
aggregated into one matrix. Pairwise
deletion results in a covariance matrix
that may not be positive definite due to
the use of different subsets of cases.
Mean imputation replaces missing
observations with the variable mean.
Mean imputation underestimates the
variance of the variable and thus the
covariance with other variables. These
techniques may be practical due to their
widespread availability as default options
in statistical software. Yet, because of
their availability, marketers may assume
that these ad hoc methods possess

INTRODUCTION
Marketing researchers typically treat
missing observations using one of the
classic ad hoc techniques that attempt to
fix the incomplete data matrix prior to
analysis. Listwise deletion discards all
cases with missing values and, therefore,
could waste a great deal of usable data,
resulting in lower power. Pairwise
deletion computes each
variance/covariance matrix element
separately using all available data for a
bivariate pair, and the individual
covariance matrix elements are
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modelling software, traditional linear
model analyses (eg regression, ANOVA)
can be performed with these packages.

MAXIMUM LIKELIHOOD MISSING
DATA ESTIMATION
Three approaches for obtaining
maximum likelihood estimates have been
discussed in the statistical literature: the
multiple-group approach, full information
maximum likelihood and
expectation-maximisation. While these
estimators differ in their mathematical
approach, they are built on the premise
that the covariation among variables can
be used to infer, or even estimate,
probable values for the missing data.
Although an over-simplification,
information is borrowed from the
complete data (via the covariation among
variables) to assist in the estimation of
parameters that involve missing values.
Partially complete cases are not discarded
but are incorporated into the estimation
process. This serves two purposes.
Incorporating partially complete cases can
increase the precision (ie lower sampling
variability) of parameter estimates, and
the inclusion of these observations can
decrease parameter estimate bias.

Hartley and Hocking5 provided a
maximum likelihood missing data
estimator that was applied to structural
equation modelling analyses by Muthén,
Kaplan and Hollis.6 This method is
referred to as the multiple-group
approach, as its mathematical form is
similar to the LISREL estimator used for
multiple-group structural equation
modelling analyses. This method has not
experienced widespread use due to its
programming complexity and the fact
that it is practically restricted to situations
that have a small number of distinct
missing data patterns.7

The full information maximum
likelihood approach was originally

desirable statistical qualities and will not
bias parameter estimates. In many cases,
this is far from the truth.

During the past 20 years, maximum
likelihood missing data estimators have
undergone substantial development.1

Malhotra introduced marketers to one
maximum likelihood method,
expectation-maximisation,2 but few
marketers adopted the approach. In 1987,
pre-packaged software was not widely
available, which may have contributed to
a lack of use. Now maximum likelihood
estimators are widely available in
statistical software and are easy to
implement. While the lack of software
may have contributed to the reliance on
ad hoc methods, it may also be the case
that the theoretical benefits of using
maximum likelihood estimators are not
widely understood. The goals of this
study are to: familiarise marketers with
the available maximum likelihood
estimators, review missing data theory
and research, and present a structural
equation model simulation study to
demonstrate the advantages of maximum
likelihood estimation versus other
techniques.

The simulation is based on a structural
equation model from an actual marketing
study. This is appropriate since much of
the recent missing data literature is in the
field of structural equation modelling;
many of the implementations of
maximum likelihood estimators are found
in structural equation modelling software;
and structural equation modelling is
frequently used in marketing research.
The ideas presented in this paper are not,
however, limited to structural equation
model analyses and are more generally
applicable to the family of linear models,
most of which are subsumed under the
structural equation modelling
framework.3,4 Thus, even though
maximum likelihood estimators are
frequently found in structural equation
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applied to a wide variety of general
linear model analyses. Secondly, when
used in structural equation modelling
applications, full information maximum
likelihood yields a � 2 of model fit. The
chi-square statistic generated by full
information maximum likelihood is not,
however, expressed in the usual form
F(N � 1), where F is the value of the
fitting function, as there is no single
value of N that is applicable to the entire
sample. Also, unlike the usual structural
equation modelling fitting functions,
there is no minimum value associated
with the FIML log-likelihood function
— the value increases as model fit
worsens, however. As such, the � 2

statistic is calculated as the difference
between log-likelihood values for the H0

and H1 models, with degrees of freedom
equal to the difference in the number of
estimated parameters between the two.
Although many popular fit indices are
available when using full information
maximum likelihood, the specification of
a means structure (see Equation 1) makes
certain fit indices (eg GFI) undefined.
Fourthly, indefinite covariance matrices
are a potential by-product of the full
information maximum likelihood
approach, but Wothke13 suggests that
these problems are not as prevalent as
those associated with pairwise deletion.
Finally, missing values are not imputed
under full information maximum
likelihood; model parameter estimates
and standard errors are estimated directly
using all available data.

