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Abstract
We study a model introducing interactions in agents’ prevention effort, including 
both the case where agents’ efforts reinforce each others and the case where they 
are conflicting. We characterize best response functions, distinguishing the case of 
strategic complementarity and the case of strategic substitutability, and determine 
the features of Nash equilibria in both cases. We find conditions for under- and over-
provision of prevention compared to its socially optimal level. Finally, we specialize 
our model to describe the risk of COVID-19 infection. We show the features of 
contagion are consistent with the existence of asymmetric equilibria and we provide 
arguments in favor of policy interventions, such as making face masks mandatory, 
despite the possibility that they reduce some agents’ effort.

Keywords Prevention · Interaction · COVID-19 · Contagion

JEL Classification D81 · C72 · I12

1 Introduction

The risk of incurring bad events is frequent in the lives of individual decision mak-
ers, and risk prevention is a typical way of dealing with this risk. Prevention can be 
defined as an action which reduces the probability that a bad event will occur and is 
made by a decision maker by exerting some kind of costly effort. Starting with the 
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seminal article by Ehrlich and Becker (1972), many aspects of prevention have been 
studied in decision theory literature.1

Prevention, however, often entails interactions between different decision makers. 
In fact, when an individual tries to prevent a bad event and reduces the probability 
that this event will occur for himself, he often also affects the probability that a 
similar event will occur for someone else. A good example of this can be seen in 
the recent COVID-19 pandemic, where it is very clear that when one person takes 
protective measures, such as wearing a mask or washing hands, he reduces not only 
his own probability of contagion but also the probability of contagion for other 
people. Other examples can be easily found, affecting other aspects of everyday life. 
Not drinking before driving and driving carefully will reduce the probability of an 
accident not only for the driver but also for other road users. The installation of a fire 
prevention system in one factory will reduce the probability of fire in neighboring 
factories too. The use of a baggage screening system by one airline will reduce the 
probability of successful terrorist attack not only on airplanes operated by such 
airline but also on other airplanes where baggage could be transferred.

These are cases where, trying to prevent a risk for himself, a decision maker 
generates a reduction in the probability that the bad event will occur to others. 
However, the opposite effect is also possible; in some cases, if one agent prevents 
something for himself, he increases the probability that it will occur for another 
agent. Consider the following examples. Installing a burglar alarm and putting iron 
bars on windows will reduce the probability of burglary in one’s own home, but it 
will increase the probability that the burglar targets a neighbor’s house. A scarecrow 
in a field will reduce the probability that birds eat wheat in that field but will increase 
the probability that they eat wheat in neighboring fields. Hiring a good lawyer will 
increase one party’s probability of winning a trial, but it will also increase the 
probability that the other party loses. Actions aiming to lower the probability that 
a hazardous waste site is sited in one location will increase the probability that it is 
sited in an alternative location.

The first aim of this paper is to study the implications of interaction in preventive 
actions taken by two different decision makers in the standard Ehrlich and Becker 
(1972) prevention model. In this framework, we study strategic decisions, find 
the optimal choice for each decision maker and determine the decentralized Nash 
equilibria. Coherently with the reasoning above, our analysis distinguishes the case 
where the two decision makers’ efforts in prevention reinforce each other (the effort 
of one decision maker reduces the probability of a bad event for the other) and the 

1 Dionne and Eeckhoudt (1985), Briys and Schlesinger (1990), Jullien et al. (1999) and Eeckhoudt and 
Gollier (2005) examine the role of preferences in determining optimal choices on prevention. Sweeney 
and Beard (1992) consider the effect of a change in the size of the possible loss. Jindapon and Neilson 
(2007) study the implications of the introduction of random wealth in both states of nature. Menegatti 
(2009) analyses prevention in a multi-period context. Eeckhoudt et  al. (2012) and Courbage and Rey 
(2012) examine the effects of the introduction of a background risk. Chuang et al. (2013) and Crainich 
et al. (2016) consider the effects of changes in risk of different orders. Lastly, note that many papers refer 
to “self-protection” as “prevention” and “self-protection” are often used as synonyms in the literature.
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case where the two efforts conflict (the effort of one decision maker increases the 
probability that the other incurs a bad event).

Moreover, the presence of possible interactions between prevention activities 
opens up the issue of comparison between choices made by individuals in a 
decentralized decision process and optimal choices for society as a whole. This issue 
is associated with the presence of inefficiency, in that an individual agent does not 
internalize spillover effects on other agents into his decision process. The second 
aim of this study is to examine this issue by comparing decentralized equilibria and 
a centralized economy where a planner chooses optimal levels of prevention for all 
agents.

Section 2 discusses in detail the differences between the present paper and related 
contributions in the literature. Briefly, the main novelties of our work lie in the fact 
that, to our knowledge, it is the first analysis of interaction nesting the approach to 
prevention introduced by Ehrlich and Becker (1972), and the first which generalizes 
to interactions acting in both directions. This general analysis generates new results 
which can be summarized as follows.

First, we show that interactions in prevention may result in agents’ prevention 
efforts being either strategic complements or strategic substitutes, depending on 
the particular case. The resulting multiple equilibria can be characterized either by 
similar choices made by both agents (high or low level of effort for both agents) or 
by different choices (high effort for one agent and low effort for the other), also in 
the case when the two agents are ex ante identical. As shown in next section, this 
conclusion is more general than the results usually obtained in the literature.

Our analysis also suggests that in a decentralized economy there may be either 
under-provision or over-provision of prevention, and characterizes the circumstances 
where these different cases arise. This suggests that optimal policy intervention will 
be in different directions according to the situation.

Lastly, it is worth noting that whether efforts are strategic complements or 
substitutes is directly related to effort being reinforcing or conflicting only in the 
simplest situations. In general, it depends on the effect of one agent’s effort on 
the other agent’s marginal cost and marginal benefit of prevention. We provide a 
condition on the cross-derivative of the probability of risk, framed as the comparison 
of the two related elasticities, that determines which effect prevails, depending on 
the form of the utility function and on the link between one agent’s effort and the 
other’s probability of loss.

As noted above, the recent COVID-19 pandemic is a very good example of a 
situation where there is interaction between agents’ choices on prevention.2 Starting 
from this premise, this study provides a simple application of our general analysis 
to the use of face masks in preventing contagion. The results provide a possible 
explanation, based on strategic interaction, for evidence from many countries that 
effort levels in prevention during the pandemic varied significantly between people 
in terms of individual prevention. Moreover, our analysis provides a new theoretical 

2 In general, the prevention model has been applied to health problems (e.g., Courbage and Rey 2006; 
Menegatti 2014; Nuscheler and Roeder 2016; Crainich et al. 2019).
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argument, based on the comparison between decentralized and centralized 
equilibria, for the measures taken in many countries to push people to increase their 
effort in preventing infection.

The article proceeds as follows. Section  2 briefly presents related literature. 
Section 3 describes the framework and studies individual choices. Section 4 analyzes 
the equilibria determined by interactions. Section 5 compares these equilibria with 
those of a centralized economy. Section  6 considers the application to face mask 
wearing during a pandemic. Lastly, Sect. 7 concludes.

