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Abstract
This paper evaluates the potential value of a weather index insurance for the agri-
culture sector in an high income country (Germany). In our theoretical analysis we 
model an index insurance, a loss-based insurance market as well as a combination of 
both kinds of insurance and compare the resulting expected utility of a risk averse 
crop farmer. To find a suitable index, we conduct a panel estimation and evaluate 
the link between different weather variables and losses of crop farmers in Germany. 
Following our estimation, mean temperatures in summer have the highest potential 
for an valuable index insurance. Finally, we simulate the theoretical model using 
the results from the estimation and using different thresholds for the definition of 
a NatCat. According to this simulation, index-insurance is more attractive for the 
lower and more frequently occurring losses and loss-based insurance is more attrac-
tive for rare high losses. A combination of both kinds of insurance could be optimal 
for intermediate cases.

Keywords Weather extremes · Agriculture yields · Insurance

JEL Classifications G22 · Q14 · Q54

1 Introduction

Agriculture strongly depends on climatic conditions and is therefore significantly 
influenced by climate change. While some moderate seasonal warming and/or 
increasing rainfall can have beneficial effects on some crops and in some regions, 
yield decreases if those climate variables exceed thresholds at the upper or lower tail 
of their distribution (Mishra and Sahu 2014; Lippert et al. 2009). Climate change, 
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however, not only affects average weather conditions but also the variance of 
weather conditions (i.e. natural catastrophes, NatCat). McCarl et al. (2008, p. 1247) 
find “that higher variances in climate conditions tend to lower average crop yield 
and inflate yield variability”.

Although NatCats lead to income fluctuations of farmers and threat their sol-
vency (Mishra and Sahu 2014; Nordhaus 1993), these risks are often not insured. 
In the literature, several reasons for this have been identified (e.g. Goodwin 2001, or 
Woodard et al. 2012). The supply side has to deal with a systemic risk (high-corre-
lation of risks) and asymmetric information (with moral hazard and adverse selec-
tion problems). The high concentration of risks leads to large risks for the insurer. 
In addition, insurance creates high costs for risk and loss assessment (e.g. to avoid 
moral hazard).

These factors result in high prices for insurance products that cover losses from 
NatCats, and are therefore unattractive for farmers. Furthermore, farmers often can 
hope for government support and, therefore, have a lower incentive to purchase pri-
vate insurance (charity hazard). As a result, these insurance products do hardly exist 
or have to rely on public subsidies (Miranda and Farrin 2012).

In this paper, we evaluate whether an index insurance could be a welfare enhanc-
ing option for the German agricultural sector. In contrast to a traditional loss based 
insurance, claim payments of an index insurance do not depend on observed indi-
vidual damages but on the development of an (weather) index.1 The two main 
advantages of index insurance are that it is cheap and that it limits moral hazard and 
adverse selection.2 The main disadvantage is the basis risk of the insurance buyer 
which depends on the match between the index and the individual losses of the 
farmer. Index insurance was mainly designed for price sensitive developing econo-
mies (e.g. Barnett et al. 2008). However, it could also help to deal with challenges in 
developed economies where private insurance against extreme weather events (i.e. 
natural catastrophes) hardly exist (an exception is hail insurance).

There are some papers which explicitly look at index insurance in high income 
countries. Kath et  al. (2019), for example, assess the value of an index insurance 
for sugar cane producers in Australia by comparing (potential) revenue streams 
of farmers with and without index insurance. Kapphan et  al. (2012) examine the 
effect of climate change scenarios on optimal weather (index) insurance contracts 
for crop farmers in Switzerland. The authors show that climate change could lead to 
increased attractiveness of weather insurance—for insurers and insured. However, 
the results depend on the insurers’ ability to capture the effect of climate change and 
to adjust contracts accordingly.

Based on data from a discrete choice experiment, Achtnicht and Osberghaus 
(2019), evaluate the value of an index-based flood insurance for households in Ger-
many. Their results indicate that most customers would prefer a traditional loss-
based insurance.

1 Miranda and Farrin (2012) provide a literature overview on index insurance.
2 See e.g. Jensen and Barrett (2017) and Mobarak and Rosenzweig (2013).
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Mahul (2001) provides a theoretical analysis of insurance against climate risk in 
agriculture. In his model, the production function of a crop farmer depends on an 
observable and insurable random weather index as well as an uninsurable produc-
tion shock. Mahul shows that the optimal insurance coverage positively depends on 
the correlation of the two risks.

Gollier (2003) demonstrates that the traditional static theoretical insurance mod-
els artificially inflate the value of insurance to risk adverse individuals. If there is no 
serial correlation between shocks, individuals can also self-insure by precautionary 
savings. Gollier (2003, p. 21) concludes that “only liquidity constrained households 
would purchase a generous insurance coverage. Wealthier people would mostly rely 
on their ability to time diversify their risks. They would limit their insurance pur-
chase to catastrophic risks, i.e., risks whose largest potential loss exceed a large frac-
tion of their annual income.”

While the above papers study hypothetical index insurance markets, there are sev-
eral papers which evaluate existing index insurance in developing economies. Cole 
et al. (2014) and Hochscherf (2017), for example, analyse the driving factors of the 
demand for index insurance in India based on panel data from a field experiment. 
They conclude that factors like risk exposure and insurance experience are impor-
tant drivers of insurance demand.

We use a different approach to analyse the value of index insurance for German 
farmers. First, we develop a theoretical two-period model of a risk averse farmer 
who is subject to a potential loss. The probability for this loss depends on whether 
there is a NatCat or not. In this setting, we calculate under which conditions the 
farmer would prefer an index insurance which pays if there is a NatCat to a (more 
expensive) traditional loss based insurance which pays if there is a loss. Our model 
adds value to the existing literature on index insurance by considering savings as 
a substitute for insurance and by building a foundation for a simulation with real 
world data. Our results indicate that an index insurance would increase welfare if the 
probability for a loss is significantly higher under a NatCat than without a NatCat 
and at the same time the NatCat is relatively likely. Hence, the performance of the 
index insurance strongly depends on the used whether index and the concrete defini-
tion of a NatCat or trigger point for the index insurance, respectively.

In a second step, we therefore, conduct an empirical panel estimation to see 
which weather variables have the strongest link to losses of crop farmers in Ger-
many. While the link between weather and agriculture yields has been studied in a 
number of papers, many of these papers focus on average weather conditions (i.e. 
the climate) and average yields3 or use weather variables as controls for analysing 
the short-term impact of different planting methods.4 We use data on winter wheat 
yields (the main kind crop cultivated in Germany) on a district level from 1999 
to 2019. For our main estimation, the corresponding weather variables are mean 

3 See e.g. Mendelsohn et al. (1994), Maddison et al. (2007) or Lippert et al. (2009).
4 See e.g. Southworth et al. (2002), Eitzinger et al. (2013) or Zhang et al. (2013).
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temperatures, the number of heat days,5 sunshine hours and precipitation. For all 
four variables we distinguish between values in spring and in summer which con-
stitutes a major value added of our paper.6 Hence, we have eight weather variables 
for the time span 1999 to 2019 which we transform into district level data (from grid 
and point data, respectively). Since the relationship of weather and yield might not 
be linear, an additional second-order polynomial regression was conducted. Follow-
ing both estimations, mean temperatures in summer have the strongest impact on 
losses. The strength of the impact remains when we use mean temperatures in sum-
mer as the only weather variable in a separate estimation.