Dempster, Laird and Rubin first
discussed the concepts underlying
expectation-maximisation.14 The
expectation-maximisation estimator is
currently available in the SPSS MVA
(Missing Values Analysis), SAS, EQS,
MPLUS, EMCOV15 and NORM.16 The
expectation–maximisation estimator uses
a two-step iterative procedure whereby
missing observations are estimated and

outlined by Finkbeiner8 for use with
factor analysis and is similar to the
multiple-group approach, except that the
likelihood function is comprised of N
components, each of which contain the
available data for a given case, rather
than group, level. For this reason, the
full information maximum likelihood
approach has been referred to as raw
maximum likelihood estimation.9

AMOS,10 Mx,11 MPLUS and LISREL
currently offer full information maximum
likelihood estimation routines.

Assuming multivariate normality, each
case’s contribution to the likelihood
function is

log Li � Ki �
1
2

log|�i| �
1
2

(xi � �i)��i
–1(xi � �i), (1)

where xi is the vector of complete data
for case i, �i contains the corresponding
mean estimates derived from the entire
sample, Ki is a constant that depends on
the number of complete data points for
case i, and �i is the variance/covariance
matrix for xi. Like �i, the determinant
and inverse of �i are based only on the
variance/covariance terms for which case
i has complete data. The overall
discrepancy function value is obtained by
summing the n (ie number of
observations) casewise likelihood
functions as follows:

log L(�,�) �
N�

i=1

log Li. (2)

Several points should be made about the
full information maximum likelihood
estimator. First, one of the advantages of
the full information maximum likelihood
is its applicability to both just-identified
and over-identified models. In the latter
case, the likelihood equation above is
extended such that � and � are
expressed as functions of some parameter
vector, �.12 As such, the method can be
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variability present in the hypothetically
complete data set; the values are imputed
without a random error component. As a
result, standard errors from subsequent
analyses will be negatively biased, and
bootstrap procedures must be employed
to obtain correct estimates. A correction
factor, however, is added to the
conditional expectation of the missing
data at each E step to correct for this
negative bias in the output covariance
matrix. As such, standard error bias
should be less problematic when
performing analyses using the
expectation–maximisation covariance
matrix rather than an EM-imputed data
matrix, yet no studies have examined this
issue. Alternatively, multiple imputation
procedures designed to recover residual
variability are available in EMCOV18 and
NORM.19

MISSING DATA THEORY
Rubin was the first to describe the
mechanisms that result in missing
observations.20 According to Rubin,
observations are missing completely at
random (MCAR) when the missing
values on a variable X are independent
of other observed variables as well as the
values of X itself. This means that the
missing X values are simply a random
sample of the hypothetically complete
data set. Both listwise deletion and
pairwise deletion require this assumption
in order to yield unbiased parameter
estimates. While discarding incomplete
observations will certainly decrease the
efficiency (ie increase sampling
variability) of parameter estimates and
result in lower power, the distributional
characteristics and covariance structure of
the remaining complete cases will differ
from the hypothetically complete data set
only with respect to random sampling
error. Thus, across repeated samples, the
expected value of the parameter estimate

unknown parameter estimates are
obtained. To begin the iterative cycle, an
initial estimate of the covariance matrix
and mean vector must be obtained using
listwise deletion, pairwise deletion or
some imputation method.