2  Related literature

The issue of interaction in preventive actions has been examined, in frameworks 
different from that of Ehrlich and Becker (1972), in several other works: Kunreuther 
and Heal (2003), Heal and Kunreuther (2005), Muermann and Kunreuther (2008), 
Hofmann (2007) and Hofmann and Rothschild (2019).

Most of these studies consider a binary choice between exerting preventive 
effort (entirely removing the risk) and exerting no effort (facing the risk). The 
present study, on the other hand, by nesting the approach taken by Ehrlich and 
Becker (1972), studies prevention effort as a continuous variable, and thus allows 
for infinite intermediate choices. Muermann and Kunreuther (2008) study a model 
where prevention effort is a continuous variable, but where the decision maker also 
totally removes the risk by buying insurance. Similarly, with the sole exception 
of (Kunreuther and Heal 2003), the other studies noted above introduce insurance 
together with prevention, and their results often depend on the specific kind of 
insurance contract or market referred to. The mentioned studies also focus on the 
case where prevention made by one agent reduces the probability of bad events 
for the other, termed “reinforcing effort” in the present paper. As noted above, the 
framework used in our analysis considers conflicting efforts as well as reinforcing 
efforts.

These differences are significant, since they result in both cases where agents 
efforts are strategic complements and cases where they are strategic substitutes, 
which has significant implications for the equilibria. Besides the features of 
equilibria, the differences are also crucial for determining how features of the 
utility function affect the distinction between these two cases. In the literature listed 
above, interactions always determine positive externalities between agents, usually 
generating under-provision of prevention in a decentralized equilibrium.3 The 
present paper, instead, identifies both cases of under-provision and cases of over-
provision of preventive effort.

Lohse et  al. (2012) analyze a framework where the probability that a bad 
event occurs is a decreasing function of the total investment in a public good. 
They show that, under certain restrictions on agents utility function, agents’ 

3 Some specific cases of over-provision exist in Hofmann and Rothschild (2019), but they result from the 
interaction with a specific form of the insurance market.
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individual investments in the public good are strategic substitutes. However, the 
interaction takes a more specific form than in the present paper, since it is the 
sum of agents’ investments that determines the level of prevention. Moreover, 
comparing the decentralized equilibrium with the social optimum, Lohse et  al. 
(2012) unambiguously obtain under-provision of prevention, in the form of under-
investment in the public good.

Salanié and Treich (2020) recently studied a model of infection prevention in a 
pandemic where the probability of contagion of one agent negatively depends on 
the prevention effort of other agents. The work deviates from the standard model 
of prevention by Ehrlich and Becker (1972) and instead considers a formalization 
based on Hoy and Polborn (2015), which involves a continuum of agents with 
specific parametrized utilities. Moreover, Salanié and Treich (2020) focus on the 
introduction of compulsory prevention efforts which can generate perverse effects 
on contagion by pushing people to have more physical contacts with others. Their 
mechanism, founded on a policy intervention, is completely different from that in 
the present paper. In particular, Salanié and Treich (2020) examine a case where a 
policy intervention on a dimension of prevention effort reduces effort in a different 
dimension, while our paper investigates how over- and under-provision of prevention 
depend on strategic interaction. The policy implications from Salanié and Treich 
(2020) also differ from ours.4

From a mathematical point of view, our model also shares certain elements 
with two different strands of literature. The case where two decision makers’ effort 
conflict exhibits similarities with rent-seeking models, pioneered by Tullock (1980) 
and studied under risk aversion by Konrad and Schlesinger (1997).5 On the other 
hand, the case where the efforts of two decision makerss effort reinforce each 
other exhibits some mathematical similarities with models of production in teams 
(Holmstrom 1982; Rasmusen 1987). Both these two groups of mentioned works, 
however, significantly differ from the present paper not only for the topic analyzed 
but also in their analysis, as in, for instance, the assumption of perfect (either 
negative or positive) correlation of agents’ outcomes which characterizes both.

3  Individual choices

Consider two Decision Makers, Decision Maker A (DM A) and Decision Maker 
B (DM B) whose preferences are represented, respectively, by the utility functions 
U(x) and V(x), exhibiting non-satiation ( 𝜕U(x)

𝜕x
= U�(x) > 0 and 𝜕(x)V

𝜕x
= V �(x) > 0 ), 

and risk aversion ( 𝜕
2U(x)

𝜕x2
= U��(x) < 0 and 𝜕

2V(x)

𝜕x2
= V ��(x) < 0 ). DM A (respectively 

DM B) has an initial wealth equal to W (respectively Z) and faces the risk of incur-
ring the loss K (respectively L) with probability p (respectively q).

4 See Footnote 14.
5 The literature on the rent-seeking model under risk aversion has subsequently evolved in different 
directions (Cornes and Hartley 2003; Treich 2010; Liu et al. 2018; Menegatti 2021a).
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Each DM can exert a costly effort to reduce the probability of incurring the loss, 
implying that p is a decreasing function of DM A’s effort a and q is a decreasing 
function of DM B’s effort b (with W − K ≥ a ≥ 0 and Z − L ≥ b ≥ 0 ). Consist-
ently with the literature, we assume that the marginal effect of effort is decreasing 
in the level of effort, which requires that p and q are convex functions of a and b, 
respectively.

This framework is the traditional Ehrlich and Becker (1972) model of prevention 
with the only exception that we consider two DMs instead of one. We now intro-
duce interactions by assuming that p depends not only on a but also on b and that 
q depends not only on b but also on a. Hence in our framework p = p(a, b) and 
q = q(b, a) , where previous assumptions imply pa(a, b) =

𝜕p

𝜕a
< 0 , qb(b, a) =

𝜕q

𝜕b
< 0 , 

paa(a, b) =
𝜕2p

𝜕a2
> 0 and qbb(b, a) =

𝜕2q

𝜕b2
> 0 . We distinguish two cases. In the first 

case, efforts are reinforcing: the effort of one DM reduces the probability that the 
other DM faces the bad event. In this case pb(a, b) < 0 and qa(b, a) < 0 . In the sec-
ond case efforts are conflicting: the effort of one DM increases the probability that 
the other DM faces the bad event. In this case pb(a, b) > 0 and qa(b, a) > 0 . Finally, 
we denote the mixed partial derivatives of probabilities as pab(a, b) =

�2p

�a�b
 and 

qab(b, a) =
�2p

�a�b
.

In this context, DM A chooses effort a in order to maximize the following value 
function U:

A perfectly symmetric maximization problem is faced by DM B.
The first-order condition (FOC) for Problem (1) (DM A) is:

Condition (2) has a clear and simple interpretation: it requires equality between 
marginal benefit of prevention ( pa(a, b)[U(W − K − a) − U(W − a)] ) and marginal 
cost of prevention ( p(a, b)U�(W − K − a) − [1 − p(a, b)]U�(W − a)).

Following Jullien et  al. (1999), we assume that paa(a, b)p(a, b) ≥ 2(pa(a, b))
2 

everywhere, which ensures that a DM’s best response is unique.6 An analogous 
condition is assumed to hold for DM B. Hence, best responses are well defined 
functions, and since by Berge’s maximum theorem they are upper hemicontinuous 
correspondences, they are continuous functions.