In a final step, we simulate the theoretical model using data and results from the 
empirical estimation. The goal of our simulation is to find the optimal threshold of 
mean temperatures in summer which classifies as a NatCat and, therefore, triggers 
the payment of the index insurance. According to this simulation, index-insurance 
is more attractive for the lower and more frequently occurring losses and loss-based 
insurance is more attractive for rare high losses. A combination of both kinds of 
insurance could be optimal for intermediate cases.

This three-step approach is one of the main contributions of our paper to the 
existing literature. Our model enables us to simulate insurance demand using empir-
ical data. We believe that our approach is suitable and useful to analyse the poten-
tial value of insurance for the agriculture sector in Germany. Furthermore, besides 
looking separately at index and loss-based insurance, we also evaluate under which 
conditions a combination of both kinds of insurance can be optimal. In addition, we 
are able to indicate how such a product could be designed.

The paper is structured as follows. In the next section, we develop the theoretical 
model. Section 3 presents the data and the empirical estimation. In Sect. 4 we simu-
late the theoretical model and Sect. 5 offers some concluding remarks.

2  The value of insurance

In this section, we develop a theoretical model of a crop farmer to analyse whether 
an index insurance would lead to higher expected utility than a traditional (loss-
based) insurance. For simplicity, we assume that the crop farmer only owns land 
in one region and has only one kind of crop in. Therefore, the farmer is not able to 
diversify or even hedge income fluctuations.

The main advantage of loss-based insurance is that it pays if there is a loss—
independent of whether the loss was the result of a NatCat or not. It is therefore 
ideally suited to limit income fluctuations which is of high value for risk averse 
farmer. As discussed above, the drawback is, however, that this insurance is rela-
tively expensive.

5 We define heat days as the number of days in a season and year, where a fixed threshold of ◦ C is 
exceeded (see Sect. 3.1).
6 Lüttger and Feike (2018) also look at the impact of weather events on winter wheat in Germany but do 
not distinguish between different seasons.
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Index insurance, in contrast, only pays if there is a NatCat—independent of 
whether the farmer suffered a loss or not. This creates basis risk for the customer: 
there can be a loss and the farmer does not get anything and there can be no loss and 
the insurance pays anyway. The big advantage of an index insurance is, however, 
that it is relatively cheap: There are no costs for risk and loss assessment to avoid 
adverse selection and moral hazard effects. Also costs for distribution and man-
agement are relatively low. Furthermore, index risks can relatively easy be sold on 
financial markets and diversified with other (uncorrelated) risks.

2.1  Basic assumptions

We look at the optimal savings and insurance decision of a crop farmer. Crop can 
be consumed or stored and is the only numerator in our model. In the present period 
the farmer has the crop wealth Y1 = 1 and decides on how much he or she saves 
(s), spends on insurance [p(i)] and consumes [ 1 − s − p(i) ]. In the future period, 
the farmer has the crop yield Y2 = 1 and the savings of the first period (the inter-
est rate is assumed to be zero). The farmer, however, faces the probability to suf-
fer a loss ( 0 < l < 1 ). The overall probability to suffer this loss is 0 < 𝜋 < 0.5.7 and 
thowever, with the probability 0 < 𝜋c < 0.5,8 there is a NatCat which makes losses 
more likely. If there is a NatCat, the probability for the loss is �h and if there is no 
NatCat the probability is �l . We define � = �h − �l as the difference between the 
NatCat loss probability �h and the Non-NatCat probability �l . We therefore get: 
� = �c�h + (1 − �c)�l = �l + �c�.

We look at two alternative kinds of insurance: a traditional loss-based insurance 
which pays iL if there is a loss (independent of whether it is the result of a NatCat 
or not), and an index insurance which pays iI if there is a NatCat (independent of 
whether there is a loss or not). We start the analyses by assuming that there is either 
only a loss-based insurance (L), or only an index insurance (I). Farmers maximize 
their expected utility by choosing optimal amounts of savings sL,I and insurance iL,I . 
We assume that farmers have a standard logarithmic utility function ( U[X] = ln[X] ) 
and are indifferent between utility in the first and second period (discount factor of 
one). Section 2.5 analyses the optimal decision of the crop farmer when both kinds 
of insurance are available.

2.2  Loss‑based insurance

The loss based insurance pays if there is a loss for the farmer. Hence, the probability 
for a claims payment is � . Since insurers have to cover fluctuations in aggregated 

7 The restriction 𝜋 < 0.5 makes sure that the losses can be seen as a risk to have a lower yield instead 
of seeing a no-loss as a chance of having higher than expected yield. The results of the model, however, 
would also hold if the condition is relaxed to 𝜋 < 1.
8 The restriction 𝜋c < 0.5 makes sure that the NatCat can be seen as an unusual weather condition 
instead of seeing a Non-NatCat as a surprisingly favourable condition. The results of the model, however, 
would also hold if the condition is relaxed to 𝜋c < 1.
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losses (i.e. there is a NatCat or not) and costs for distribution, management as well 
as risk and loss assessment, we assume that they charge a mark-up �L ≥ 0 on the 
actuarial fair premium, where (1 + 𝜆L)𝜋 < 1 . The resulting premium for insuring the 
amount iL (where l ≥ iL ≥ 0 ) is therefore p(iL) = (1 + �L)�iL.

The farmer maximizes the following expected utility function:

by choosing optimal savings ( sL ) and insurance ( iL ). The first order conditions are:

and

The corresponding second order derivatives are:

and

Given these second order derivatives, the Hessian matrix is negative definite and, 
therefore, the second order condition for a maximum expected utility is satisfied.9

The resulting optimal savings ( sL ) and insurance ( iL ) are:

(1)EUL = ln[1 − sL − (1 + �L)�iL] + � ln[1 + sL − l + iL] + (1 − �) ln[1 + sL]
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2
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9 The second order condition for an optimum is satisfied if the Hessian matrix of second order deriva-
tives is negative (semi-)definite (i.e. all eigenvalues are non-positive). The eigenvalues of the Hessian 
matrix are given by
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and

Hence, the probability � has a negative and the loss l a positive effect on iL . Or 
in other words, farmers especially want to insure low probability/ high loss events. 
In addition, savings and insurance are to some degree substitutes. The more 
expensive insurance gets (higher �L ), the less farmers will buy insurance and the 
more they will save. For �L = 0 farmers would choose full insurance ( iL = l ) and 
would finance half of the insurance purchase by taking a loan ( sL = −�l∕2 ). For 
𝜆L > l(1 − 𝜋)∕[2 − l(1 − 𝜋)] , savings are getting positive and for:

insurance demand iL would be zero as negative insurance is not allowed (in our 
model). As the insurance demand depends positively on l and negatively on � , also 
this threshold depends positively on l and negatively on � . With iL = 0 , the optimal 
savings would be:

2.3  Index insurance

The index insurance pays if there is a NatCat. As the information on NatCats is 
given by an publicly available index, the provision of an index insurance is signifi-
cantly cheaper than the provision of a traditional insurance. Nevertheless, also pro-
viding index insurance involves costs and we assume that the mark-up on the fair 
index insurance premium is �I ≥ 0 . Hence, the premium for insuring the amount iI is 
(1 + �I)�ciI.