In the E step, missing values are
replaced with the conditional mean of
the missing data given the observed
data and the initial covariance matrix
estimate. That is, missing values are
replaced by predicted scores from a
series of regression equations where
each missing variable is regressed on
the remaining observed variables for a
case i. The subsequent M step is
simply a complete-data maximum
likelihood estimation problem, as
maximum likelihood estimates of the
mean vector and covariance matrix are
obtained using the filled-in data from
the E step. This updated covariance
matrix is then used to derive regression
equations for the next E step and the
cycle begins again. The estimator
repeatedly cycles through these steps
until the difference between covariance
matrices in subsequent M steps falls
below some specified convergence
criterion.17

Several points should be noted
concerning expectation–maximisation.
First, unlike the full information
maximum likelihood approach, the
expectation–maximisation estimator yields
a mean vector and covariance matrix that
can be used as input for subsequent
general linear model analyses (eg
regression). This covariance matrix can
also be used to impute missing values
following the final
expectation–maximisation iteration. This
is appealing due to the illusion of a
complete data set, but there is a
drawback associated with this practice.
Although the imputed values are optimal
statistical estimates of the missing
observations, they lack the residual
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one year later (t � 1). After administering
the second shopping simulation, it is
found that those respondents whose
perceived skill was low at navigating the
t � 0 environment refused to participate
in the second shopping simulation at
t � 1. Missing values at t � 1 represent,
however, a random sample within a
subgroup of t � 0 cases sharing the same
level of perceived skill. Thus, the
propensity for missing data at t � 1 is
dependent on one’s perceived skill at the
first simulation (t � 0) and is unrelated to
the underlying level of performance that
would have been attained at the second
simulation (t � 1). A second example
derived from the simulation study further
illustrates the MAR mechanism.
Research on brand communities indicates
that participation in a group is positively
related to perceptions of sentiments
about other members.23 Consumers who
rarely attend group events and activities
may feel, however, that they have not
had enough contact with the group to
judge adequately their sentiments about
other members. Consequently, those
consumers may have higher nonresponse
on measures that assess their attachments
to other members. In this case the
missing values on the sentiment measures
are dependent on the level of
participation but are unrelated to
attachment itself for any group of
respondents with identical levels of
participation.

MISSING DATA LITERATURE
There is a growing body of literature
supporting the use of maximum
likelihood missing data estimators. Using
bootstrapped samples from an actual
dataset, Arbuckle found that full
information maximum likelihood
estimates of confirmatory factor analysis
(CFA) model parameters were generally
unbiased under MCAR and MAR

in question will not deviate from the
population parameter as a result of using
listwise deletion or pairwise deletion.

Maximum likelihood estimators should
also yield unbiased parameter estimates
when MCAR holds. They have,
however, an important advantage.
Maximum likelihood missing data
estimators utilise covariation among
variables to derive probable values for
the missing data points during the
estimation process. While this additional
information does nothing to improve
accuracy (ie bias) under MCAR, it does
improve efficiency, resulting in decreased
sampling error relative to listwise
deletion and pairwise deletion. Thus,
although maximum likelihood, listwise
deletion and pairwise deletion should
yield unbiased parameter estimates when
MCAR holds, the parameter estimates
from any single sample should, on
average, be closer to the true estimate
under maximum likelihood estimation.
Several researchers have noted that the
MCAR assumption is quite strict, and
probably does not hold in many applied
situations.21 If this contention is true,
then the choice of missing data
technique becomes an important data
analytic decision.

A second missing data mechanism is
the missing at random (MAR)
condition.22 This is a misnomer, as
missing values on a variable X are
systematically related to other variables.
Specifically, MAR holds when missing
values on X are dependent on another
observed variable but not on the values
of X itself. Thus, the observed values of
X are not a random sample of the
hypothetically complete data set but are
instead a random sample within
subgroups defined by scores on another
variable, Y.

To illustrate, suppose consumers are
asked to complete two virtual reality
shopping trips at time zero (t � 0) and
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maximum likelihood missing data
estimators yield rejection rates near the
nominal 5 per cent level when normality
assumptions are met. For example, Enders
and Bandalos found that full information
maximum likelihood � 2 rejection rates
were close to the nominal 5 per cent level
and were relatively uninfluenced by the
missing data rate.36 Like complete-data
maximum likelihood estimators, however,
� 2 are inflated under non-normal
conditions,37 although ad hoc techniques
provide no advantage either.

