Corrigendum

A guided tabu search for the heterogeneous vehicle routeing problem

CD Tarantilis¹, EE Zachariadis² and CT Kiranoudis²

¹Athens University of Economics and Business, Athens, Greece; and ²National Technical University of Athens, Athens, Greece

Journal of the Operational Research Society (2008) **59**, 1698–1699. doi:10.1057/palgrave.jors.2602539

Correction to: *Journal of the Operational Research Society* (2008) **59**, 1659–1673. doi:10.1057/palgrave.jors.2602504

Further examination on the heterogeneous fixed fleet vehicle routeing problem (HFFVRP) revealed an error on the solution reported for the benchmark Problem 13 with the fleet configuration $FC_{\rm G}$. This error was caused by inappropriately accessing the benchmark instance file. We would like to apologize for any inconvenience caused by the aforementioned oversight.

The GTS algorithm was applied again for the benchmark Problem 13 with the FC_G fleet configuration. The cost of the best solution obtained is equal to 1491.86, and not 1461.24 as reported in the first row of Table 6. The CPU time required for generating the best solution is 53 s. Following this, the GTS method produced four new best solutions and reached the solution quality achieved by the LBTA in all four of the other benchmark instances with the FC_G fleet configuration.

The analytic solution of Problem 13 with the FC_G fleet configuration is provided in the corrected version of Table B-1. Furthermore, the structures of the solutions are illustrated in the corrected version of Figure 8. Note that only the solution shape of Problem 13 has changed.

Route	Customer sequence	Vehicle type	Vehicle variable cost	Demand	Distance	Cost
1	0 30 48 21 47 36 37 20 15 5 29 45 0	F	3.2	200	101.109	323.549
2	0 25 31 0	С	1.2	39	88.789	106.547
3	0 49 24 18 50 0	D	1.7	67	83.977	142.761
4	0 1 43 42 41 23 0	D	1.7	68	83.936	142.691
5	0 14 11 38 10 0	Е	2.5	118	79.495	198.738
6	0 22 28 2 0	D	1.7	67	64.511	109.669
7	0 3 44 32 9 39 26 0	Е	2.5	119	62.967	157.418
8	0 27 13 19 35 7 0	D	1.7	69	62.649	106.503
9	0 16 33 6 0	D	1.7	65	45.841	77.930
10	0 8 46 34 0	D	1.7	62	33.047	56.180
11	0 17 40 12 0	D	1.7	69	31.952	54.318
12	040	В	1.1	30	14.142	15.556
Total cost						1491.859

Table B-1 Analytic solution of benchmark Problem 13, with the FC_G fleet configuration

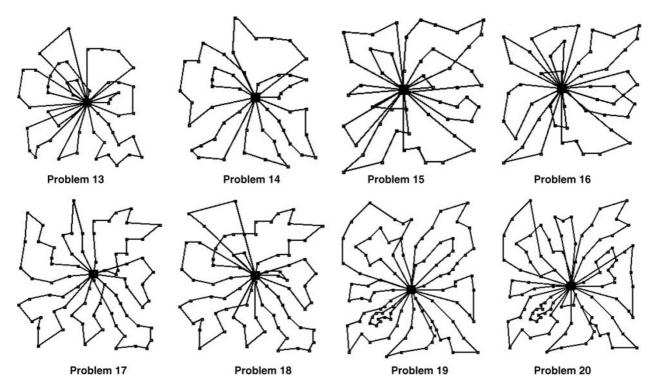


Figure 8 GTS solutions for the examined benchmark instances with the FC_{G} fleet configuration.