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Abstract
By viewing portfolio optimization as a cooperative game played by the assets minimizing risk for a given return, investors 
can compute the exact value each security adds to the common payoff of the game. This is known the Shapley value that 
imputes the contribution of each asset, by looking at all the possible portfolios in which securities might participate. In this 
paper I use the Shapley value to decompose the risk and return of optimal portfolios that result from minimizing ordinary 
least squares. These regression portfolios are identical to tangency portfolios obtained by maximizing the Sharpe ratio of 
holdings on the mean-variance efficient frontiers. The Shapley value of individual assets is computed using the statistics 
resulting from the regressions. The value imputation prices assets by their comprehensive contribution to portfolio risk and 
return. This procedure allows investors to make unbiased decisions when analyzing the inherent risk of their holdings. By 
running OLS regressions, the Shapley value is calculated for asset allocation using Ibbotson’s aggregate financial data for 
the years 1926–2019.

Keywords  Efficient portfolios · Ordinary least-squares · Asset allocation

Introduction

The purpose of this paper is to apply Shapley value imputa-
tion (Shapley 1953) to optimal portfolios being generated 
by ordinary least-squared (OLS) regressions on financial 
assets. Recently, Shalit (2017) used the Shapley value to 
decompose the risk of optimal mean-variance (MV) and 
mean-Gini (MG) portfolios. The Shapley value originated 
from cooperative game theory where it was derived for the 
purpose of measuring the exact contribution of players in 
a game. Since then, it has become a standard measure in 
economics, political science, sports, and income inequality. 
As evidenced by the recent handbook edited by Algaba et al. 
(2019), Shapley value has become the norm by which com-
plex allocation problems are solved and priced. In finance, 
it has been shown to be most adequate in distributing costs 
of insurance companies, valuing corporate voting rights 
and attributing risk in the banking system. In investments 
and portfolio theory the use has been slower. Indeed, only 
recently have Ortmann (2016) and Colini-Baleschi et al. 

(2018) implemented the Shapley value for portfolio analysis 
and for pricing the market risk of individual assets.

The main idea behind the Shapley value is to look at 
all the feasible coalitions of participants in a cooperative 
game and calculate the benefits each player contributes to 
the common goal. As each contribution depends upon the 
order in which players join the coalition, the Shapley value 
is calculated by averaging the marginal contributions from 
the arrival of the various players to the specific coalitions.

Since portfolio optimization (minimizing risk for a given 
return) can be conceptualized as a cooperative game played 
by risky assets, the Shapley value is the natural tool for 
decomposing portfolio risk into its components. The con-
tribution of assets to the total investment is obtained by tabu-
lating all possible optimal portfolios constructed using all 
the combinations of available securities.

In the present paper, the Shapley value is applied to 
optimal portfolios obtained by running OLS regressions of 
stocks returns on a riskless asset. The main advantage of 
regression portfolios is that raw returns are used to com-
pute optimal portfolio weights without the need to estimate 
the variance–covariance matrix and the vector of expected 
returns as in standard MV optimization, thus preventing any 
sampling error in the efficient frontier. Regression portfo-
lios were developed by Jobson and Korkie (1982, 1983) in 
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order to use available econometric packages for optimizing 
MV portfolios. These authors applied the method to test for 
portfolio efficiency. In a sense, MV portfolio optimization 
and OLS regression minimization can be viewed as Siamese 
twins in that they use the same analytical tools from linear 
algebra to solve the problems.

The paper is laid out as follows: First, I introduce Shapley 
value theory and explain how it can be used to decompose 
an attribute such as income by it sources as formulated by 
Shorrocks (2013) for inequality measures. Applying the 
decomposition theory to financial risk and portfolios follows 
naturally because inequality and risk measures are closely 
related.

Then, I present Jobson and Korkie (1983) derivation of 
regression portfolios and establish the optimal weights of a 
tangency portfolio that maximizes the Sharpe ratio on the 
efficient frontier. This is the groundwork for demonstrat-
ing how optimal MV portfolios are obtained by running 
regressions.