SIMULATION STUDY
Two small-scale simulation studies were
conducted to illustrate the previous
discussions. The simulations used as a
population model a six-indicator
structural model from an actual
marketing study on brand communities
(see Figure 1 for a path diagram)
collected from 221 members of
Winnebago-Itasca Travelers (WIT), a
recreational vehicle group that is the
nation’s largest manufacturer-managed
customer club. The model proposes that
CONTACT with a customer
community, measured by participation in
group events and activities, is positively
related to members’ SENTIMENTS
toward the community, as measured by
member attachment and group
attachment.38 The SENTIMENTS latent
variable is, in turn, positively related to
BEHAVIOURAL INTENTIONS, which
is defined by three indicator variables:
positive referral, intention to repurchase
and a willingness to pay more.39 For
identification purposes, the uniqueness
term for the contact indicator was fixed
using an internal consistency reliability
estimate generated from the data.
Likewise, a single factor loading from
each of the two remaining latent
variables was fixed at unity — this
specification is not reflected in Figure 2,

mechanisms.24 Listwise deletion and
pairwise deletion estimates were unbiased
under MCAR but biased under MAR.
Enders and Bandalos’ Monte Carlo
simulation suggested a similar pattern of
results from both a CFA and full
structural model,25 as did Wothke using a
latent growth curve model.26 While these
studies utilised multivariate normal data,
Enders found that structural equation
modelling parameter estimates were also
unbiased under non-normal conditions,
although standard error estimates were
negatively biased — they were also
biased for traditional missing data
techniques, however.27 Finally, Enders
found that the full information maximum
likelihood was superior to ad hoc
methods in the context of a multiple
regression model. In these studies full
information maximum likelihood
estimates were relatively unaffected by
the amount of missing data, while the
bias due to ad hoc methods increased
with the missing data rate.28

With respect to efficiency, research has
demonstrated that full information
maximum likelihood parameter estimates
have substantially less sampling variability
than listwise deletion under MCAR,29–31

and this efficiency advantage increases as
the percentage of missing data increases.
In contrast, efficiency comparisons
between full information maximum
likelihood and pairwise deletion have
yielded mixed results. Arbuckle’s32 results
suggested that full information maximum
likelihood parameter estimates have
substantially less sampling variability than
pairwise deletion, while the other
researchers reported only a modest
advantage.

Finally, maximum likelihood estimators
appear to be superior with respect to
model fit. Research has shown that the � 2

fit statistic is inflated when using pairwise
deletion due to violating Wishart
distributional assumptions.33–35 In contrast,
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values were imposed, and five missing
data estimators (full information
maximum likelihood,
expectation-maximisation, listwise
deletion, pairwise deletion and mean
imputation) were applied to the sample
matrices. The goal of the simulations was
to determine which missing data
estimator/s best recovered the true
population parameters.

The 200 sample data matrices (300
observations by six variables) were

which shows the population values for
the standardised solution. See Peters and
Grossbart for further details.40

The reproduced covariance matrix
from the model served as the population
covariance matrix for the two
simulations. As such, the parameter
estimates shown in Figure 2 can be
viewed as the ‘true’ population
parameters. For both simulations, 200
sample data matrices were generated
from the population model, missing
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so the 400 (200 MCAR � 200 MAR)
raw data matrices were submitted directly
to the AMOS 4.0 computer program for
analysis. Expectation-maximisation yields
a covariance matrix and mean vector that
is subsequently used as input into a
structural equation modelling program.
The 400 expectation-maximisation
covariance matrices were generated using
a program written in SAS IML code.
The results from this program were
compared to output from the SPSS MVA
program to verify programming accuracy.
When using covariance matrices as input
it is necessary to specify a single value of
N. Not all elements of the
expectation-maximisation covariance
matrix, however, are estimated from a
common sample size, and no research
exists that provides insight into the
appropriate sample size choice.
Therefore, the minimum N per
covariance term was used — this is the
same value that is frequently input when
using pairwise deletion. (The value of N
is not a trivial issue as model fit statistics
such as the � 2 are impacted by this
choice.) The remaining three missing
data techniques (listwise deletion,
pairwise deletion and mean imputation)
were also implemented in SAS, and
covariance matrices from these methods
were used as input into the AMOS 4.0
computer program. Again, the minimum
N per covariance term was used for the
pairwise deletion matrices. The process
of fitting the 2,000 models (400
samples � five missing data estimators)
was automated using a visual basic
program, and parameter estimates and fit
statistics from each sample were output
to a file for analysis.