The farmer now maximizes the following expected utility function:

by choosing optimal savings ( sI ) and insurance ( iI ). There are now four different 
cases in the second period: (i) there is an insured loss, (ii) there is no loss but the 
insurance pays, (iii) there is a loss but the insurance does not pay and (iv) there is no 
loss and the insurance does not pay. The first order conditions are:
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(11)

EUI = ln[1 − sI − (1 + �I)�ciI]

+ �c�h ln[1 + sI − l + iI] + �c(1 − �h) ln[1 + sI + iI]

+ (1 − �c)�l ln[1 + sI − l] + (1 − �c)(1 − �l) ln[1 + sI]



237The Geneva Risk and Insurance Review (2023) 48:230–259 

and

The corresponding second order derivatives are:

and

As a result, the Hessian matrix is negative definite and the second order condition 
for a maximum expected utility is satisfied.10

Given Eq. (13) and �l = � − �c� , we can rewrite Eq. (12) to:

Using �h = � + (1 − �c)� , Eq. (13) can be written as:

The optimal demand for index insurance ( iI ) therefore depends positively on � and 
negatively on �I . This is not surprising as a higher �I makes insurance more expen-
sive and a higher � reduces basis risk. For � ≤ 0 , insurance demand iI would be zero 
even if �I = 0 . In this case, the resulting savings sI would be equal to Eq. (10). For 
�I = 0 and � = 1 (which implies that �h = 1 , �l = 0 and �c = � ) there would be full 
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10 See Footnote 9.
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insurance ( iI = l ) and savings would be sI = −�l∕2 , which is equal to the savings 
under loss based insurance with �L = 0 and iL = l . Hence, with �L = 0 , � = 1 and 
�L = 0 , the index and the loss based insurance are identical.

2.4  Loss‑based vs. index insurance

The focus of this paper is to analyse whether an index-based insurance could lead 
to a higher expected utility than a traditional loss based insurance. Hence, we 
want to know under which conditions: EUI > EUL.

The mark-up �L only affects the traditional loss-based insurance and should 
have a negative effect on its attractiveness as it makes this kind of insurance more 
expensive. The derivative of the expected utility equation (1) with respect to �L 
is:

Since the assumed optimization behavior of the farmers leads to 
dEUL∕dsL = dEUL∕diL = 0 , (for iL > 0 ) the mark-up �L has a negative effect on 
expected utility. Hence, in line with intuition, the higher �L , the more likely the 
index insurance leads to a higher expected utility than the loss-based insurance.

The mark-up on the index insurance �I as well as the breakdown of the loss 
probability � in �c , �l and � only affects the index insurance. As �L is negatively 
affecting the attractiveness of loss based insurance, �I has a negative effect on the 
expected utility from an index insurance EUI.

Since, �l = � − �c� and �h = � + (1 − �c)� , we only have to look at the effect 
of � and �c on the expected utility of a farmer using index insurance ( EUI ). The 
derivative of the expected utility equation (11) with respect to � is:

Since optimization leads to dEUI∕dsI = dEUI∕diI = 0 , the difference in loss prob-
abilities � has a positive effect on expected utility if:

For iI > 0 this condition is fulfilled. The rationale for this result is that a higher � 
reduces the basis risk of the index insurance.

The derivative of the expected utility equation (11) with respect to �c is:
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.
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Again, optimization leads to dEUI∕dsI = dEUI∕diI = 0 . Hence, in combination with 
Eq. (17) the NatCat probability �c has a positive effect on expected utility if:

For l > 0 and low levels of �I and �c this condition is fulfilled and the expected util-
ity depends positively on the NatCat probability.11 The rationale behind this result is 
that with higher levels of �I , �c makes the insurance more expensive and therefore 
less attractive. However, �c has a positive impact on the expected pay-out and there-
fore on expected utility. If �I is low, this positive effect outweighs the negative cost 
effect. If, however, index insurance is expensive (high �I ), the NatCat probability �c 
would have negative effect on expected utility.

This result implies that (with a low mark up �I ) a very low threshold for the 
definition of a NatCat and, hence, a high probability for a NatCat would increase 
expected utility. However, the difference between the NatCat loss probability and 
the Non-NatCat loss probability ( � ) has a positive effect on expected utility, as well. 
This difference likely increases with the severity of weather events and therefore 
also with narrowing the definition of a NatCat. Hence, when using real world data, 
there will likely be a trade-off between a high NatCat probability �c and a high �.

The overall loss probability � and the extend of the loss l affect the loss based 
as well as the index insurance. While the variables obviously have a negative effect 
on expected utility—independent of the kind of insurance, the extent of the effect 
could be different. Hence, we have to compare the effect of the two variables on 
loss-based-insurance expected utility ( EUL ) with their effect on the index-insurance 
expected utility ( EUI ). As shown above, for �L = 0 , �I = 0 and � = 1 both kinds of 
insurance are identical. The same applies to the case that �L is equal to (9) and the 
combination of a high �I and a low � = 0 leads to iI = 0 . Hence, in both extreme 
cases also the effect of � and l is identical. For the cases in between the extremes, a 

(22)
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��c
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dsI

dsI
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diI
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{

ln[1 + sI − l + iI] − ln[1 + sI − l]
}

+ (1 − � − (1 − 2�c)�)
{

ln[1 + sI + iI] − ln[1 + sI]
}

.
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.

11 Simulations with �I = 0 various parameter values for l, � and � showed a positive impact of �c on 
expected utility up to about �c = 0.5.
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higher loss probability � would make the index insurance relatively more attractive 
if:

Hence, a higher �L would make the effect of � on EUL more negative. A higher �I 
and/or a lower � (or a lower iI , respectively), in turn, would make the effect of � on 
EUI more negative. Hence, the effect of � on the difference between EUL and EUI is 
unclear and depends on �L , �I and � . Also the effect of l on the difference between 
EUL and EUI is unclear if �L , �I and � have intermediate values (i.e. 0 < iL, iI < l ). A 
higher loss l would make the index insurance relatively more attractive if:

2.5  Loss‑based and index insurance

So far, we have assumed that there is either a loss-based or an index insurance. This 
section analyses the optimal decision of the crop farmer when both kinds of insur-
ance are available. In this case, expected utility is given by:

The farmer now maximizes expected utility by choosing optimal savings (s), loss-
based insurance ( iL ) and index insurance ( iI ). The first order conditions are:

and

(24)

𝜕EUL

𝜕𝜋
= −

(1 + 𝜆L)iL

1 − sL − (1 + 𝜆L)𝜋iL
+ ln

[

1 −
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1 + sL

]

< 𝜋c ln

[

1 −
l

1 + sI + iI

]

+ (1 − 𝜋c) ln

[

1 −
l

1 + sI

]

=
𝜕EUI

𝜕𝜋
.

(25)

𝜕EUL

𝜕l
= −

𝜋

1 + sL − l + iL

< − 𝜋c ln
𝜋 + (1 − 𝜋c)𝛥

1 + sI − l + iI
− (1 − 𝜋c)

𝜋 − 𝜋c𝛥

1 + sI − l
=

𝜕EUI

𝜕l
.

(26)

EU = ln[1 − s − (1 + �L)�iL − (1 + �I)�ciI]

+ �c�h ln[1 + s − l + iL + iI] + �c(1 − �h) ln[1 + s + iI]

+ (1 − �c)�l ln[1 + s − l + iL] + (1 − �c)(1 − �l) ln[1 + s].