Finally, I follow Lipovetsky and Conklin (2001, 2010) 
methodology to calculate the Shapley value of securities 
using Shapley value regression. The reason for this approach 
in portfolio analysis is that Shapley values enhance the 
contribution of predictors in OLS regressions. I use two 
approaches in this model: The first maximizes the coefficient 
of multiple determination R2 . The second approach mini-
mizes the optimal portfolio estimated variance. Combining 
Shapley value theory and regression portfolios theory for 
optimal portfolio analysis sheds the light on the true contri-
bution of risky assets in financial investments. The analytical 
results are exemplified using Ibbotson’s (2018) aggregate 
data on Stocks, Bonds, and Bills from 1926 to 2019.

On the Shapley value of cooperative games

In the following, I explain the concept of Shapley value 
decomposition for use in regression portfolios. The exposi-
tion draws considerably from Shorrocks (2013) who applied 
the Shapley value to decompose inequality measures by 
income factors. The investment model used in the present 
paper is a portfolio of stocks viewed as a cooperative game 
played by its assets to minimize risk for a specific mean 
return. The aim of the Shapley value is to measure the exact 
contribution of each player to the general outcome of the 
cooperative game. In a portfolio of securities, the optimiza-
tion outcome derives from the risk inherent in the portfolio. 
Hence, the Shapley value extracts the true and exact contri-
bution of each asset to the portfolio’s total risk.

It is important to understand that Shapley value theory 
ensures that the risk attributed to the various players in the 
portfolio is anonymous, so that the marginal contributions 
are independent of the order in which assets are added to 

or removed from the portfolio, and exact in the sense that 
all bear the entire risk.

Consider a stock market cooperative game whose pur-
pose is to minimize portfolio risk such as the variance. 
For a set N of n securities, the Shapley value calculates 
the contribution of each and every security in the portfo-
lio. To capture the symmetric and exact way each security 
contributes to the complete portfolio, we compute the risk 
v for each and every subset of stocks S ⊂ N  . In total, we 
have 2n subsets or coalitions including the empty set.

We proceed by computing the marginal contribution 
of each security to the risk of the subset portfolio it is a 
member of. For a given coalition, a security k in S contrib-
utes marginally to the subset portfolio by v(S) − v(S⧵{ k }) , 
where v(S) is the risk of portfolio S, and v(S⧵{k}) is the 
risk of the portfolio composed of S minus the security k. 
Portfolios are arranged in some given order, all of which 
are equally probable. Hence, S⧵{k} is the portfolio that 
precedes k, and its contribution to coalition S is computed 
when all the orderings of S are accounted for. Given all the 
equally probable orderings, one calculates their expected 
marginal contribution. Thus, it is necessary that the prob-
ability that, for a given ordering, the subset portfolio 
S ⊂ N , k ∈ S is union of security k and the securities that 
precede it. Two probabilities are used here: First, the prob-
ability that k is in s (s being the number of stocks in S) 
which is equal to 1/n, and second, that S⧵{k} arises when 
s − 1 securities are randomly chosen from N⧵{k} , that is 
(n − s)!(s − 1)!∕(n − 1)! .

The Shapley value for security k is obtained by averag-
ing the marginal contributions to the risk of all portfolios 
for a set of N securities and the risk function v, which is 
formulated as:

or alternatively

Naturally, adding the sum of all the Shapley values of all the 
assets in the portfolio equals its total risk as follows:

These equations are the basic formulas needed to calculate 
the Shapley values. On that basis, in the “Shapley value 
imputation of regression portfolios” section, I will define 
a cooperative game set in portfolio optimization and show 
how to set up its common payoff whenever it is played in a 
mean-variance framework.

(1)Shk(N, v) =
∑

S⊂N,k∈S

(n − s)!(n − 1)!

n!
[v(S) − v(S⧵{k})]

(2)Shk(N, v) =
∑

S⊂N,k∈S

s!(n − s − 1)!

n!
[v(S ∪ k) − v(S)]) .