Three dependent variables were
examined in the simulation: parameter
estimate bias, model fit and parameter
estimate efficiency (ie sampling
variability). Parameter estimate bias was
measured by the percentage of bias

generated using the RANNOR random
number generator in the SAS IML
procedure. Using the population
covariance matrix generated from the
model, these random normal variates
were transformed to the desired
covariance structure using Cholesky
decomposition. Next, MCAR and MAR
missing data patterns were imposed. To
simulate MCAR data, 20 per cent of the
cases were randomly deleted from the
two attachment indicator variables.
Random deletion was performed
separately for both indicators, so
observations could be missing on one or
both of the variables. To simulate the
MAR condition, missing values on the
two attachment variables were dependent
on the values of contact indicator
variables. Specifically, the probability of
missing data on the two attachment
indicators was inversely related to an
observation’s rank order on the contact
variable, such that observations with low
contact scores had a higher probability of
deletion. For example, an observation at
the 10th percentile of the contact
distribution would have a 90 per cent
deletion probability for the two
attachment indicators. Beginning with
the lowest contact score, missing values
were imposed in this manner until a 20
per cent missing data rate was reached
on the attachment variables; in this
simulation these two indicators were
always deleted as a pair. This procedure
simulates the scenario described earlier
where group members having minimal
contact with the community have a
higher propensity to skip items
measuring their group attachment —
they lack the experience to answer these
items.

Two maximum likelihood estimators,
full information maximum likelihood and
expectation-maximisation, were tested in
the simulation. Full information
maximum likelihood requires raw data,
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passed convergence and admissibility
checks.

SIMULATION 1: MISSING
COMPLETELY AT RANDOM
The first simulation modelled the
situation where observations were
randomly missing (ie MCAR) from the
two indicators of the attachment latent
variable. Table 1 gives the mean
standardised parameter estimates and
percentage of bias relative to the true
population parameter for each missing
data estimator. Structural and
measurement model parameter estimates
were close to the true population
parameters, so the choice of missing data
technique made virtually no difference, at
least with respect to the long-run
expectation of the parameter estimate.
The two exceptions to this trend were
seen with the mean imputation factor
loadings for the attachment latent
variable (the variable with missing values
on its indicators). In this case, there was
a substantial negative bias in these two
loadings. This is not surprising, as mean
imputation restricts the variance of the
imputed variable, which negatively biases
covariation with other variables.41 While
judging the practical impact of bias is
subjective, Muthén et al. suggests that
bias levels less than 10 per cent are
probably not problematic.42

Table 1 also gives the percentage of
model rejections based on � 2

goodness-of-fit tests (p 	 0.05). While
most of the percentages were relatively
close to the nominal rate, pairwise
deletion rejection rates approach 20 per
cent. Previous research has shown that
the use of pairwise deletion violates
structural equation modelling Wishart
distribution assumptions, resulting in
inflated � 2 values.43,44 Also, the rejection
rate for expectation-maximisation was
less than that of full information

relative to the true population parameter
as follows:

%BIAS �

̂j � 
j


j
*100 (3)

The parameter estimates and population
values for the jth missing data estimator
are given by 
̂j and 
j, respectively. The
mean values of this statistic were
computed for each estimator. Model fit
will be assessed using the � 2

goodness-of-fit test. Because the 200
sample data matrices were generated
from a population model with perfect
fit, the percentage of model rejections at
the 0.05 level of significance can be
computed for each missing data
estimator and compared to the nominal
rate of 5 per cent. Finally, efficiency was
measured using a relative efficiency ratio
computed as

RE �
� 2


j

� 2

FIML

, (4)

where � 2

j is the empirical sampling

variance for the jth missing data
estimator computed across the 200
replications and � 2


FIML is the empirical
sampling variance of the full information
maximum likelihood estimates. Because
missing data theory predicts that
maximum likelihood will yield the
lowest sampling variability, it is
reasonable to use full information
maximum likelihood as a benchmark.