(27)

�EU

�s
= −

1

1 − s − (1 + �L)�iL − (1 + �I)�ciI
+

�c�h

1 + s − l + iL + iI

+
�c(1 − �h)

1 + s + iI
+
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1 + s − l + iL
+

(1 − �c)(1 − �l)

1 + s
= 0,
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�EU

�iL
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(1 + �L)�

1 − s − (1 + �L)�iL − (1 + �I)�ciI

+
�c�h

1 + s − l + iL + iI
+

(1 − �c)�l

1 + s − l + iL
= 0
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Rearranging the first order conditions leads to:

and

The sum of the nominators on the right-hand side of these equations is always one. 
Hence, each left-hand side of the Eqs. (30) to (32) is the weighted average of the 
corresponding two fractions on the right-hand side. As a consequence, following 
(31) (1 + �L)∕(1 − s − (1 + �L)�iL − (1 + �I)�ciI) ≥ 1∕(1 + s − l + iL + iI) and fol-
lowing (32) (1 + �I)∕(1 − s − (1 + �L)�iL − (1 + �I)�ciI) ≤ 1∕(1 + s − l + iL + iI) . 
Hence, a positive demand for index insurance iI demands that 𝜆I < 𝜆L . The rational 
behind this result is that the attractiveness of index insurance is not only harmed by 
the mark-up but also by the basis risk. From (30) and (32) follows that the demand 
for index insurance is positive if:

Hence, for 𝛥 > 0 , �I = 0 and 𝜆L > 0 , there is always a positive demand for index 
insurance. However, since iI and iL are substitutes, for iL > 0 the demand for index 
insurance is lower than without the possibility to purchase loss-based insurance.

3  Weather and agriculture in Germany

Although, the relationship between crop yield and weather is intensively studied 
already, most literature is focused on climate conditions, not on short-term weather 
fluctuations. Discussions like that by Deschênes and Greenstone (2007, 2012) and 
Fischer et al. (2012) also show that the results greatly depend on data and approach. 
Hence, further research in addressing the challenges in estimating the link between 
weather and agricultural output is still required, especially in the area of short-term 
fluctuations.

(29)
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�iI
= −

(1 + �I)�c
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Trend in crop time series is another obstacle in estimations because the overall 
production of crops increased in the last decades (Food and Agriculture Organisa-
tion 2020), partially due to technological advancement—but also due to warmer 
conditions caused by the recent climate change. Seemingly contradictory at first 
glance, one has to keep in mind that climate Change also comes along with an 
increasing number of extreme weather conditions which affect agricultural output 
negatively (Kapphan et al. 2019). Furthermore, as climate change effects the timing 
and length of seasons, it also has an effect on crop’s life cycles. Crops are observed 
to adapt to climate change by earlier blooming and grain filling (Rezaei et al. 2000; 
Xiao et al. 2015), which can be either beneficial or leaving them more vulnerable 
when exposed to extremer weather events (Brown 2013). Those can also have indi-
rect effects. Bakker et al. (2005) argue that specific weather like heavy rainfall can 
benefit pests. With standardising seeds and planting practices, crops might also be 
more sensitive towards pests, diseases and stronger influenced by weather (Chen 
et al. 2004).

Another important issue to be considered are regional conditions which leads to 
ambiguous results in the literature. Although most studies show that in general heat 
stress (e.g. Bakker et al. 2005; Brown 2013; Ferris et al. 1998) and drought stress 
decrease crop yield (e.g. Eitzinger et  al. 2013; Olesen et  al. 2000; Torriani et  al. 
2007), they also find varying results depending on country and season when taking 
a closer look.

A lack of rainfall in mid-summer in Scotland is found beneficial by Brown (2013) 
while the results by Olesen et al. (2000) show evidence that increasing precipitation 
in July has a significant negative effect on crops in Danmark. Gornott and Wechsung 
(2016) find for Germany that winter wheat seems to be sensitive to low water supply 
in early growing stages, i.e. in spring. The results regarding the effect of increased 
temperatures are just as ambiguous, especially because the related variables tem-
perature and radiation seem to have counterbalancing effects. According to Brown 
(2013), crops in Scotland benefit from higher radiation in early growth stages but 
suffer from increased temperatures. The positive effect of higher radiation in spring 
is also found for Danmark by Olesen et  al. (2000) and Kristensen et  al. (2011). 
Bakker et al. (2005) and Atkinson et al. (2005) both find that radiation influences 
crop yield significantly negative in numerous mid- and southern regions in Europe. 
Increased temperatures are shown to have a negative effect on crop yield in Eng-
land (Ferris et al. 1998), as well as in Danmark (Kristensen et al. 2011) and China 
(Zhang et al. 2013). By contrast, Bakker et al. (2005) find a positive effect for Euro-
pean countries and Rezaei et al. (2000) acknowledge their findings for Germany.

In conclusion, even though dry spells and heat stress is shown to significantly 
lower yields, the exact relationship and interaction between different weather vari-
ables and yield is difficult to estimate. Next to the challenges when choosing data 
and methods, there is also a time and a spatial component to consider.

From the results in the literature, we can learn that development stages of crops in 
spring and summer should be considered, which means using season weather vari-
ables instead of annual averages as suggested by Maddison et al. (2007). We proceed 
to the assumption that our results will resemble the general results in the literature. 
We expect higher temperature and heat variables to increase the probability of loss, 
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as well as precipitation in summer. In contrast, precipitation in spring is expected to 
decrease the probability of loss. No assumption for the results of radiation can be 
made because radiation is shown to have both positive and negative effects on crop 
yield.

3.1  Data

The data sets are created from several sources. We combine winter wheat yield and 
weather data for Germany in a time series from 1999 to 2019 on district level, which 
is the second lowest administrative level in Germany. The yield data is available on 
the regional department of the Federal Statistical Office of Germany (Statistisches 
Bundesamt). The weather data is derived from the German Climate Data Center 
(DWD), which provides both data from observation stations throughout Germany 
but also interpolated and modelled data grids. We will go into more detail about the 
data sets in the following sections.

The winter wheat data set The yield data set by Statistisches Bundesamt con-
tains annual yield of winter wheat in 10 tons per hectare (dt/ha) for every district 
from 1999 to 2019. In the years 2007, 2008, 2011 and 2016, there had been reforms 
in areal allocation of the districts. During that process, several districts were merged 
into bigger districts. To create a data set with complete time series for currently 
(2021) valid districts including the years before the reforms, the former districts 
yields are merged and the yield averaged. Germany is currently divided in 16 states 
and all together 401 districts. In consideration of land-use, only the rural districts 
are used for further analysis. Rural districts are identified according to Landatlas 
(2018), a data source by the Federal Ministry of Food and Agriculture. The Min-
istry defines rural districts by the Thuenen-Topology, which uses the relative high 
proportion of agricultural land-use, lesser settlement density, proportion of one- or 
two-family houses and distance to bigger centres. One of the five categories is con-
sidered “not rural”. Therefore, 98 districts which fall into this category (including 
cities and city areas like Hamburg and Berlin), are dropped and the analysis includes 
the remaining 303 districts. From those, only 224 districts provide complete a time 
series for 1999 to 2019.

Table 1 provides descriptive statistics of the data set. In regard to the character-
istics of absolute production, the district mean, the average total production in the 
time period 1999 to 2019, show a broad variance between individual districts (see 
Table 1).

As the aim of this chapter is to get a better grasp about yield losses, a variable was 
created as an alternative to absolute yield production. The new variable Dev_yield 
represents the district deviation in percent of the individual district mean (variable 
mean_yield). Figure 1 shows the deviation of the production in the districts for the 
timeline of 1999 to 2019. The years 2003 and 2018 are known for high temperatures 
in summer and dry conditions. In Fig. 1 those years along with 2011 and 2012 can 
clearly be spotted as years with heavy losses. On the other hand, the years 2004 and 
especially 2014 can be interpreted as productive years for farmers regarding winter 
wheat (i.e. low/negative losses).



244 The Geneva Risk and Insurance Review (2023) 48:230–259

The weather data set From the literature, we know that precipitation, tem-
perature and radiation are essential factors in the agricultural sector, especially in 
spring (March to May) and summer (June to August). Therefore, we include sev-
eral indicators for those three weather variables in our estimation, starting with 
precipitation.