(3)v(S) =

n
∑

k=0

Shk(N, v) .
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Regression portfolios

In the following section, I present my regression portfolio 
approach to MV investment analysis. The exposition draws 
on the works by Jobson and Korkie (1983) and Britten-Jones 
(1999) who developed the regression portfolio model in order 
to test for MV efficiency. The approach has been the subject 
of a dissertation by Brides (2009) and a presentation by Sefton 
(2007). In the present paper I use the OLS regression model 
to compute the Shapley values of assets forming optimal 
portfolios.

I start by constructing MV efficient portfolios. To do so, 
consider N risky linearly independent assets with excess 
returns X being returns minus the riskless rate. This choice 
of assets guarantees that the variance–covariance matrix of 
asset returns � is non-singular. The N-vector � denotes the 
assets’ expected excess returns, and w is the N-vector of port-
folio weights, such that 

∑N

i=1
wi = 1 . Short sales are allowed. 

The efficient portfolios are obtained by minimizing the port-
folio variance 1

2
�2

p
=

1

2
w
��w subject to a required mean return 

�p = w
�� and the portfolio constraint 1 = w

�
l , where l is an 

N-vector of ones. The standard optimization procedure con-
sists of minimizing the Lagrangian with two constraints and 
deriving the first-order conditions (FOC); the second-order 
conditions are satisfied by the non-singularity of �.

For the sake of exposition, we define the following quad-
ratic forms: A = l

��−1� , B = ���−1� , C = l
��−1

l , and 
D = BC − A2 . These scalars are positive since the matrix � is 
positive-definite. Using the FOC the optimal portfolio weights 
are obtained for a given mean return �p as:

These optimal weights allow us to delineate the efficiency 
frontier formulated in the standard deviation–mean space by 
the following hyperbola:

Among all the efficient portfolios available on the frontier, 
the one to be considered for the regression portfolio is the 
tangency portfolio that maximizes the Sharpe ratio �p∕�p . 
It is obtained by equating the Sharpe ratio to the slope of 
the efficient frontier given by Eq. (5). The mean return and 
variance of the resulting tangency portfolio are shown to 
be �p = B∕A and �2

p
= B∕A2 . Applying these results into 

Eq. (4) we derive the optimal tangency portfolio weights as:

(4)
w
∗
p
=

1

D
[B ⋅�−1

l − A ⋅�−1�] +
1

D
[C ⋅�−1� − A ⋅�−1

l]�p.

(5)�2

p
=

1

D
(C�2

p
− 2A�p + B).

(6)w =
�−1�

l
��−1�

.

The regression approach to portfolio analysis is an alterna-
tive to the method that uses the statistics parameters ( �,� ) 
as needed in Eq. (6). Indeed, the idea is to use the T obser-
vations of excess returns of the N risky assets, where raw 
returns are subtracted by the riskless rate. I perform this 
approach to portfolio selection by minimizing the squared 
deviations of the excess returns on the constructed portfolio 
and the excess returns on a perfect riskless position.

In line with the familiar OLS regression discourse, I 
change the notation as follows: Denote by X the T × N 
matrix of observations returns xt , by � the N-vector of port-
folio weights w . For every t from 1 to T, I create a portfolio 
whose returns are x′

t
� for a given set of weights � . Hence, for 

the entire sample T, portfolio returns are given by X� . Now, 
I express for each period t a perfect and desirable riskless 
portfolio with the high return of 1. For the entire sample, 
this perfect portfolio amounts to a T-vector of ones, labeled 
as � . The investor goal is to attain this perfect portfolio by 
choosing the weights that minimize the distance between X� 
and � . Basically, this results in an artificial OLS regression 
whose metric minimizes the squared deviations between the 
computed portfolio and the perfect one. By following Job-
son and Korkie (1983) exposition, we express the multiple 
regression model of the riskless vector � over the excess 
returns X as follows:

where � is the vector of error terms. The least-squares esti-
mator of portfolio weights �̂ is:

As the estimator for the mean vector is � = X
′�∕T  , 

and the estimator for the variance–covariance matrix is 
� = (X − ���)�(X − ���)∕T  we express the cross-product 
inverse (X′

X)−1as:

Therefore, by inserting this result into Eq. (8) we obtain the 
regression portfolio weights:

As we calibrate these weights so they add to 1, we are able 
to obtain the tangency portfolio weights shown in Eq. (6) as:

Although the regression approach to portfolio optimization 
can easily be used with any econometric package, some 

(7)� = X� + � ,

(8)�̂ = (X′
X)−1X�� .