RESULTS
Not all of the 200 replications converged
and gave admissible solutions. About 7
per cent of the 200 solutions from each
estimator were discarded, although this
value was higher for pairwise deletion
under the MCAR condition (14.5 per
cent) and lower for mean imputation
under MCAR (0.5 per cent). Results are
based only on those replications that
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sample size would be required to yield
the same level of efficiency as the
maximum likelihood estimators. This
suggests that, while listwise deletion is
unbiased over the long run, parameter
estimates from any single sample would
be closer, on average, to the true
population parameter when using
maximum likelihood estimators. The
differences between the maximum
likelihood estimators, pairwise deletion,
and mean imputation are generally less
extreme. In the case of the two
attachment loadings, mean imputation
yielded much more efficient parameter
estimates than maximum likelihood. As
argued by Wothke, imputing the mean
value results in precise, albeit biased,
estimates.45

SIMULATION 2: MISSING AT
RANDOM
The MAR simulation modelled the
situation where missing values on the
attachment indicators were dependent on
one’s contact with the group; individuals
with little contact were less likely to
convey sentiments about the group. For

maximum likelihood. This is probably
due to the relatively conservative sample
size used in this simulation — the
minimum N per covariance term. The
use of a less conservative value would
increase the � 2, although there is no
research to guide the sample size choice.

The most important aspect of the
MCAR demonstration is seen in Table 2,
which gives the relative efficiency ratios
for each missing data estimator relative to
that of full information maximum
likelihood. Values larger than unity
reflect situations where the sampling
variability of a particular estimator is
greater than that of full information
maximum likelihood. The efficiency of
expectation-maximisation estimates was
virtually identical to that of full
information maximum likelihood.
Listwise deletion yielded substantially
larger sampling variability than the
maximum likelihood estimators. The
listwise deletion sampling variance was,
on average, approximately 50 per cent
higher than the maximum likelihood
estimators. Because sampling variance is
inversely related to sample size, this
suggests that a 50 per cent increase in
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Tablle 2: Ratios by algorithm

Parameter EM/FIML LD/FIML PD/FIML MI/FIML

MCAR relative efficiency
CONTACT→ATTACH
ATTACH→INTENTIONS
CONTACT
MATTACH
GATTACH
POSREF
INTENT
PAYMORE

0.99
0.99
1.00
1.01
1.01
1.00
1.00
1.00

1.51
1.61
1.74
1.01
1.13
1.48
1.41
1.68

1.02
1.16
0.99
1.68
1.50
1.00
1.03
1.00

0.82
0.88
1.02
0.17
0.23
1.04
1.00
1.02

MAR MSE
CONTACT→ATTACH
ATTACH→INTENTIONS
CONTACT
MATTACH
GATTACH
POSREF
INTENT
PAYMORE

1.01
1.01
1.01
1.01
1.01
1.01
1.01
1.01

7.01
1.72

60.97
1.72
2.22
1.33
1.50
1.37

7.37
1.64
1.00
1.78
1.98
1.02
1.13
0.99

58.31
3.56
0.98
1.93
1.79
0.97
1.15
0.99



done with the MCAR results. As such,
the mean squared error (MSE) was
calculated for each estimator as

MSE �
�(
̂j � 
j)

2

i

where 
̂j and 
j respectively represent a
parameter estimate and the corresponding
population value for the jth missing data
estimator, and i is the number of
iterations with admissible solutions. This
statistic is essentially the sampling
variance of the estimator in cases where
parameter estimates are unbiased.

Table 2 gives the ratio of the MSE for
each estimator relative to that of full
information maximum likelihood.
Consistent with the MCAR simulation,
expectation-maximisation and full
information maximum likelihood yielded
nearly identical results. In virtually all
cases the MSE values for the traditional
methods were substantially larger than
those of the maximum likelihood
estimators. In a few cases MSE ratios
close to unity were observed for certain
factor loadings, which indicated that the
traditional method yielded precision that
was equivalent to the maximum
likelihood estimators. Thus, it appears
that the bias observed in the structural
paths for the traditional methods is in no
way compensated for by efficiency. As
was the case in the MCAR simulation,
the parameter estimates from any single
sample were closer, on average, to the
true population parameter when using
maximum likelihood estimators; the
difference between maximum likelihood
and traditional estimators is substantial
under MAR.