The DWD provides seasonal precipitation raster grids where the total precipita-
tion amount is given in mm/cm2, which are the result of an interpolation project 
with name REGNIE (further details see DWD). The raster grids consist of 611 × 971 
square grid cells covering the area of Germany which translates to a spatial resolu-
tion of 1 × 1 km (611 cells in east–west direction, and 971 in north–south direction). 
The grids are intersected with a multi-polygon shape-file of the districts. Each grid 
cell within the boundaries of a district polygon is allocated to that specific district. 
Cells which are only partially within the boundaries are still fully accounted and are 
allocated to both overlapping districts which means they are counted twice. Since 
the average district size is about 900  km2, the bias which could result from the dou-
ble counting, is assumed negligible. For each season, year and district, the raster 
data is extracted and aggregated by averaging the cell values.

The station data provides three temperature variables: the lowest temperature 
measured, the mean temperature and the highest temperature measured. Data from 
all the available set of 810 stations are utilized to calculate the mean seasonal tem-
peratures. However, the daily mean temperature is provided by significantly more 
weather stations than the minimum and maximum. Therefore, the temperature var-
iables to create the heat index for seasons spring, and summer on a district level 
are calculated by using daily weather station data of 249 weather stations which 
recorded continuously since at least 1999. The heat index gives the number of days 
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Fig. 1  Reversed winter wheat fluctuation production in percent for all districts in Germany during 1999 
and 2019. Data Source Statistisches Bundesamt
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in spring (Spring25Freq) where the highest temperature measured exceeded 25 ◦ C, 
and in summer the number of days exceeding 30 ◦ C (Summer30Freq).

From the literature, we learned that radiation is an important factor for crops 
growth. The DWD provides monthly sums of sunshine hours for 439 weather sta-
tions since 1892. Hence, we are using sunshine hours as an indicator for radiation in 
spring and summer.

Since weather is a system with interacting actors, correlation between those vari-
ables might bias the results. As displayed in Fig. 2 the weather variables in our data-
set show some correlation but it is low enough to use in a common setting. Figure 2 
also shows the expected positive relationship between sunshinehours and tempera-
ture, as well as the negative relationship between sunshinehours and precipitation.

After creating the indices, this point data is transformed to planar data using the 
common approach of Thiessen polygons. This is a simple method where the space 
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Fig. 2  Correlation between standardised weather variables each in spring and summer: mean tempera-
tures (MT_st_sp, MT_st_su), sunshinehours (Sunshine_st_sp, Sunshine_st_su), heat days (Heat_st_sp, 
Heat_st_su) and precipitation (Prec_st_sp/su). Data Source DWD.de

Table 1  Characteristics of winter wheat data set

Statistic Mean Standard deviation Min Pctl(25) Median Pctl(75) Max

Yield 72.219 11.350 25.700 64.775 72.200 80.000 110.400
mean_yield 72.219 8.548 42.238 66.886 72.362 76.868 96.581
Dev_yield 0.000 10.669 −47.434 −7.066 −0.281 6.626 47.759
Mean_Temp_spring 9.099 1.133 4.716 8.412 9.178 9.921 12.464
Mean_Temp_summer 17.730 1.036 13.812 17.029 17.578 18.293 21.740
Spring_Sunshinehours 512.219 88.305 147.622 456.663 506.449 561.297 755.949
Summer_Sunshine-

hours
638.039 93.046 197.600 583.736 636.328 698.249 897.467

Spring25Freq 3.981 3.480 0.000 1.284 3.109 5.727 20.910
Summer30Freq 7.936 6.011 0.000 3.584 6.270 10.581 46.539
Prec_spring 171.171 63.533 39.947 128.673 163.177 205.322 619.584
Prec_summer 234.402 77.757 48.828 180.682 228.247 279.427 648.834
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between two points are equally divided to create polygons with the R package dismo 
by Hijmans et al. (2017). Those resulting polygons are converted into raster grids 
using the same resolution as the precipitation grids. This step provides the advan-
tage of a weighted mean when the grids were again aggregated to district level for 
each season for the time series of 1999 to 2019. All weather variables defined, cre-
ated and used in this work are also displayed in Table 2.

3.2  Estimation approach

The dependant variables in each of our estimations are the deviation from the mean 
yield in percent for winter wheat. The ordinary least squares panel estimation is 
given by the following equation:

where ydt is the deviation from the average yield in district d at year t, with district 
fixed effects �d and Xdt representing weather variables in district d at year t and error 
term �dt for unknown factors. The weather variables were standardized by:

in order to simplify the interpretation of the regression results. As discussed by 
Deschênes and Greenstone (2012), too many fixed effects take out too much vari-
ation. Hence, no time fixed effects are included. Instead, the trend is estimated by 
�t . Brown (2013) argues that weather fluctuates more than the agricultural input of 
for example fertilizers, and as we know from the literature, more uniform agricul-
tural practices most likely lead to a stronger influence of weather (Chen et al. 2004). 
Therefore, no additional controls are included either.

Two sets of weather variables are estimated. The first estimation includes mean 
temperature, sunshine hours and precipitation with the goal to determine the effects 
of fluctuations from average conditions. In the second estimation, the variable 

(34)ydt = �d + �Xst
dt
+ �t + �dt,

(35)Xst
dt
t =

Xdt −mean(Xdt)

sd(Xdt)

Table 2  Definition and description of variables, standardized in parentheses

Variable Definition

Dev_yield Negative deviation in percent from the district 
average

Mean_Temp_spring/summer (MeanTemp_st_sp/su) Mean temperature in ◦C
Spring25Freq (Heat_st_sp) No. days per year max temperature ≥ 25 ◦ C 

in spring
Summer30Freq (Heat_st_su) No. days per year max temperature ≥ 30 ◦ C in 

summer
Spring_Sunshinehours (Sunshine_st_sp) Sum of sunshine hours in spring
Summer_Sunshinehours (Sunshine_st_su) Sum of sunshine hours in summer
Prec_spring/summer (Prec_st_sp/su) Precipitation in mm/cm2
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mean temperature is exchanged with the heat index to control for effects of extreme 
conditions.

Since the relationship between the weather variables and deviation in winter 
wheat yields might not be linear, a second-order polynomial approach is estimated 
with squared weather variables which is described by (Xst

dt
)2.

3.3  Estimation results

The results (see Table 3) of the influence of temperature is in line with expectations. 
They acknowledge the findings of Ferris et al. (1998), Kristensen et al. (2011) and 
Chen et al. (2004) who found a negative effect of increasing temperatures on yields, 
but is in contrast of Bakker et al. (2005) and Rezaei et al. (2015) who found a posi-
tive effect of increasing temperature. Although the mean temperature in spring has 
no significant effect, days in spring with temperatures above 25 ◦ C show a signifi-
cant positive influence on losses. The conclusions by Mishra and Sahu (2014) and 
Lippert et al. (2009), that minor increases of the mean temperature does not have a 
significant effect but exceeding certain levels decreases yield, applies in our estima-
tion for spring.