(9)(X�
X)−1 = (� + ���)−1 = �−1 −

�−1����−1

1 + ���−1�
.

(10)�̂ =
�−1�

1 + ���−1�
.

(11)w =
�̂

l
��̂

=
�−1�

l
��−1�

.
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caveats are to be enumerated. First, we use as explanatory 
variables the excess returns and not the returns of uncorre-
lated risky assets. Second, the dependent variable is a non-
stochastic T-vector of ones. Third, there is no intercept; thus, 
some standard statistics cannot be used. Finally, once the 
regression is estimated, the estimates have to be scaled to 
obtain the optimal tangency portfolio weights.

Furthermore, we can use the regression approach to 
delineate the efficiency frontier by parameterizing the risk-
less perfect portfolio and moving it along the expected 
value vertical axis as done by Brides (2009) as follows: Let 
� be a scalar parameterizing the riskless vector � . Then, 
the new regression model � � = X� + � , subject to the 
portfolio constraint 1 = ��

l yields the solution:

The efficient frontier is depicted in Fig. 1 for the stock mar-
ket data modeled in “The Shapley value for asset allocation” 
section.

(12)𝜷(�) = (X′
X)−1X� � 𝜼 .

Shapley value imputation of regression 
portfolios

To calculate the Shapley value of the explanatory variables 
in a regression game, we need to specify the attributes to be 
decomposed. For any OLS analysis, they would be those 
attributes that characterize regression efficiency, such as the 
sum of squared residuals (SSR), which is to be minimized, 
or the coefficient of multiple determination R2 , which is to 
be maximized. To solve the question of general multicollin-
earity in OLS, Lipovetsky and Conklin (2001) were the first 
researchers to use the Shapley value to enhance the contri-
bution of predictors in the regression. Since Shapley value 
analysis is traditionally intended to maximize the gains in 
a game played by the regressors Lipovetsky and Conklin 
(2001) suggested to use R2 as the attribute to be considered.

Alternatively to the gains of a game, negative attributes 
such as inequality and risk measures can be decomposed into 
their factors as determined by Shorrocks (2013) and Shalit 
(2017) and Shapley values can be computed accordingly. 
Therefore, I present the Shapley value imputation for regres-
sion portfolios using the two attributes SSR and R2 that, as 
specified earlier, are not truly valid econometric statistics.

From OLS regression Eq. (7) the sum of squared residu-
als is established as:

Hence, the coefficient of multiple determination R2 becomes

Having defined the two attributes of the regression port-
folio, we can now impute the Shapley values for the indi-
vidual assets. The first attribute of the portfolio game to be 
maximized is the R2 in Eq. (14). The second attribute to be 
minimized is the variance of the tangency portfolio whose 
weights are given in Eq. (11). In the following I present the 
recipe to impute the Shapley value for each attribute.

Shapley value imputation using R2

When the goal of the game is to maximize R2 we imple-
ment the following procedure: 

(13)

SSR = (𝜼 − X𝜷̂ )�(𝜼 − X𝜷̂ )

= 𝜼�𝜼 − 2 𝜷X𝜼 + 𝜷′X
′
X𝜷̂

= T − 𝜂�X(X′
X)−1X�𝜼

= T − 𝜼�X𝜷.

(14)

R2 = 1 −
SSR

𝜼�𝜼

=
𝜼�X𝜷

T

= 𝜷̂𝜇

Fig. 1   Efficient frontier of regression portfolios
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1.	 Define all the 2N subsets of the assets in set N.
2.	 Calculate the excess returns by subtracting the riskless 

rate.
3.	 Run regressions on all the subsets when the dependent 

variable is the T-vector of ones �.
4.	 Compute the R2 in Eq. (14) for all regressions.
5.	 Following Eq. (2) the Shapley value for each stock i is 

obtained as 

6.	 The sum of the Shapley values is added to the coefficient 
of multiple determination R2 as follows: 

The Shapley value calculated from the portfolio 
variance

When we minimize the risk of the portfolio the procedure 
is as follows: 