DISCUSSION
Missing data are inevitable, especially in
large-scale, commercial marketing
research surveys in which respondents

the MAR simulation, Table 1 shows that
maximum likelihood estimators do yield
less bias than traditional methods. In
addition, the percentage of chi-square
rejections are consistent with the first
simulation, except that mean imputation
� 2 values were dramatically inflated,
leading to rejection rates far above the
nominal 5 per cent level. Both
maximum likelihood estimators yielded
mean parameter estimates that were
virtually identical to the population
values; bias did not exceed 0.3 per cent
across all model parameters. In contrast,
the standardised structural path
coefficients for the three ad hoc methods
showed substantial bias and were
consistently lower in magnitude than the
population values. Results from a
repeated measures ANOVA indicated that
the bias differences between the
maximum likelihood and ad hoc methods
were statistically significant, although this
is not surprising given the power level
achieved with 1,000 observations (200
replications � five estimators). Consistent
with previous research, bias was confined
to the structural paths and did not
impact the loadings to any great extent.
This is problematic as the structural paths
are typically the primary interest in
structural equation modelling analyses.46

Notice also that the level of bias was not
trivial, and was either close to or
exceeded the problematic criterion
suggested by Muthén et al.47

In some cases, bias may be tolerable if
an estimator yields highly efficient
parameter estimates. The efficiency of
the estimator may compensate for bias,
resulting in parameter estimates that are,
on average, closer to the true population
value compared to an unbiased but
inefficient estimator. Thus, due to the
bias noted above, it is appropriate to
examine sampling variability around the
population values rather than the mean
of the empirical sampling distribution, as
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Moreover, these results suggest that the
efficiency gain is not trivial — a 50 per
cent increase in the listwise deletion
sample size was required to yield
sampling variability equivalent to that of
maximum likelihood. In addition, data in
commercial marketing research studies
are often not completely missing at
random (ie MCAR) due to structural
skip patterns generally reflecting
respondents’ unfamiliarity with a block of
questions. Since the MCAR assumption
may not hold in many applied
situations,49,50 most marketing researchers
are facing MAR conditions and the
choice of missing data technique
becomes an important data analytic
decision. Recall that under MAR,
maximum likelihood estimators yield
substantially less bias in parameter
estimates than more traditional methods.
For marketing practitioners, parameter
estimate bias could substantially affect the
interpretation of results. Important
strategic decisions could be made on the
interpretation of parameter estimates that
are not truly representative of the
population because of the choice of
missing data correction mechanism.

While a large body of existing
research has supported the use of
maximum likelihood missing data
estimators, there is still a lot of
uncertainty associated with these
techniques. For example, it was
previously noted that maximum
likelihood estimators are built on the
assumption of multivariate normality.
Even though Enders suggests that the
estimator is superior to ad hoc methods
under extreme non-normal conditions,51

more research needs to be done. In
addition, much of the contemporary
research has focused on full information
maximum likelihood, leaving several
methodological issues related to
expectation-maximisation unresolved. For
example, the expectation-maximisation

often choose not to answer due to
fatigue, confusion or lack of knowledge
or experience. The present results suggest
that marketing researchers should pay
greater attention to missing data
assumptions as well as their choice of
missing data correction mechanism.

Missing data estimators rely on
different assumptions regarding the
underlying cause of the missing data, and
marketers should assess these assumptions
when analysing incomplete data. While
researchers routinely attend to statistical
assumptions such as homogeneity of
variance, missing data assumptions are
seldom, if ever, addressed. Theory
suggests that it is important that
marketers identify whether the mean
differences on Yk are observed between
those respondents who do and those
who do not have missing values on a
variable, X. If mean differences are
observed, this suggests that the MCAR
assumption may not be tenable. (For a
detailed exposition of this type of
diagnostic procedure, see Hair et al.48

The SPSS MVA procedure provides a � 2

test of the MCAR assumption, but no
procedures are available for testing the
MAR assumption.) Recall that if the
MCAR assumption does not hold,
listwise deletion and pairwise deletion are
likely to yield biased parameter estimates.