The average temperature in summer is implied to have the strongest negative 
effect in relation to the other variables on winter wheat yield. The effect of radiation 

(36)ydt = �d + �

(

Xst
dt
+
(

Xst
dt

)2
)

+ �t + �dt,

Table 3  Basemodel with 
standardised variables

Significant codes: ***0.01, **0.05, *0.1

Dependent Variable: Dev_yield

Model: (1) (2)

Variables
MeanTemp_st_su 3.456∗∗∗

MeanTemp_st_sp 0.4609∗∗

Sunshine_st_sp 1.918∗∗∗ 1.323∗∗∗

Sunshine_st_su 0.7856∗∗∗ 1.535∗∗∗

Prec_st_sp −0.2387 −0.3129

Prec_st_su 1.140∗∗∗ 1.025∗∗∗

year −0.6775∗∗∗ −0.6381∗∗∗

Heat_st_sp 1.977∗∗∗

Heat_st_su 1.908∗∗∗

Fixed-effects
CC_2 Yes Yes
Fit statistics
Observations 4704 4704
R
2 0.18747 0.17027
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was found ambiguous in the literature. However, our results imply increasing sun-
shine hours in both spring and summer to be unfavorable for winter wheat which is 
in line with the results found by Bakker et al. (2005) estimating radiation effects for 
Germany.

The influence of precipitation in spring is negative as expected, although no sig-
nificant effect is found. The beneficial effect of sufficient rainfall during the early 
growing stages has also been found by Gornott and Wechsung (2016). As Germany 
is not known typically for a country suffering from water distress, the few years with 
extreme warm conditions 2003 and 2018 seem not significantly enough to influence 
the estimation results. Precipitation in summer seems unfavorable for crop yield as it 
increases negative deviation which conforms with findings by Olesen et al. (2000). 
This is in line with the expectations although precipitation only shows a significant 
effect in combination with the heat indices. A possible explanation can be found 
in the higher dynamics in the hydrological cycle due to warming conditions as the 
probability for heavy (and harmful) rainfall events increases with increased water 
saving capacity.

The results of the second-order polynomial regression correspond to the base-
line estimation (see Table 4 second row). The MeanTemp_st_su coefficients are the 
strongest in this setting, as it is in the baseline estimation. Precipitation in spring 
as expected is positive as long as it stays in a certain range while precipitation in 

Table 4  Polynomial estimation

Significant codes: ***0.01, **0.05, *0.1

Dependent Variable: Dev_yield

Model: (1) (2)

Variables
MT_st_su 2.760∗∗∗ 2.726∗∗∗

MT_st_su square 0.4502∗∗∗ 0.9166∗∗∗

MT_st_sp 0.3938∗∗

MT_st_sp square 0.1396
Sunshine_st_sp 1.357∗∗∗

Sunshine_st_sp square 0.4710∗∗∗

Sunshine_st_su 0.7417∗∗∗

Sunshine_st_su square 0.2767∗∗∗

Prec_st_su 0.7112∗∗∗

Prec_st_su square 1.375∗∗∗

Prec_st_sp −1.016∗∗∗

Prec_st_sp square 1.120∗∗∗

year −0.6538∗∗∗ −0.5392∗∗∗

Fixed-effects
CC_2 Yes Yes
Fit statistics
Observations 4704 4704
R
2 0.26399 0.14942
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summer has a negative effect on the yield. The R2 gain in the polynomial regression 
results is low compared to the baseline model.

Though, the R2 in each models is low, the results of our estimations approach still 
imply a significant link between weather and crop yield in Germany. Mean tempera-
tures in summer show to have the highest effect in relation to the other variables on 
yield fluctuations. Therefore, this variable is examined further as a possible candi-
date for the calibration of the insurance model.

The second column of Table 4 displays the results for an second-order polyno-
mial estimation of mean summer temperatures only, and the first column of Table 5 
shows its OLS counterpart. The gain in R2 is very low in the polynomial estimation 

Table 5  Single variables with trend

Significant codes: ***0.01, **0.05, *0.1

Dependent Variable: Dev_yield

Model: (1) (2) (3) (4) (5) (6)

Variables
MeanTemp_st_su 3.324∗∗∗

Year −0.5672∗∗∗ −0.3953∗∗∗ −0.4779∗∗∗ −0.4965∗∗∗ −0.4418∗∗∗ −0.4044∗∗∗

MeanTemp_st_sp 1.340∗∗∗

Sunshine_st_sp 2.202∗∗∗

Sunshine_st_su 1.818∗∗∗

Prec_st_sp −1.212∗∗∗

Prec_st_su −0.4894∗∗∗

Fixed-effects
CC_2 Yes Yes Yes Yes Yes Yes
Fit statistics
Observations 4704 4704 4704 4704 4704 4704
R
2 0.13560 0.06577 0.08958 0.07505 0.05722 0.05164

Table 6  Comparison of Full 
Sample and the first 10 years

Significant codes: ***0.01, **0.05, *0.1

Dependent Variable: Dev_yield

Model: Full Sample Half Sample

Variables
MeanTemp_st_su 3.324∗∗∗ 4.012∗∗∗

year − 0.5672∗∗∗ − 0.6119∗∗∗

Fixed-effects
CC_2 Yes Yes
Fit statistics
Observations 4704 2464
R
2 0.13560 0.26076
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but the coefficient is lower by about 0.6. Table 5 also displays each weather variable 
in an OLS estimation. R2 and the coefficient are highest for summer temperatures. 
It can be concluded that MeanTemp_st_su is a robust variable and a possible cor-
relation between MeanTemp_st_su with other variables does not bias the results. In 
Table 6 summer temperatures are compared in full (1999 to 2019) and half sample 
(from the year 1999 to 2009) as a robustness check. A possible explanation for the 
higher values with half the sample could be a higher variability in weather variables 
in several districts since reports of unusual weather in Germany have increased dur-
ing that time. As the variable MeanTemp_st_su proves to be robust, it is a suitable 
index to simulate the insurance model in the next chapter.

4  Simulation for Germany

Our main research question is whether an index insurance could be a welfare 
enhancing option for the German agricultural sector. From Sect.  2, we know that 
the answer to this question depends on the one hand on the price of (or mark-up on) 
a traditional loss based insurance ( �L ) vs. the price of index insurance ( �I ), and on 
the other hand on the trade off between a high NatCat probability ( �c ) and a high 
difference between the loss probabilities with and without a NatCat ( � ). Hence, we 
are interested in a combination of an index and a NatCat definition which leads to 
a good fit to the loss events. According to Sect. 3.3, the mean temperature in sum-
mer is the most promising indicator for losses in the winter wheat production in 
Germany.

In this section, we simulate our theoretical model by deriving the different param-
eters from the winter wheat and mean temperature data presented in Sect. 3.3. This 
implies in particular deriving the optimal threshold of a NatCat (i.e. the mean tem-
perature that triggers payments of the index insurance) and the comparison of the 
calibrated expected utility of a farmer using a traditional loss based insurance and a 
farmer using the optimal index insurance.

4.1  Simulation of the loss based insurance

According to Eq. (1), the simulation of the loss based insurance requires the overall 
loss probability � , the extent of the loss l and the mark up on the fair premium �L.

The loss parameters � and l are based on the crop yield data presented in 
Sect. 3.1. Since the data only signals the distribution of absolute crop yields or the 
negative deviation from corresponding district means and not a binomial distribu-
tion of “loss” and “not a loss”, we first have to define a loss. One option would be to 
define every negative deviation of the crop yield as a loss. However, in this case the 
loss probability would be about 50%. Hence, we only consider more material nega-
tive deviations as a loss.