1.	 Establish all 2N subsets of assets in set N.
2.	 Calculate the excess returns X by subtracting the riskless 

rate.
3.	 Run OLS regressions for all the subsets S ⊆ N when the 

dependent variable is the T-vector of ones �.
4.	 Get the regression portfolio coefficients �̂ = (X′

X)−1X�� 
and calibrate the weights to 1, w = �̂∕l��̂

5.	 Calculate the variance of the tangency portfolios for all 
subsets S ⊆ N as �2 = w

��w

6.	 The Shapley value for each stock i is obtained as 

7.	 The sum of Shapley values adds to the variance of the 
tangency portfolio for N securities: 

(15)

Shi(N,R
2) =

N−1
∑

s=1

∑

S⊂N⧵i

s!(N − s − 1)!

N!
[R2(S ∪ i) − R2(S)])

(16)R2 =

N
∑

i=1

Shi(N,R
2)

(17)

Shi(N, 𝜎
2) =

N−1
∑

s=1

∑

S⊂N⧵i

s!(N − s − 1)!

N!
[𝜎2(S ∪ i) − 𝜎2(S)])

Using the Shapley values from regression portfolios

Once we have established the Shapley values of a portfolio 
they are used to estimate the weighted risk of the assets as 
well as to price them. This basically replaces the role of the 
common beta or systematic risk. This approach differs in 
that beta uses the entire financial market to price the risk of 
a diversified security. The Shapley value, in contrast, com-
pares the risk to the portfolio the specific asset belongs to. 
Hence, Shapley values are dependent upon the portfolio at 
hand and can be regarded as the reservation price of risky 
securities. Consequently, as shown by Ortmann (2016) when 
the number of securities encompasses the entire stock mar-
ket, the Shapley value coincides with the standard systematic 
risk. The same result is obtained by Colin-Baldeschi et al. 
(2017) who used the portfolio approach to alleviate the com-
plexity involved in calculating the Shapley value for a large 
number of players.

The Shapley value for asset allocation

To quantify the Shapley values in regression portfolios, 
I analyze six classes of US assets from Ibbotson’s aggre-
gate data on stocks, bonds, and bills. The data consist of 
1124 monthly nominal returns from January 1926 through 
August 2019 for six indices of US financial assets: large-
company stocks (LCS), small-company stocks (SCS), long-
term corporate bonds (LCB), long-term government bonds 
(LGB), intermediate-term government bonds (IGB), and US 
treasury bills (TB). The summary statistics are presented 
in Table 1, together with two normality tests, the standard 
Jarque–Bera statistic and the Kolmogorov–Smirnov statis-
tic for the OLS test by Shalit (2012). The two tests reject 
normality, implying that a mean-variance portfolio may not 
be the most appropriate investment model. As supported 
by Yitzhaki (1982) and Shalit and Yitzhaki (1984) in this 
instance, it is my opinion the mean-Gini (MG) portfolio 
model is more suitable. However, the MG regression portfo-
lio model has not as yet fully developed for implementation. 

(18)�2 =

N
∑

i=1

Shi(N, �
2).

Table 1   Ibbotson’s Monthly 
Returns 1926-2019

Statistics LCS SCS LCB LGB IGB TB

Mean 0.95% 1.25% 0.52% 0.49% 0.43% 0.27%
Std dev 5.38% 8.13% 2.17% 2.44% 1.25% 0.25%
JB-stat 4402.4 8046.2 2083.5 1005.6 3878.4 315.8
KS-OLS 0.127 0.810 0.545 0.197 0.301 0.092
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Thus, it is my aim to apply the Shapley value imputation to 
regression portfolios and to provide a better estimation to the 
MV model and the risk factors attributed to the individual 
assets. I proceed to do this now.

The first step is to calculate the weights of the assets 
forming the optimal portfolio with respect to the various 
approaches elaborated in “Regression portfolios” section. 
The results following Eq. (6) are reported in Table 2. As can 
be seen, the tangency portfolio, the T-bills, and T-bonds have 
the largest shares, with 97% for the T-bills and a 1.156% 
short position for the T-bonds. The flight to the safer and 
most liquid asset reflects the affinity of the MV tangency 
optimal portfolio to avoid riskier positions when using 93 
years of monthly data. Undoubtedly, if data from the recent 
turbulence in the stock market owing to the Covid-19 virus 
crisis were included in the sample, this feature would be 
even more pronounced.

