPE versus AIC 
model selection, for cross sections of liquid stocks, similar to 
what we have done for single factor models herein. A second 
step will be to do a similar empirical study for other increas-
ingly popular multifactor models, e.g., the Fama and French 
(2015) 5-factor model, and the Hou et al. (2020) augmented 
q-factor model. Furthermore, it will be important to assess 
the efficacy of mOpt robust versus non-robust LS fits of mul-
tifactor models in evaluating the character and performance 
of funds, where individual stock returns outliers influence 
are mitigated by the portfolio nature of the funds, but the 
fund returns as well as the factors can none-the-less contain 
outliers. Finally, we have developed a vary natural way to 
robustify the Vasicek (1973) Bayesian beta estimates using 
the mOpt estimator, and it remains to study its empirical 
efficacy for cross sections of returns.

The results presented in this paper lead us to strongly 
recommend standard use of the mOpt robust regression 
estimator as a complement to least-squares for time series 
factor models research and applications, as well as a stand-
ard against which to evaluate alternative proposed robust 
regression methods.
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Appendix

The mOpt estimator psi function

The formula for the mOpt psi function is

where �(x) is the standard normal density function, and the 
constants a and c depend on the desired normal distribu-
tion efficiency. The corresponding rho function �mOpt,c(x) 
is obtained from the psi function �mOpt,c(x) by integration, 
and it is clear from the definition of the psi function that 
the rho function is constant outside the interval (−c,+c) . 
Details concerning the rho and psi functions, including how 
to determine the constants a and c to achieve a desired nor-
mal distribution efficiency are provided in Konis and Martin 
(2021). A 95% normal distribution efficiency is obtained 
with a = 0.0132 and c = 3.00.

Normal distribution efficiency

Since the asymptotic covariance matrices of regression 
M-estimators all have the form (6), one can define the 
normal distribution efficiency EFF(� ,Φ) of any regres-
sion M-estimator relative to the LS estimator as the ratio 
of Vloc(�LS;Φ) = s2 to Vloc(� ;Φ) , and in particular to 
Vloc(�mOpt ;Φ) in the case of the mOpt estimator. Using the 
formula (8) with F0 = Φ and � = �mOpt,c where c is the tun-
ing constant gives the following expression for the normal 
distribution efficiency of the mOpt estimator:

The value c = 3.00 used for the 95% normal distribution 
efficiency mOpt throughout this paper is easily obtained via 
numerical integration and root finding using the �mOpt,c for-
mula (27) as described in Konis and Martin (2021).

The expression (8) is the formula for a location M-estima-
tor asymptotic variance derived in Huber (1964).

mOpt coefficient estimates standard errors

The standard errors of regression M-estimator coefficient 
estimates 𝛽k,n of �̂n are computed using the formulas

(27)

𝜓mOpt,c(x) =

⎧

⎪

⎨

⎪

⎩

x �x� ≤ 1

𝜙(1)

𝜙(1) − a

�

x − SGN(x)
a

𝜙(x)

�

1 < �x� < c

0 �x� ≥ c .

(28)EFF(�mOpt,c,Φ) =

(

EΦ�
2

mOpt,c

(

�1
)

E2

Φ
� �
mOpt,c

(

�1
)

)−1

.

where v̂loc(𝜓) is an estimate of vloc(� ;F0) and �̂f̃ is an esti-
mator of the moment matrix �f̃ given by (7). The estimate 
̂vloc(𝜓mOpt) of the expression (8) with � = �mOpt is:

Note that for the LS estimator obtained when �(x) = x , the 
above expression reduces to the usual least squares unbiased 
estimate of the error variance with divisor equal to the sam-
ple size minus the number of parameters. The above stand-
ard errors are used in the usual way to compute t-statistics 
and p values.

In the RobStatTM package, the robust regression function 
lmrobdetMM for computing the mOpt regression estimate 
uses the moment matrix estimate

where the weights wt(�̂;ŝ) are given by (12). The motivation 
for the weights in the above expression is to down-weight 
outlier vectors �̃t for which the corresponding regression 
residual rt − �̃ �

t
�̂ is large, and thereby avoid adverse influence 

of such �̃t on the estimate �̂f̃ . Note that if �̃t is an outlier vec-
tor for which the regression residual is rt − �̃ �

t
�̂ sufficiently 

small then we will have wt(�̂;ŝ) = 1 , and correspondingly �̃t 
is not altered in the estimate �̂f̃ . It is argued in Section 5.6 
of Maronna et al. (2019) that under the normal distribution 
model �̂f̃ is a consistent estimator of �f̃.
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