Furthermore, we have to consider the fact that there is a positive trend in yields, 
and therefore, a negative trend in the negative deviations of the crop yields from 
their mean. According to our estimation, using mean temperature in summer as the 
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only weather variable, there is a significant linear trend component which declines 
by −0.567 each year. As this trend component captures the (negative) trend of the 
yield deviation and the (positive) trend of the mean temperature in summer, we have 
to disentangle this effect. By minimizing mean squared errors between a linear trend 
and the negative yield deviation, we get a trend of −0.395. The rest (i.e. 0.172) can 
be attributed to the increase in mean temperatures.12

Hence, we consider material deviations of the negative yield deviations from their 
trend as a loss. According to Table 1, the standard deviation of the negative devia-
tions (or losses) is about 10% . About 15% of the “losses” is more than 10% higher 
than their trend and the average of these losses is about 17% . With this definition of 
a loss, � would be 15% and l would be 17% . When we consider 20% (i.e. about two 
standard deviations) as the threshold for a loss, it would be � = 3.6% and l = 26% . A 
loss threshold of 30% (about three standard deviations) would lead to � = 0.9% and 
l = 35%.

The mark up �L on the fair premium directly affects the relative attractiveness of 
the loss based insurance. According to AXCO data for German property insurance, 
between 2000 and 2018, average loss ratios were about 73% which translates into 
a �L of about 0.37. The insurance of NatCats is likely more costly than an average 
property insurance and therefore, the relevant �L is likely higher. This is especially 
true if we consider a high loss threshold which results in a difficult to insure low 
probability/high loss risk. On the other hand, digitalization could help to bring down 
the costs for distribution and management which would result in a lower mark up in 
the future.

From Eq. (9), we know the maximum �L which allows a positive insurance 
demand for a given combination of � and l. For a 10% loss threshold (i.e. � = 15% 
and l = 17% ) the maximum �L for a positive insurance demand would be about 
0.16 and therefore lower than the 0.37 for property insurance in general. This is one 
explanation for the fact that a traditional loss based insurance for crop yields hardly 
exists. If we consider a higher loss threshold also the maximum �L for a positive 
insurance demand increases. With 20% deviation loss threshold, the maximum �L 
would be about 0.34 and therefore close to the 0.37. With a loss threshold of 25% 
the maximum would be 0.44 and with a threshold of 30% it would be 0.53. Hence, 
the more extreme the risk, the more attractive becomes the loss based insurance for 
the farmer. However, such low probability/high loss risks are difficult to insure and 
likely would come with a above average mark up.

As a robustness check, we do the same analysis using data until 2009. Now, with 
a threshold of 10% the parameters are � = 13% and l = 16% (instead of � = 15% 
and l = 17% ) but the maximum �L for a positive insurance demand would still 
be about 0.16. For a threshold of 20% the 2009 data would lead to � = 2.5% and 
l = 27% (instead of � = 3.6% and l = 26% ) and the maximum �L would be about 

12 The corresponding trend of the mean temperature in summer is 0.0536. When we consider that we use 
standardized mean temperatures (divided by standard deviation of 1.036) and that the mean temperatures 
are multiplied by the parameter value 3.324, we get 0.172 as an adjusted trend component. Hence, the 
sum of the two trend components (0.172 and 0.395) is equal to the trend component in our estimation.
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0.36 (instead of 0.34). For a threshold of 30% the 2009 data would lead to � = 0.8% 
and l = 36% (instead of � = 0.9% and l = 35% ) and the maximum �L would be about 
0.55 (instead of 0.53). Hence, the results of the simulation seem to be rather stable.

4.2  Simulation of the index insurance

According to Eq. (11), we need the parameters �c , �l , �h , l and �I to simulate the 
expected utility of a farmer using index insurance. To be able to compare the result-
ing expected utility with the expected utility of a farmer using a loss based insur-
ance, we have to use the same definitions of a loss and hence the same l and �.

There is no data on the mark up on index insurance in Germany available. Given 
that index insurance does not require individual risk and loss assessments, the mark 
up on index insurance should be lower than the mark up on loss-based insurance. 
Most studies of index insurance are on developing economies, where the mark up 
on fair insurance premiums is much higher in general. According to Carter et  al. 
(2017), in the U.S. the mark up on agricultural index insurance is about 20–30%. 
However, also in the U.S. mark ups on property insurance in general are higher than 
in Germany (0.64 compared to 0.37).13 Hence, we assume a mark up at the lower 
end of this range.

The probability for a NatCat �c depends on the definition of a NatCat. Since we 
are using mean temperatures in summer as the relevant indicator, �c would be the 
fraction of the observations (years and districts) with a mean temperature above a 
certain threshold. Given that there is a positive trend in mean temperatures, we have 
to look at the deviation of the temperatures from their trend. The mean of the mean 
temperatures in summer is 17.7 ◦ C and the corresponding trend increases by 0.0536 
each year.14 If the relevant threshold for the deviation of the temperatures from their 
trend would be zero, 44% of the observations would be a NatCat and the probability 
for a NatCat �c = 44% . If the threshold would be 2 ◦ (i.e. about 19.7◦ on average), 
the NatCat probability would be only �c = 3.9%.

The conditional probabilities �l and �h depend on the combination of the loss 
definition and the NatCat definition. If we consider a 20% deviation loss threshold 
( � = 3.6% and l = 26% ) and 1 ◦ deviation as a threshold for a NatCat ( �c = 14% ), 
13.2% of the NatCat observations would also be a loss (i.e. �h = 13.2% ) and only 
2% of the Non-NatCat observations (i.e. �l = 2.0% ). The difference would therefore 
be � = 11.2% . If we would choose 2 ◦ deviation as a NatCat threshold ( �c = 3.9% ), 
the difference would increase to � = 17.1% (with �h = 20.0% and �l = 2.9%).

Figure 3 displays the impact of the NatCat definition on �c and � for two differ-
ent loss definitions (10% and 20% negative deviation threshold). The threshold for 
the NatCat definition obviously has a negative impact on the NatCat probability. As 
expected, the threshold has (overall) a positive effect on � as more severe weather 
events more likely lead to losses.

13 Data for the years 2000 to 2018. Source: AXCO.
14 See Footnote 12.
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As a robustness check, we do the same analysis using data until 2009. Now, 
with a loss threshold of 20% and 1 ◦ deviation as a threshold for a NatCat 13% 
of the observations would be a NatCat (i.e. �c = 13% instead of 14% in the full 
sample). 14.3% of the NatCat observations would also be a loss (i.e. �h = 14.3% 
instead of 13.2% ) and only 0.7% of the Non-NatCat observations (i.e. �l = 0.7% 
instead of 2% ). The difference would therefore be � = 13.6% instead of 11.2% . 
With 2 ◦ deviation as a threshold for a NatCat 6.3% of the observations would be 
a NatCat (i.e. �c = 6.3% instead of 3.9% in the full sample). 20.6% of the NatCat 
observations would also be a loss (i.e. �h = 20.6% instead of 20.0% ) and 1.3% 
of the Non-NatCat observations (i.e. �l = 1.3% instead of 2.9% ). The differ-
ence would therefore be � = 19.3% instead of 17.1% . Hence, using only data up 
to 2009 would make index insurance more attractive to farmers  (higher �c and 
higher � ). Or, in other words, the shift in the distribution would have led to lower 
than expected profits for insurers and, hence, may have reduced the appeal of the 
index insurance product for insurers. However, overall the results of the simula-
tion seem to be rather stable.

As shown in Sect. 2, � and (for low levels of �I ) �c have a positive effect on 
EUI and hence, the relative attractiveness of the index insurance. Therefore, if 
we increase the NatCat threshold, there is a trade-off between lowering �c and 
increasing � . For higher mark ups �I , however, the positive effect of �c (and hence 
the negative effect of a higher NatCat threshold) is reduced. The goal of our sim-
ulation is to find a threshold that leads to the highest EUI . Hence, we have to cal-
culate the optimal levels of savings ( sI ) and insurance demand ( iI ) as well as the 

Fig. 3  Impact of NatCat definition on NatCat probability �
c
 and difference in loss probabilities �
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resulting expected utility ( EUI ) for each combination of the loss threshold and the 
NatCat threshold.