The results for the regression portfolio are exhibited in 
the second row with the scaled results shown on row 3. As 
expected, they yield the same values, which supports the 
ease of using OLS as an optimization tool and how it pro-
vides the analyst with accurate results.

Now, let us use the Shapley value to analyze the risk fac-
tors of efficient portfolio holdings . As we are concerned 
with optimal portfolios on the frontier and, in particular, 
with the tangency portfolio, our purpose is to ascertain that 
the greater the risk an asset exhibits the greater is its mean 
return. The Shapley values results are shown in Table 3. 
Following Eq. (15) the Shapley values obtained by using 
R
2 demonstrate the decomposition of the regression good-

ness of fit among the portfolio assets. The Shapley value 
contributions are not only related to risk factors, but also 

reflect the relative importance of assets in building a perfect 
riskless portfolio using the regression model. The Shapley 
values obtained in Table 3 add up to R2 = 0.555, with the 
large-company stocks (LCS) and small-company stocks 
(SCS) contributing only 0.018 and bonds and bills support-
ing most of the regression. T-bills have a Shapley value of 
0.466 meaning they contribute 84% of the least-squares 
explanation. This emphasizes the importance of T-bills in 
producing a perfectly riskless portfolio with the highest 
mean return available.

Alternatively for the regression optimal portfolio, follow-
ing Eq. (17), we calculate the Shapley values by decompos-
ing the unexplained standard deviation from the regression 
by its risk factors. Here, we observe negative Shapley values 
for some assets meaning that investing in those decreases 
risk while increasing portfolio mean return. For example, 
T-bills having a Shapley value of -1.447 % imply that the 
portfolio standard deviation decreases by that amount as 
mean return increases. Comparing T-bills with the small 
company, shows that the former reduces risk, whereas the 
latter increases risk in the same proportion. This implies that 
investors who shorted T-bills and invested the proceeds into 
small company stocks benefited more than by investing in 
blue chips and corporate bonds.

Concluding remarks

The regression approach to optimize mean-variance port-
folios enables the analyst to obtain an efficient frontier that 
is not subject to sampling errors. Combining that approach 
with Shapley value theory makes it possible to extract 

Table 2   Holdings of Tangency Optimal Portfolio, Monthly Data 1929-2019

LCS SCS LCB LGB IGB TB

Weights �
−1�

l
��−1�

Eq. (6) 0.321% 0.295% 2.017% − 1.156% 1.555% 96.97%

OLS(X′
X)−1X�� Eq. (9) 0.629 0.577 3.949 − 2.265 3.044 189.9

OLS normalized Eq. (10) 0.321% 0.295% 2.017% − 1.156% 1.555% 96.97%
Mean = 0.283% Std Dev=0.254%

Table 3   Shapley Values of the OLS Optimal Portfolio

LCS SCS LCB LGB IGB TB

� 0.629 0.577 3.949 − 2.265 3.044 189.9
�∕l�� 0.321% 0.295% 2.017% − 1.156% 1.555% 96.97%
SV using R2 Eq. (14) 0.010 0.008 0.015 0.012 0.043 0.466
Relative SV R2 1.80% 1.46% 2.77% 2.23% 7.72% 84.0%
SV using � Eq. (16) 0.807% 1.372% − 0.017% 0.046% − 0.51% − 1.447%
Relative SV � 3.18 5.40 − 0.07 0.18 − 1.20 − 5.70
R2 = 0.555 Mean = 0.283% Std Dev = 0.254%
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alternative systematic risks that are sensitive to the given 
portfolios. Hence, we can determine the price of including 
an asset in a MV portfolio based on its true contribution to 
risk and return. This methodology is not to be confused with 
the Shapley value regression developed by Lipovetsky and 
Conklin (2001, 2010) where the purpose of the model is to 
remedy multicollinearity.
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