Clearly, both terms in Eq. (2) depend on the effort of both DMs: by applying the 

Implicit Function Theorem we immediately obtain that da
∗(b)

db
= −

�MA

�b
�MA

�a

 and hence DM 

(1)maxa U(a, b) = p(a, b)U(W − K − a) + [1 − p(a, b)]U(W − a).

(2)
Ma(a, b) =

�U(a, b)

�a

= pa(a, b)[U(W − K − a) − U(W − a)]

− p(a, b)U�(W − K − a) − [1 − p(a, b)]U�(W − a) = 0.

6 A simpler alternative is to assume global concavity of U.
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A’s response curve is increasing (respectively decreasing) whenever �MA

�b
 is positive 

(negative).
In turn,

The sign of �MA

�b
 depends on the signs of both pb and of pab . As already noted, the 

sign of pb discriminates between the case where the two efforts reinforce each other 
( pb < 0 ) and where they are conflicting ( pb > 0 ). The sign of pab(a, b) is difficult 
to determine a priori. Indeed, the cross-derivative measures the marginal effect of a 
DM’s effort on the marginal effectiveness of the other DM’s effort, and it can thus 
be either positive, null, or negative.7

Lastly, note that pb and pab have specific effects on the elements of (2), since the 
sign of pb determines how b affects the marginal cost of A’s own prevention, while 
the sign of pab determines how b affects the marginal benefit of A’s own prevention.

We observe that if 𝜕MA

𝜕b
> 0 for all possible levels of effort of the two DMs, then 

the function U is supermodular, DM A’s best response curve is increasing, and 
agents’ efforts are strategic complements. Vice-versa, if 𝜕MA

𝜕b
< 0 for all levels of 

effort, then U is submodular, DM A’s best response curve is decreasing, and agents’ 
efforts are strategic substitutes.

The implications of the possible signs of pB and of pab for Eq. (3) can be 
summarized as follows: 

(a) If pb and pab both have a positive (respectively negative) sign, an increase in b 
increases (reduces) the marginal cost of a. The two changes affect choices in the 
same direction, generating an incentive to increase (decrease) a. Analytically, �MA

�b
 

is positive (negative), implying that the reaction curve is increasing (decreasing). 
This includes the case of pab = 0.

(b) If pb and pab have opposite signs, a change in b affects the marginal benefit and 
cost of a in the same direction — these changes in turn affecting the choice of a 
in opposite directions. The slope of the reaction curve depends on which effect 
prevails.

Given these cases, a general result can be established:

Lemma 1 (i) Wherever pb(a∗, b) < 0 , the best response curve is increasing if

(3)
�MA

�b
= pab(a, b)[U(W − K − a) − U(W − a)]

+ pb(a, b)[U
�(W − a) − U�(W − K − a)]

7 Note that when pab < 0 the effort of DM B increases the absolute value of the marginal effect of DM A 
effort, whereas when pab > 0 the effort of DM B reduces the absolute value of the marginal effect of DM 
A effort ( pa being always negative). This means that, when pab < 0 , a has a stronger marginal effective-
ness for larger of values of b, while the opposite occurs when pab > 0.
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where a∗ is the best response of DM A) and decreasing if the reversed inequality 
holds.

(ii) Conversely, wherever pb(a∗, b) > 0 , the best response curve a∗ is decreasing 
if Condition (4) holds and increasing if the reversed inequality holds.

Proof The proof is trivial, as inequality (4) directly comes from Eq. (3).   ◻

The conclusions of Lemma 1 are summarized in Table 1 and provide a general 
rule for discriminating between the case where efforts are strategic complements 
and those where they are strategic substitutes.

The economic implications of Condition (4) become more evident when we con-
sider that apab

pb
 is the elasticity of pb with respect to a and that aU�(W−K−a)−U�(W−a)

U(W−K−a)−U(W−a)
 is 

the elasticity of the utility loss of being in the bad state of nature with respect to a.8 
Thus Condition (4) is satisfied if, when a changes, the elasticity of the marginal 
effect of b on the probability of occurrence of loss for DM A is greater than the 
elasticity of the utility loss of DM A.

In particular, we provide a possible interpretation for this condition when pb > 0 . 
Similar interpretations hold in the other cases. An increase in b raises the probability 
that a bad event for DM A occurs. Assume now that DM A increases a in response 
to the increase in b. This implies that the utility loss decreases in absolute value 
because of risk aversion (i.e., U��(.) < 0 ). On the other hand, the marginal effect of 
b on p can be reduced by the increase in a. If this second effect is stronger than the 
first one, then the optimal response entails an increase in a. Clearly, the first of the 

(4)a∗
pab(a

∗, b)

pb(a
∗, b)

> a∗
U�(W − K − a∗) − U�(W − a∗)

U(W − K − a∗) − U(W − a∗)
,

Table 1  Summary of the slope of the reaction function

8 Notice that this elasticity is always negative.
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two elasticities is related to the marginal benefit of prevention and the second to its 
marginal cost, also determined by risk aversion.

While the truth value of Condition (4) depends on the values of a and b, an 
interesting aspect is that the right term is independent of b. Hence, depending 
on how the left term changes in b we can characterize the space of points (a, b) 
where a is increasing in b. The ratio in the right term of Condition (4) is closely 
related to the coefficient of absolute risk aversion for U.9 For the specific case of 
CARA utility U(x) = 1 − e−�x , the ratio takes value −� , with � the Arrow-Pratt 
coefficient of absolute risk aversion, and the initial level of income is irrelevant 
for the prevention decision. If instead DMs exhibit decreasing absolute risk 
aversion, we obtain that the absolute value of the ratio is increasing in effort.

The reasoning followed for DM A also implies that DM B has a reaction 
function where the optimal level of b he chooses depends on the value of a. The 
shape of this reaction function depends on a condition analogous to (4).

It is worth noting that, while Lemma 1 is a local result (that is, condition (4) 
may hold only for specific values of b), when both DM’s reactions functions are 
increasing for all possible effort levels, efforts are strategic complements and 
the game described in this section is a supermodular game (See Topkis 1979; 
Milgrom and Roberts 1990). Vice-versa, if the reaction functions are decreasing 
everywhere, efforts are strategic substitutes and the game where U  is replaced by 
−U  is a supermodular game. This conclusion will be significant for part of the 
analysis of equilibria presented in next section.

4  Equilibria

Given the individual choices of DMs A and B studied in Sect.  2, we can now 
easily derive the equilibria of the model in the case of decentralized decisions. A 
first general result is the following:

Proposition 1 At least one Nash equilibrium necessarily exists.

Proof See Appendix.   ◻

Notice that this result can be seen as a consequence of supermodularity 
(submodularity) in the case in which both best responses are increasing 
(decreasing) everywhere, but holds in general. Hereafter, however, we will 
focus on the case where both DMs have either globally increasing or globally 
decreasing reaction functions.

9 In particular the ratio tends to the index of absolute risk aversion when K tends to 0. In general, the 
ratio in the right term of (4) can be seen as a kind of index of absolute risk aversion where instead of 
considering an infinitesimal variation in wealth in point W − a we consider a discrete variation in wealth 
from W − a − K to W − a.
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Equilibria can be studied graphically by drawing the two reaction functions of 
DMs A and B in the same Cartesian diagram where b and a are put on the two 
axes. As depicted in panels (a)–(b) and (c)–(d), respectively, of Fig.  1, either a 
single equilibrium or multiple equilibria can occur.