By rearranging condition (17), we get:

To get the optimal levels of savings and insurance demand, we choose a value of sI 
which (sufficiently) fulfills condition (18). The corresponding iI is calculated using 
(37).

Figure 4 displays the impact of the definition on the expected utility of a farmer 
using index insurance ( EUI ) for a 10% loss threshold and different mark-ups �I . For a 
low mark up �I = 0.02 , expected utility peaks at a NatCat threshold of 1.3 ◦ C above 
trend. In line with our theoretical findings, with a higher mark up expected utility is 
not only reduced, also its peak is at a higher NatCat threshold. For �I = 0.08 insur-
ance demand would only be positive (and therefore increase expected utility above 
its minimum) for NatCat thresholds between about 2 and 2.5◦ . For a higher mark up, 
there would be no insurance demand independent of the NatCat definition. There-
fore, there would only be demand for index insurance if the mark up on the fair pre-
mium is well below the current range in the U.S. (0.2 to 0.3).

(37)iI =
1 − sI

(1 + �I)�c
−

(1 − (1 + �I)�c)(1 + sI − l)(1 + sI)

(1 − �c)(1 + �I)�c(1 + sI − (1 − �l)l)
.

Fig. 4  Impact of NatCat definition on expected utility ( EU
I
 ) for a 10% loss threshold and different mark-

ups �
I
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4.3  Index vs. loss‑based insurance

As shown above, with a 10% loss threshold, there would be no demand for loss-
based insurance. For higher loss thresholds and therefore lower loss probabilities 
and higher losses, loss-based insurance becomes more attractive and farmers would 
be willing to pay a higher mark up. With index insurance, however, it is the other 
way around. While with a 10% loss threshold, there would be a positive demand for 
index insurance up to a �I of slightly above 0.08, for a 20% loss threshold, the maxi-
mum �I would be about 0.06 and for a 25% loss threshold the maximum �I would be 
only about 0.03.

Figure 5 shows the impact of the loss definition on the (relative to the potential 
losses l) demand for index ( iI∕l ) and loss-based insurance ( iL∕l ) as well as on the 
difference between expected utility from index insurance and expected utility from 
loss-based insurance (i.e. EUI − EUL ). In order to have a certain range with positive 
insurance demand, the assumed mark ups are rather low: �I = 0.05 and �L = 0.2 . 
If a loss would be defined as a negative deviation of yields from its trend (i.e. loss 
threshold 0%), there would neither be a demand for index insurance nor for loss-
based insurance. For a loss threshold of about 3%, the demand for index insurance 
gets positive and demand reaches its peak at about 9%. For a loss threshold larger 
than 20%, demand for index insurance gets zero again. Demand for loss-based insur-
ance gets positive at a loss threshold of about 13% and continues to increase with 
higher loss thresholds up to its maximum of 45%. In line with these results, index 
insurance is more attractive (i.e. EUI > EUL ) for lower loss thresholds (between 3 
and 15%) and loss-based insurance is more attractive (i.e. EUI < EUL ) for higher 

Fig. 5  Impact of Loss definition on demand for insurance and difference expected utility of a farmer 
using index insurance ( EU

I
)



256 The Geneva Risk and Insurance Review (2023) 48:230–259

loss thresholds. Or in other words, index-insurance is more attractive for the lower 
and more frequently occurring losses and loss-based insurance is more attractive for 
rare high losses.

For a loss threshold between 13 and 20% there would be a positive demand for 
index insurance as well as loss-based insurance. Therefore, in this range it would 
be possible that the farmer purchases both kinds of insurance. Following Sect. 2.5, 
if both kinds of insurance are available, there is only demand for index insurance 
if 𝜆I < 𝜆L which is given) and index and loss-based insurance are substitutes. The 
latter implies that, if the loss threshold is only little higher than 13%, there would 
only be demand for index insurance and if the loss threshold is only little below 20% 
there would only be demand for loss-based insurance. However, for an intermediate 
loss threshold (i.e. about 16%), purchasing index and loss-based insurance could be 
optimal.

5  Conclusions

Weather related risks can significantly affect agriculture production but are very dif-
ficult to insure. In fact, even in high income countries where insurance penetration 
in general is relatively high, these risks are hardly ever insured—at least not without 
public support. In this paper, we have evaluated the potential of index and loss-based 
insurance in enhancing protection and welfare of crop farmers in Germany.

For our evaluation we followed a three step approach. First, we have modeled 
a risk averse farmer and calculated under which conditions he or she would prefer 
a simple index insurance to a loss-based insurance and under which conditions a 
combination of both kinds of insurance could be optimal. Our results indicate that 
besides the different mark up on index and loss-based insurance, the result depends 
on the probability of a NatCat and the difference between the loss probability with 
and without a NatCat. Hence, the (relative) performance of the index insurance 
strongly depends on the used weather index and the concrete definition of a NatCat 
or trigger point for the index insurance.

In a second step, we have therefore conducted an empirical estimation in order to 
see which weather variables have the strongest link to losses of crop farmers in Ger-
many. We have regressed losses on mean temperatures, number of heat days, sun-
shine hours and precipitation. For all four variables we have distinguished between 
spring and summer. Following our estimation, as a single index mean temperatures 
in summer have the highest potential as a valuable index insurance.

In a final step, we have simulated the theoretical model using the results from the 
estimation and using different thresholds for the definition of losses as well as for 
mean temperature in summer as a definition for a NatCat. According to this simula-
tion, index-insurance is more attractive for the lower and more frequently occurring 
losses and loss-based insurance is more attractive for rare high losses. A combina-
tion of both kinds of insurance could be optimal for intermediate cases. However, 
the analysis has also demonstrated that with currently prevailing mark ups on the 
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fair premiums for loss-based and index insurance, demand for both kinds of insur-
ance would be (and is to some degree) zero.

The main contribution of our paper is this three step approach: our model allows 
us to simulate insurance demand using empirical data. This enables us to derive the-
oretical founded results for the attractiveness of index and loss-based insurance for 
German crop farmers. In addition, besides looking separately at the two kinds of 
insurance, we also evaluate under which conditions a combination could be optimal.

Our approach has some shortcomings. In our model, we do not consider the pos-
sibility for farmers to diversify output risks over different kinds of crops or differ-
ent regions. Therefore, in our model, insurance is more attractive than in reality. 
Furthermore, we assume that losses are a binary variable. While this assumption 
facilitates the solving and interpretation of the model, it is not very realistic. In addi-
tion, our model does not consider behavioral deviations of demand patterns includ-
ing issues such as rank-dependence, reference-dependence or ambiguity aversion. 
Future work should aim to analyse the effect of such broadly documented behavioral 
aspects and, thereby, help to understand potential failures of index insurance prod-
ucts. Nevertheless, we believe that our simplifying approach provides useful insights 
regarding the potential of index and loss-based insurance for farmers in Germany. 
Finally, our model only looks at the demand side of the insurance market. Future 
work should aim to also analyse the effect of the different parameters on the supply 
of index and loss-based insurance.

A shortcoming of our empirical estimation is that the explanatory power (meas-
ures by R2 ) is relatively low. One reason for this might be that there are important 
variables which we do not control for. Another reason could be that there is no linear 
relationship between the weather variables and winter wheat yields. The gain in R2 
in second-order polynomial estimation, however, was only minor. Nevertheless, it 
does not harm the results for our simulation of the binary NatCat indicator.
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