Missing data mechanisms can
substantially affect the accuracy of
parameter estimates. While maximum
likelihood missing data estimators may
not necessarily yield unbiased estimation
across all scenarios, this study suggests
that these estimators are superior to
traditional ad hoc methods. Even under
strict MCAR conditions where ad hoc
methods do not bias parameter estimates,
maximum likelihood estimators are more
efficient. Under maximum likelihood
estimation, the parameter estimates from
any single sample should, on average, be
closer to the population estimate.
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6 Muthén, B., Kaplan, D. and Hollis, M. (1987) ‘On
structural equation modelling with data that are not
missing completely at random’, Psychometrika, Vol.
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7 Arbuckle, J. (1996) ‘Full information estimation in
the presence of incomplete data’, in Marcoulides, G.
and Schumacker, R. (eds) ‘Advances in structural
equation modelling’, Lawrence Earlbaum Publishers,
Mahwah, New Jersey, pp. 243–277.

8 Finkbeiner, C. (1979) ‘Estimation for the multiple
factor model when data are missing’, Psychometrika,
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9 Graham, J., Hofer, S. and MacKinnon, D. (1996)
‘Maximizing the usefulness of data obtained with
planned missing value patterns: An application of
maximum likelihood procedures’, Multivariate
Behavioral Research, Vol. 31, No. 2, pp. 197–218.

10 Arbuckle, J. (1995) ‘Amos user’s guide’, (computer
software), Smallwaters, Chicago.

11 Neale, M. (1995) ‘Mx: statistical modeling’,
(computer software), 3rd edition, Department of
Psychiatry, Medical College of Virginia, Virginia
Commonwealth University, Richmond, Virginia.

12 Arbuckle (1996) op. cit.
13 Wothke, W. (2000) ‘Longitudinal and multi-group

modelling with missing data’, in Little, T., Schnabel,
K. and Baumert, J. (eds) ‘Modeling longitudinal and
multi-group data: Practical issues, applied approaches
and specific examples’, Lawrence Earlbaum
Publishers, Mahwah, New Jersey.

14 Dempster, A., Laird, N. and Rubin, D. (1977)
‘Maximum likelihood from incomplete data via the
EM algorithm’, Journal of the Royal Statistical Society,
Vol. 39, pp. 1–38.

15 Graham, J. and Hofer, S. (1993) ‘EMCOV reference
manual’, (computer software), University of
Southern California, Institute for Prevention
Research, Los Angeles.

16 Schafer, J. (1998) ‘NORM: multiple imputation of
incomplete multivariate data under a normal model,
version 2’, (computer software), Windows
95/98/NT, http://www.stat.psu.edu/~jls/misoftwa.
html.

17 Little, R. and Rubin, D. (1987) ‘Statistical analysis
with missing data’, Wiley, New York.

18 Graham and Hofer (1993) op. cit.
19 Schafer (1998) op. cit.
20 Rubin, D. (1976) ‘Inference and missing data’,

Biometrika, Vol. 63, pp. 581–592.
21 Graham, Hofer and MacKinnon (1996) op. cit.
22 Rubin (1976) op. cit.
23 McAlexander, J. and Schouten, J. (1988) ‘Brandfests:

servicescapes for the cultivation of brand equity’, in
Sherry, J. (ed.) ‘Servicescapes’, AMA NTC Business
Books, Chicago, pp. 377–401.

24 Arbuckle (1996) op. cit.
25 Enders, C. and Bandalos, D. (2001) ‘The relative

performance of full information maximum likelihood
estimation for missing data in structural equation
models’, Structural Equation Modeling, Vol. 8, pp.
430–457.

26 Wothke (2000) op. cit.

estimator can be used to impute missing
values after the process has converged to
a solution. Analyses of the imputed data
will yield different results relative to the
expectation-maximisation covariance
matrix, but it is unclear to what extent,
if any, the imputation process will bias
results.

This research could be extended
beyond the field of marketing research.
For example, database marketing and
customer relationship management
systems with large sample sizes are often
plagued with missing data due to
systematic error in the capture, rejection
and matching of data — rather than
customer behaviour itself. Moreover,
some researchers suggest that the MCAR
and MAR assumptions may not hold in
these situations.52–54 Thus, potential exists
for the application and extension of this
research to other fields of inquiry within
the business discipline.

While many avenues for future
research exist, there is little evidence to
support the continued use of ad hoc
missing data methods such as listwise
deletion and pairwise deletion. Thus, it is
recommended that marketing researchers
be more aware of the potential impact of
their missing data assumptions and
decrease their reliance on ad hoc methods
in favour of maximum likelihood
estimators.
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