In the case of multiple equilibria, we have the following results:

Proposition 2 Moving from one equilibrium to another one, both a and b change in 
the same direction (i.e., either they both increase or they both decrease) if reaction 
curves are increasing (see Lemma 1), whereas they change in opposite directions 
(i.e., one increases and the other decreases) if reaction curves are decreasing.

Proof See Appendix.   ◻

Figure  1c and d illustrate, respectively, the two cases of Proposition 2. A 
special case of Proposition 2 is obtained under the assumption of Case a) 
presented in Sect. 3 (see also Table 1), where we have:

Corollary 1 If pb < 0 , pab ≤ 0 , qa < 0 and qab ≤ 0 , moving from one equilibrium to 
another, the levels of a and b both change in the same direction. If pb > 0 , pab ≥ 0 , 
qa > 0 , qab ≥ 0 , moving from one equilibrium to another, the levels of a and b 
change in opposite directions.

b

a

a∗

b∗

x

(a)

b

a

b∗

a∗

x

(b)
b

a

b∗

a∗

x2

x1

(c)

b

a

a∗

b∗

x2

x1

(d)

Fig. 1  Nash equilibria with increasing and decreasing best response curves
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Different comparative results can be derived. First, the supermodularity or sub-
modularity of the two DM’s value functions results in a Pareto ranking of Nash 
equilibria, as shown by Milgrom and Roberts (1990):

Proposition 3 In the case of reinforcing (respectively conflicting) efforts, if reaction 
curves are increasing (see Lemma 1), all Nash equilibria are Pareto ranked and 
Pareto efficiency increases (respectively decreases) with DMs efforts.

Vice-versa, if reaction functions are decreasing, we have:

Proposition 4 If the reaction functions are decreasing, no Nash equilibria Pareto 
dominates any other.

Proof See Appendix.   ◻

Proposition 3 has an interesting interpretation. In case of reinforcing efforts, both 
DMs prefer the equilibrium where efforts are largest, whereas in case of conflicting 
efforts, they both prefer the equilibrium where efforts are smallest. But, as there is 
no coordination, the DMs cannot necessarily reach this preferred equilibrium, and it 
is possible that a different equilibrium emerges. This suggests that a kind of “under-
prevention” may arise in case of reinforcing efforts and a kind of “over-prevention” 
may arise when efforts are conflicting. A similar conclusion, although in a different 
sense, is obtained in the next section when comparing a decentralized economy with 
a centralized economy. On the other hand, Proposition 4 shows that if efforts are 
strategic substitutes, the preferred equilibrium for one agent is always different from 
that for the other.

The following result, which holds even for non-monotonic response functions, 
completes our analysis of Pareto efficiency of Nash equilibria.

Proposition 5 In the case of conflicting efforts ( pb > 0 , qa > 0 ), any Nash equilib-
rium in the interior of the action space is Pareto inefficient.

Proof See Appendix.   ◻

Proposition 5 suggests that contexts with positive conflicting efforts result in 
Pareto-inefficient individual choices, as a coordinated choice with less effort for 
both agents could increase both agent’s utility. This conclusion resembles that of 
Proposition 3, but it holds more generally.

5  Centralized economy

This section discusses the optimal choice of a and b to be made by a centralized 
planner who chooses the levels of both efforts in order to maximize a weighted sum 
of both DMs’ utilities. The maximization problem of the planner is thus
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Notice that the literature often considers the case where where � = � = 1 
(Muermann and Kunreuther 2008; Hofmann 2007).10 However, the weights � and � 
guarantee that the solutions to Eq. (5) span all possible Pareto optimal allocations of 
effort (Varian 1976). The FOC with respect to a is hence:

and the FOC with respect to b is perfectly symmetric.
In line with the analysis of Nash equilibria in Sect. 4, we assume that for any level 

of a (or b), the maximization problem has a unique solution: a sufficient condition 
for this to hold is that C is globally concave.11

Condition (6) can be directly interpreted as the one-dimensional optimization 
of a DM’s effort conditioned on the level of the other DM’s effort from the social 
planner’s point of view, rather than, as previously analyzed, from the DM’s point of 
view. In this respect, the last addend in (6) has a simple interpretation: it captures 
the spillover of DM A’s effort on DM B’s probability of occurrence of the bad event. 
This spillover is clearly taken into account by the planner, but not by the individual 
DM when he chooses his optimal effort (as in Sect. 3).

With reference to the comparison between centralized and decentralized 
equilibria, we obtain the following results:

Lemma 2 Given a Nash equilibrium under reinforcing (respectively conflicting) 
efforts, C has a maximum where at least one of the two agents exerts more (respec-
tively less) effort. Furthermore, if Condition (4) holds for both DMs, then they both 
exert more (respectively less) effort.

Proof See Appendix.   ◻

Lemma 2 is general in the sense of not requiring uniqueness of Nash equilibria 
and social optima, but it acquires a particular interest if uniqueness is guaranteed. 
Indeed, in such a case it guarantees that a social planner will necessarily want to 
increase/decrease the level of effort of at least one DM, depending on the case con-
sidered. This case is illustrated in Fig. 2.

In the symmetric case we can then derive the stronger result that follows.

(5)
max
a,b

C(a, b) = �[p(a, b)U(W − K − a) + [1 − p(a, b)]U(W − a)]

+ �[q(b, a)V(Z − L − b) + [1 − q(b, a)]V(Z − b)]

(6)
Ca(a, b) = pa(a, b)�[U(W − K − a) − U(W − a)]

− p(a, b)�U�(W − K − a) − [1 − p(a, b)]�U�(W − a)

+ qa(a, b)�[V(Z − L − b) − V(Z − b)] = 0

10 More specifically, Muermann and Kunreuther (2008) consider the sum of agent’s wealth.
11 Identifying more general sufficient conditions, as done by Jullien et  al. (1999) for a decentralized 
economy, could be interesting, but is beyond the scope of the present paper and a possible direction for 
future research.
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Proposition 6 Suppose that DMs have symmetric probabilities, utility functions 
and wealth, that efforts are reinforcing (respectively conflicting), and that there is 
a unique centralized equilibrium. Then any Nash equilibrium will feature lower 
(respectively higher) levels of effort for both DMs than in the social optimum.

Proof See Appendix.   ◻

Comparing centralized and decentralized equilibria shows the complete effect 
of the interaction in terms of socially desirable choices. When efforts are rein-
forcing, there are positive spillovers from one DM’s prevention on the probabil-
ity of loss of the other DM. These spillovers are neglected by each DM in his 
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Fig. 2  Comparison of centralized and decentralized equilibria. Note Solid lines represent original best 
response curves and D the original Nash equilibrium. Dashed lines represent socially optimal response 
curves and C the centralized optimum
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decentralized choice, which implies that he exerts too low effort in prevention 
from a social standpoint. In the case of a unique equilibrium, this implies in turn 
that a social planner would ask for more effort to be exerted. When the equilib-
rium is symmetric (Proposition 6 and Fig.  2a), the greater effort required from 
a socially optimal standpoint is split equally between the two DMs. In a unique 
asymmetric equilibrium, the effort of at least one DM still increases, while the 
other might go in the opposite direction (Lemma 2 and Fig. 2). When efforts are 
conflicting the opposite occurs. Spillovers are negative, so the planner will aim 
for lower effort exerted in equilibrium. Again, in the case of uniqueness, this 
involves at least one DM reducing his own effort in an asymmetric setting (Propo-
sition 2 and Fig. 2d), with the reduction split equally between the two DMs in the 
symmetric case (Proposition 6 and Fig. 2b).12

6  Application to face mask use

Infective diseases in general, and COVID-19 in particular, are a very relevant 
application of the theory developed so far. Indeed, in this situation, multiple actors 
can vary the level of effort they put into preventing the spread of infection and every 
single actor has an effect on others’ decisions.

In what follows, we disregard the relatively narrow problem of isolating 
individuals who are known to be infected, and focus instead on the more frequent 
problem of general measures adopted to limit the spread of contagion from 
potentially infected individuals undetected among the general population. The 
prototypical example of these measures is face masks. These have the advantage of 
having relatively well defined properties in terms of risk abatement, which depend 
on perseverance (keeping a mask on all the time in a social setting), correct use (for 
instance, covering the nose) and also on the type of mask used, as different types 
guarantee different levels of virus abatement. These typically correlate with higher 
costs, and lower comfort. However, our model can also apply to other measures such 
as hand washing, social distancing and avoiding gatherings. In this last case the 
effort consists of avoiding an enjoyable social occasion or a pleasant but crowded 
location.

We assume that the two decision makers considered are general members of a 
population, only potentially infected. Thus, the a priori probability of infection is 
considered to be roughly symmetrical: if A and B meet and talk in close proximity 
without masks or other protective devices, they will each have each the same 
probability of being infected by the other. The effect of protective devices can be 
expressed, as is common in the literature, in terms of share of pathogens blocked 
from reaching a potential victim (Leung et  al. 2020; Lepelletier et  al. 2020; 
Tcharkhtchi et  al. 2021). For simplicity, we assume that this effect is symmetric, 
that is, that a mask worn by A protects both A from being infected from B and 

12 From another point of view, if any policy intervention results in different subjects altering their behav-
ior in opposite directions, this is due to heterogeneities in either prevention ability, or risk preferences.
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vice-versa to the same level. We are aware this is a simplification, given that for 
instance different face masks are relatively effective in stopping the inflow, or the 
outflow, of droplets. The model presented in the previous sections could also lend 
itself to modeling this aspect, but for simplicity of exposition we abstract from it in 
what follows. This simplification in fact helps us focus on the main phenomenon of 
interest, which is that individual effort simultaneously affects both one’s own and 
others’ risk.

Moreover, coherently with the model in previous sections, we limit our analysis to 
the possible interactions between two agents. A discussion on the possible extension 
to the case of multiple agents is provided at the end of the section.

We hence base our modeling of the problem on the following assumptions.

• Between individuals involved in a typical face-to-face interaction with no 
precautions taken, there is a given flow of aerosol droplets, which we take as 
reference for the analysis.

• Individuals can exert effort by adopting precautionary measures; a linear increase in 
effort translates into an exponential abatement of this flow. For instance, if a simple 
mask abates the flow to 40% , then wearing two such masks abates the flow twice by 
this proportion, bringing it to 40%2 = 16% : in general, levels of effort a and b result 
in a flow of �a+b , with � ∈ (0, 1).

• If one of the two individuals is infected, then the (reference) flow of aerosol towards 
the other individual includes a given sample of pathogens which we normalize to 1 
without loss of generality. Any measure that reduces the flow of aerosol reduces the 
number of pathogens proportionally.

• In accordance with the widely adopted exponential dose–response model (Haas 
1983; Conlan et  al. 2011), we assume that the probability of infection when 
inhaling a given dose D is p = 1 − e−rD , where r ∈ (0, 1) describes the “single-hit” 
probability—the probability of a single instance of the virus causing an infection. 
Given the normalization specified in the previous bullet point, we have that r is 
the probability of contagion in a typical interaction with no precautions taken. The 
other DM has a symmetric probability of infection: p = q.

• We further consider that transmission only takes place if exactly one of the two 
subjects is infected (omitting for simplicity the incubation period from the analysis), 
and that this happens with probability i(1 − i) for a disease with prevalence i ∈ [0, 1] 
in the population of interest: in particular, each individual has a probability of i(1−i)

2
 

of being a healthy subject meeting an infected subject.
• We limit the analysis to susceptible individuals — that is, we exclude individuals 

who are immune against the pathogen (e.g., vaccinated).

Given the above, we obtain the functional form

with r, � ∈ (0, 1) the two parameters that describe the aggressiveness of the pathogen 
and the efficacy of prevention efforts, respectively.

p(a, b) = q(b, a) =
i(1 − i)

2

(
1 − e−r�

a+b
)
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We observe that entirely suppressing the flow nullifies the probability of trans-
mission ( lima+b→∞ p(a, b) = 0 ), which for null effort reaches a maximum value 
p(0, 0) =

i(1−i)

2
(1 − e−r) . This maximum value is pathogen-dependent, reflecting dif-

ferent aspects of the epidemic at a given moment in time. In other words, it reflects 
the aggressivity of the pathogen but also population characteristics which may lead to 
a given prevalence i. For simplicity of analysis, we relabel the constant term i(i−1)

2
 to 

c, obtaining p(a, b) = c(1 − e−r�
a+b

) . In order to explicitly parametrize preferences we 
also assume that DM exhbits a CARA utility function, i.e., that U(x) = −e�x , where 
𝛽 > 0 is the Arrow-Pratt coefficient of absolute risk aversion.

Under all the above assumptions we obtain:

which in this setting of reinforcing efforts becomes a necessary and sufficient condi-
tion for best response curves being increasing. It is worth noting that Eq. (7) does 
not depend on the current prevalence of the disease: in particular, the left hand side 
is always negative, with its absolute value increasing in a and b and bounded from 
above by log(�) . Specifically, on the basis of the value of R0 typically attributed to 
COVID-19—between 3 (Billah et al. 2020) and 7–8 (SPI-M-O 2021) — the mean 
serial interval in the absence of precautionary measures (estimated at 6.6 days in the 
phase of uncontrolled spread of the pandemic by (Cereda et al. 2020)) and the typi-
cal number of contacts measured in large scale studies (between 5 and 20 accord-
ing to Mossong et al. (2008)), we obtain that the reference probability of contagion, 
1 − e−r , should be no larger than 8

6.6⋅5
≈ 0.24 . This implies that r < 0.27 , and hence 

that the left side of Condition (7) takes a value close to log(�) even when little or 
no effort is exerted. The quantity on the right-hand side of (7) is the opposite of the 
Arrow-Pratt index of absolute risk aversion and is negative too. Estimates of � vary 
significantly across studies (see Cohen and Einav 2007),13 but they are usually very 
close to 0 (no higher than 0.01). Conversely, � is measured on a scale which goes 
from 0 (low effort, efficient prevention devices) to 1 (prevention devices require 
large effort for even minimal prevention). Proper calibration would require defini-
tion of a nexus between for instance utility functions and available wealth, but the 
availability of cheap devices (face masks) which significantly decrease the flow of 
droplets suggests a value of � not far from 0 for COVID-19 in advanced economies. 
This, in turn, suggests that log(𝛼) ≪ 0 and Condition (7) should never hold.

According to Lemma 1, this analysis suggests that reaction curves in the case of 
face masks should definitely be decreasing: a higher level of effort on behalf of an 
individual will make another individual less willing to exert effort. Heterogeneity 
in effort levels across individuals, then, is perfectly consistent with the evidence, 
from many different countries, that levels of effort exerted in prevention during the 
pandemic vary significantly between individuals (Galasso et  al. 2020; Fan et  al. 
2020; Perrotta et al. 2021).

(7)log(𝛼)(1 − r𝛼a+b) > −𝛽

13 This is unsurprising: � will change also within-individual, for various level of wealth, unless the indi-
vidual’s preferences are perfectly described by a CARA utility function.
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It is clear that the evidence could be explained by other factors, including dif-
ferences in individual preferences and beliefs and differences in individual levels 
of knowledge and expertise on the role of protective devices. The conclusions in 
this work, however, provide the following complementary justification which is not 
based on individual differences but which is fully based on strategic behavior. Even 
individuals with the same preferences and beliefs may strategically adapt to each 
other in asymmetric equilibria where only one exerts a high level of effort (a con-
figuration which recalls the discrete game of chicken). Interestingly, this may also 
happen as a progressive reaction to increased safety from contagion due to the other 
DM’s effort (Battiston and Gamba 2021) — it is not necessary to assume explicit 
strategic reasoning on behalf of individuals.

Regarding the social problem, we know from Proposition 6 that in the symmetric 
case, in the presence of reinforcing efforts and assuming the uniqueness of the 
centralized and decentralized solutions, a central planner wants to increase the 
level of effort for both DMs. But apart from the case of symmetry, the presence 
of decreasing best response functions introduces the possibility of the two DMs 
changing their effort levels in opposite directions from the decentralized to the 
centralized equilibrium. (Recall Lemma 2 and Fig. 2c.) Also in this case, however, 
uniqueness will guarantee that at least one DM has to increase his effort from a social 
standpoint. This provides a new theoretical justification for measures taken in many 
countries to push people to increase their protection against possible contagion. 
Our analysis finds that the measures can in fact be justified by the role of positive 
externalities in face mask use. These are not taken into account by individuals, but 
need to be taken into account from the point of view of social optimality.

Moreover, our analysis allows for the possibility that central planning changes 
in different directions the effort levels of two individuals in the same population. 
This might seem counterintuitive, but to put the possibility into context, consider 
that prevention measures deployed to curb the contagion of COVID-19 are in reality 
strongly differentiated across different segments of any country’s population, on the 
basis of age, occupation, and location (as in the case of targeted lockdowns enacted 
in regions, or municipalities, where cases surge). To the extent that such focused 
measures reduce the likelihood of contagion between infected and susceptible 
individuals, they make the probability of loss more remote for individuals not 
affected by such measures, and hence they decrease their individual propensity to 
exert effort. Even accounting for compulsory measures which also apply to them, 
the net result might be a lower level of effort, for some individuals, than if no policy 
had been implemented, that is, with the pandemic completely out of control. In other 
words, our results guarantee that any individual will increase effort conditional on 
the other individual’s effort level, but might decrease effort once taking into account 
that the other individual (was required to) increase their own effort.14

14 Salanié and Treich (2020) provide a result which is superficially similar but in fact deeply different. 
They show that in the presence of some kinds of protection technology (e.g., on the preventive effect 
the mask has on the wearer, or on surrounding people), the representative individual might be pushed to 
reduce prevention, defeating the purpose of compulsory measures. Our result is instead closely linked to 
an asymmetry of reaction to the policy in equilibrium, not to the specific kind of protection device, and is 
consistent with an optimal policy.
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Lastly, one possible concern for this analysis is that choices concerning the risk 
of contagion are often taken with regard to situations involving more than two 
individuals. For instance, the choice of whether to wear a mask when participating 
in an event is related in principle on the interaction between a large number of 
participants. In this respect, further research on an n-player generalization of our 
model could reveal further interesting insights, such as Nash equilibria with 
peculiar distributions of effort. It is however worth noting that some elements of 
the analysis of individual best response functions will likely remain similar to 
that in the present work, to the extent that interacting with multiple other agents 
can be seen as considering a probability of infection influenced by an aggregation 
of other agents’ effort. That is, wearing a mask is likely to reduce the inflow of 
pathogens spread by other participants depending on the total amount of pathogens, 
but not on the distribution across other individuals. So depending on the specific 
relation between preventive effort and exhaled pathogens, an aggregate measure 
e−i = h(e1,… , ei−1, ei+1,… , en) can be identified that links the distribution of 
effort to individual risk, p(ei, e−i) . On the basis of this assumption (which probably 
generalizes to many, but not all, possible applications of our model), our results on 
the best response curves should generalize to the n-player version. This similarity 
would be even stronger if the additional simplifying assumption were made that 
participants are of only two types (in terms of utility functions, risk probabilities 
and wealth). This said, moving from the two-agent case to the multiple-agent case 
is more complex when considering the analysis of equilibria. For this reason, this 
analysis would require a specific formalization, which could be a fruitful topic for 
further research.

7  Conclusions

When preventing the risk of incurring a bad event, an individual may, at the same 
time, also affect the probability that the same event occurs for other people. This 
interaction between decisions can go in different directions: the probability of 
the bad event can either decrease (efforts are reinforcing ) or increase (efforts are 
conflicting).

In this study, the effects of such interaction were formalized and described first in 
an economy where choice is decentralized and then in a centrally planned economy. 
In the decentralized economy, we examined the set of equilibria by analyzing the 
decision makers’ reaction functions. We showed that the shape of the reaction 
functions depends on whether the efforts are reinforcing or conflicting, which 
affects marginal benefit of prevention, but also depends on the effects of interaction 
on marginal cost. The composition of these two different effects is determined by 
a condition comparing two elasticities. In particular, when efforts are reinforcing, 
reaction functions are increasing if, in the presence of an increase of effort exerted 
by a decision maker, the elasticity of the probability of occurrence of loss for the 
other decision maker is greater than the elasticity of the utility loss of the decision 
maker exerting the effort. Reaction functions are on the other hand decreasing if the 
former is smaller than the latter. The opposite occurs when efforts are conflicting.
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In all these situations, multiple equilibria may arise. In the cases where reaction 
curves are increasing, moving from one equilibrium to another implies that efforts 
exerted by both decision makers change in the same direction, i.e., they either 
increase or decrease together. But in cases where reaction curves are decreasing, 
moving from one equilibrium to another implies that efforts change in opposite 
directions, i.e., the effort exerted by one decision maker increases and the effort 
exerted by the other decreases.

Our results also show that, in the former case, agents’ preferences over 
multiple equilibria converge, and sub-optimal equilibria can only be due to a lack 
of coordination. However, in the latter case, agents necessarily have different 
preferences over Nash equilibria and this might represent a source of social conflict.

Comparing these equilibria with those chosen by a central planner highlights 
that, from a socially optimal standpoint, there can be a kind of under-prevention 
or over-prevention in a decentralized economy. This is because individuals do not 
internalize into their choices the spillovers that they generate on the risks faced by 
other decision makers. We showed that, when the equilibrium is unique and in the 
case of reinforcing efforts, the central planner will require at least one DM to exert 
more effort than in the decentralized equilibrium, and that both DMs will do so if 
reaction curves are increasing or if DMs are symmetric. In the case of conflicting 
efforts, on the other hand, socially optimal behavior requires that at least one 
individual decreases his effort whereas all individuals are required to reduce effort if 
reaction curves are increasing or if DMs are symmetric.

We have shown how these general results apply to the prevention of contagion 
in a pandemic such as COVID-19. Efforts aimed at reducing the spread, including 
social distancing and mask wearing, have positive externalities, as they reduce the 
probability of infecting others as well as one’s own probability of catching the virus 
(Jones et  al. 2021). Our results show that, unless there is significant asymmetry 
between DMs, they should all increase their effort in the centralized optimum as 
compared to the Nash equilibrium. Our conclusions also provide a theoretical 
explanation in terms of strategic behavior for the evidence that levels of prevention 
effort during the pandemic vary significantly between individuals.

Our general results have clear implications from various standpoints. They show 
first that, in order to make an optimal choice in prevention effort, each individual 
takes other people’s choices into account. This finding is important in explaining 
different situations emerging in society. In the case of multiple equilibria and 
increasing reaction curves, different equilibria are characterized by either everyone 
in society exerting high effort or everyone exerting low effort. Clearly, the type of 
equilibrium reached will depend on social habits and customs, and this also explains 
why people in different countries show different behaviors when facing the same 
risk. On the other hand, multiple equilibria in the case of decreasing reaction curves, 
where one individual reduces effort as the best reply to the other increasing it, is a 
possible explanation for situations where significantly different levels of effort are 
observed within the same population.

Moreover, our analysis clearly shows that in the presence of interactions, 
decentralized choices may generate either under-provision or over-provision of 
prevention from a socially optimal standpoint. This supports the widespread 
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adoption of public policies aimed at encouraging various forms of prevention. 
Our analysis provides a strong justification for such policies, implemented across 
different fields of the economy. Measures involving constraints existed before 
COVID-19; for example, many countries enact legislation banning the use of 
alcohol or drugs before driving. The COVID-19 pandemic however is a particularly 
clear example of the key role of centralized decision making, for instance in the 
mandatory use of face masks and various lockdowns implemented across different 
countries.

Moreover, our results may be relevant for policies acting in different directions, 
and particularly for different forms of incentive or disincentive to prevention. In 
fact, it is clear that incentives, perhaps in the form of subsidies, could usefully be 
introduced to strengthen reinforcing efforts, and disincentives, perhaps in the form 
of taxation, could be useful in the case of conflicting efforts. As reviewed in Sect. 2, 
previous literature focused on either insurance or legal constraints as instruments to 
reduce inefficiency in prevention provision. A very simple analysis of subsidies for 
prevention was recently proposed by Menegatti (2021b), but although it examines 
the impact of some interventions, it does not provide a foundation for the sub-
optimality of decentralized equilibrium, and merely assumes it occurs. So the design 
of tax or incentive mechanisms which can push agents’ decentralized choice towards 
socially optimal levels of risk prevention would be a fruitful avenue for future 
research.

Appendix: Proofs

Proof of Proposition 1 Consider the set IB ⊂ [0, Z − L] defined as 
IB = {b|b ≤ b∗(a∗(b�))} . The set is non-empty, as it contains at least 0. If Z − L ∈ IB , 
this means that Z − L ≤ b∗(a∗(Z − L)) , but as b∗ is bounded from above by Z − L , 
then Z − L = b∗(a∗(Z − L)) , and (a∗(Z − L), Z − L) is a Nash equilibrium. If instead 
Z − L ∉ IB , then consider b̃ = sup(IB) and a sequence bi in IB that converges to b̃ . 
By the continuity of a∗ and of b∗ , we obtain b∗(a∗(b̃)) = limn→∞ b∗(a∗(bi)) = b̃ . So 
(a∗(b̃), b̃) is a Nash equilibrium (Fig. 3).   ◻
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(a) Proof of Proposition 1: internal
Nash equilibrium

(b) Proof of Proposition 1: boundary
Nash equilibrium
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Fig. 3  Existence of Nash equilibrium
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Proof of Proposition 2 Consider the case of increasing reaction curves. Assume with-
out loss of generality that x1 and x2 are two equilibria such that A increases effort 
from x1 to x2 , while B decreases effort. This would require one of the two reaction 
curves to be decreasing in an interval between the two equilibrium levels of effort, 
which contradicts the assumption. The case of decreasing reaction curves is demon-
strated similarly.  ◻

Proof of Proposition 4 Let (a, b), (a�, b�) be two Nash equilibria; without loss of gen-
erality, assume a′ > a : since response curves are decreasing, Proposition 2 guaran-
tees that b′ < b.

If pb < 0 , (a, b�) >
A

(a, b) , and since a′ best replies to b′ , (a�, b�) >
A

(a, b�) , so 
(a�, b�) >

A
(a, b) ; vice-versa, (a�, b�) >

B
(a�, b) >

B
(a, b).

If pb > 0 , (a�, b) >
A

(a, b) , and since a′ best replies to b′ , (a�, b�) >
A

(a�, b) , so 
(a�, b�) >

A
(a, b) ; vice-versa, (a, b) >

B
(a�, b) >

B
(a�, b�).

So neither of the two equilibria Pareto dominates the other.  ◻

Proof of Proposition 5 Assume that (ā, b̄) ∈ ℝ
2
>0

 is a Nash Equilibrium located in the 
interior of the action space. By definition, �U

�a
= 0 ; moreover, 𝜕U

𝜕b
< 0 (this holds eve-

rywhere since pb > 0 ). Hence, given any vector u ∈ ℝ
2
>0

 , the directional derivative 
∇

u
U(ā, b̄) , which is a linear combination of the two partial derivatives with strictly 

positive weights u1 and u2 , is strictly negative. That is, U increases when moving 
from (ā, b̄) in direction −u (Fig. 4). The same reasoning, applied to DM B, shows 
that V increases when moving in direction −u . Hence, in this direction both players 
marginally increase their payoffs, and the proof is concluded.   ◻

Lemma 3 If best response curves are increasing and (ā, b̄) is a Nash equilibrium 
where they cross from below, then there is another Nash equilibrium with higher 
levels of effort where they cross from above.

Fig. 4  Illustration of Proposi-
tion 5 from the point of view of 
DM A

a ↓,U =

b ↓⇒ U ↑

−u

U ↑

(ā, b̄)
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Proof of Lemma 3 A Nash equilibrium (ā, b̄) is a crossing point of the best response 
curves, which are crossing from below if and only if there is a right neighborhood of 
ā where b∗(a) > a∗−1(a).

For instance, if the response curves are differentiable, then they are crossing from 
below if and only if

We know from Proposition 2 that the two effort levels change in the same direction 
from an equilibrium to another. So if there are Nash equilibria with a > ā , they are 
such that b > b̄ too, and vice-versa. Now let us assume that there are no such Nash 
equilibria. There are thus no further internal crossing points of the best response 
curves for a > ā or b > b̄ , which means that the right neighborhood of ā for which 
b∗(a) > a∗−1(a) is the entire (ā,W − K) interval. Now if b∗(W − K) < Z − L , 
then lima→W−K a∗−1(a) < Z − L and by continuity there is an b′ such that ∀b ≥ b� , 
we have a∗(b) = W − K (see x3 in Fig.  5a). In this case, (W − K, b∗(W − K)) is a 
Nash equilibrium. If instead b∗(W − K) = Z − L , then (a∗(Z − L), Z − L) is a Nash 
equilibrium (see x3 in Fig.  5b). In all cases, in the Nash equilibrium b∗ and a∗−1 
coincide, and if Condition (8) held, it would imply (as in the reasoning above) 
the existence of a left neighborhood of ā′ where b∗(a) < a∗−1(a) . But this is a 
contradiction because we know that the opposite holds in [ā, ā�] ; so Condition (8) 
cannot hold.   ◻

Lemma 4 In the case of reinforcing (conflicting) efforts, given the level of effort ēi of 
a DM and the best reply ē∗

j
 of the other DM, the problem of maximizing social 

welfare given ēi has a unique solution ēs
j
 , which is larger (lower) than ē∗

j
 . If e∗

j
 is not 

on the right (left) boundary of the action space, then the inequality is strict.

(8).
𝜕b∗(ā)

𝜕a
>

1

𝜕a∗(b̄)

𝜕b

=
𝜕a∗−1(ā)

𝜕a
.

b

a

b∗

a∗

x3

x2

x1

(a)

b

a

b∗
a∗

x3

x2

x1

(b)

Fig. 5  Illustration of proof of Lemma 3
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Proof of Lemma 4 We first consider the case of reinforcing effects, and start by 
assuming � = � = 1 : if they are different, we implicitly redefine U as U(x)

�
 and V as 

V(x)

�
 : this operation clearly does not affect the individual optimization problem, and 

hence best responses and Nash equilibria. Now let ā∗ = a∗(b̄) be the best reply of 
DM A to b̄ , and assume it is in the interior of the action space. We know it 
necessarily satisfies Eq. (2), that is, MA = 0 . The socially optimal level of effort for 
A given b̄ on the other hand satisfies Eq. (6), that is, CA = 0 . The two differ in just 
one term NA = CA −MA = qa(a, b)[V(Z − L − b) − V(Z − b)] . Since V is increasing, 
the term between square brackets is always negative, so the sign of NA is opposite 
the sign of qa.

Let us first consider the case of reinforcing efforts ( qa < 0 ), so that 
CA(ā

∗, b̄) = NA(ā
∗, b̄) > 0 . If there exists as such that CA(a, b̄) = 0 , then since we 

know that 𝜕CA

𝜕a
< 0 , necessarily as > a∗ holds. If on the other hand there is no such 

as , by continuity it must then be that CA(a, b̄) > 0 ∀a > a∗ , and as a consequence 
C(a, b̄) > C(ā∗, b̄) ∀a > a∗ . As the problem is bounded from above, the boundary 
level of effort ās = W − K maximizes C(a, b̄) . So in conclusion, there is either a 
boundary solution, or there is an internal one, which is unique because of concavity.
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(a) Proof of Proposition 2: internal
crossing point
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case of conflicting efforts,

Fig. 6  Illustration of proof of Proposition. Note Solid lines represent original response curves and D the 
original Nash equilibrium. Dashed lines represent socially optimal response curves and C the centralized 
optimum 2
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If instead ā∗ is on the left boundary, then it must be that MA(a, b̄) ≤ 0 , and 
the proof is analogous. Finally, if it is on the right boundary, it must be that 
MA(a, b̄) ≥ 0 : hence CA(a, b̄) > 0 , and as = a∗.

Vice-versa, in the case of conflicting efforts ( qb > 0 ), we have 
CA(ā

∗, b̄) = NA(ā
∗, b̄) < 0 . Again, if there is as such that CA(a, b̄) = 0 , the second-

order condition implies that as < a∗ . Otherwise, CA(ā∗, b̄) < 0 ∀a ∈ [0, ā∗) and 
as = 0 is a boundary solution. The case of a∗ on the boundaries is analyzed 
symmetrically with the analysis of reinforcing efforts.

The analysis of the individual and social optimization of b with respect to a given 
ā is symmetric to the analysis above.   ◻

Proof of Lemma 2 We start by excluding the case aD = W − K , which we con-
sider later. Let amin = as(0) , and consider the curve ℭA obtained as the union of the 
graph of as and the segment from (0, 0) to (amin, 0) (See Fig. 6a). We observe that 
the set {(a, b) ∈ ℭA|a = aD, b < bD} is non-empty, because ℭA connects the point 
(0,  0) to a point (as(b), bD) which is (by Lemma 4) right of (aD, bD) , while only 
intersecting each b ≠ 0 exactly once, so it must pass strictly below (aD, bD) . Now 
if ℭA is above the graph of b∗ in (as(bD), bD) , there must be a crossing point of the 
two curves with a ∈ (aD, as(b)) , and this crossing point is a centralized optimum 
where A exerts an effort larger than aD , which concludes the proof. If instead ℭA is 
still below the graph of b∗ in (as(b), bD) , then if there is a b ∈ (bD, Z − L) for which 
ℭA is instead above the graph of b∗ , then there must be a crossing point of the two 
curves with b ∈ (bD, Z − L) , and this crossing point is a centralized optimum where 
B exerts an effort larger than bD , which again concludes the proof. Finally, if ℭA 
is below the graph of b∗ for all b ∈ (bD, Z − L) , we distinguish two further cases: 
(i) bs(W − K) < Z − L , in which case (as(Z − L), Z − L) is a centralized optimum 
(Fig. 6b), and (ii) bs(W − K) = Z − L , in which case necessarily (W − K, bs(W − K)) 
is a centralized optimum (Fig. 6c).

The case aD = W − K is approached by reversing the role of DM A and DM B in 
the above proof; if (aD, bD) = (W − K, Z − L) , by Lemma 8 (aC, bC) = (aD, bD).

So we have proven that at least one DM increases effort in the centralized solution. 
Assume without loss of generality that it is DM A. If the symmetric of Condition (4) 
holds, b∗ is increasing, and hence by Lemma 4bC = bs(aC) ≥ b∗(aC) > b∗(aD) = bD : 
DM B is also increasing effort.

The case of conflicting effects is symmetric: it can be obtained by mirroring the 
action space horizontally and vertically, replacing each a with W − K − a and each b 
with Z − L − b (see Fig. 6d).

Proof of Corollary 6 If the decentralized solution is unique, then it must be symmet-
ric ( aD = bD ), as otherwise its symmetric (bD, aD) would be another solution. The 
same holds for the centralized solution. Proposition 2 now proves that at least one 
DM is changing effort level in the specified direction. As the two DMs exert identi-
cal levels of effort in both the centralized and in the decentralized solutions, both 
change their effort levels in the specified direction.
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