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Abstract Estimation error has always been acknowledged as a substantial problem in

portfolio construction. Various approaches exist that range from Bayesian methods with a

very strong rooting in decision theory to practitioner-based heuristics with no rooting in

decision theory at all as portfolio resampling. Robust optimisation is the latest attempt to

address estimation error directly in the portfolio construction process. It will be shown that

robust optimisation is equivalent to Bayesian shrinkage estimators and offer no marginal

value relative to the former. The implied shrinkage that comes with robust optimisation is

difficult to control. Consistent with the ad hoc treatment of uncertainty aversion in robust

optimisation, it can be seen that out of sample performance largely depends on the

appropriate choice of uncertainty aversion, with no guideline on how to calibrate this

parameter or how to make it consistent with the more well-known risk aversion.
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Introduction
Virtually all attempts to address estimation

error in portfolio construction have

been around the refinement of expected

returns before they enter the portfolio

construction process. The error maximising

property of traditional portfolio optimisation

(assets with positive estimation error are

over-weighted, while assets with negative

estimation error are under-weighted)

has been felt as a major obstacle in

achieving a more scientific approach to

investing. Financial economists tried to

control the variation in expected returns

with some form of shrinkage to either

equal returns (James–Stein approach) or

implied market returns (Black–Litterman

approach) in the hope to also control the

variation in portfolio output (and hence to

arrive at less extreme and more stable

solutions).

Success has been mixed. First, return

estimates still show outlier dependency,

whatever statistical method is used. Secondly,

parameter ambiguity will always be present,

even if we increase the amount of extra

sample information. But this means that

error maximisation still affects portfolio

construction. Lately, engineers and

operations research academics have become

interested in the field of portfolio

optimisation and suggested two variations to

mainstream thinking. The first was the idea

of robust statistics, which promotes the clever

removal (or down-weighting) of what are

thought to be extreme observations

(outliers). While outliers are sometimes the

only information we have got (eg, in hedge
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fund returns, where one manager bets against

extreme events), it has been broadly felt that

outlier removal reduced portfolio risk, rather

than increasing it, as we would expect in the

face of model error. This runs against the

intuition of most portfolio and risk managers.

The second addition to mainstream finance

has been robust optimisation. On an intuitive

level, robust optimisation attempts at

minimising the worst case return for a given

confidence region (without confidence

region the worst case return is always �100

per cent) subject to the usual constraints.

Practitioners feel this is a conservative and

hence prudent form of portfolio construction,

with estimation error directly built into the

portfolio optimisation process. While in

general this helps to dampen the error

maximisation problem, we will show that

what looks like an innovation can be written

in terms of ordinary shrinkage estimation and

that the efficient set (set of optimal portfolios

across an efficient frontier) remains the same.

In the next section, we introduce the early

work by Tüntücü and König (2004) on robust

portfolio optimisation as we can use their

fairly simple setting to address the strength and

weakness that all robust methods share. The

subsequent section continues start with a more

sophisticated review of the robust portfolio

optimisation set up, utilising the framework by

Ceria and Stubbs (2005). We will then extend

their model in the section In sample critique

to formally prove that robust optimisation

equals Bayesian shrinkage, where the weight

given to the speculative portfolio (relative to

the minimum variance portfolio that does not

suffer from estimation error in expected

returns) depends both on the number of

observations and the required confidence

level. The latter is difficult to consistently

calibrate. If we for example assume estimation

error aversion to be high, while at the same

time risk aversion is low, we are likely to

underperform out of sample. The reason for

this is, that high estimation error aversion

forces the investor into assets with little

estimation and hence also little investment

risk, while at the same time his risk aversion

demands aggressive portfolios. At a more

philosophical level this shows how artificial

the split between risk and uncertainty is.

All arguments in the fourth section are

essentially in sample. We conclude the paper

with a computational example in the final

section to underline the previous points.

Essentially we show that the optimality of

robust optimisation critically depends on the

complicated interplay between risk aversion

and uncertainty aversion.

The Tüntücü and König (2004)
approach
Suppose investors are ambiguous about the

correct variance covariance matrix or the

correct mean vector in a mean variance-

based portfolio optimisation. Instead they

have many possible candidates in mind.

More precisely, there exists a set of mean

vectors and covariance matrices lASm,OASO
where Sm is the set of all mean vectors and SO
is the set of all covariance matrices. All

matrices are given equal importance no

matter how unlikely they are in a

probabilistic sense as it is assumed the

decision maker cannot form probabilities.

The optimisation problem now becomes

max
w

min
l2Sm;O2SO

wTl� l
2
wTOw

� �
(1Þ

In (1) we want to maximise the worst case

utility for all combinations of variance

covariance matrices with respect to the

portfolio weight vector w. The idea is to

provide ‘good’ solutions for all possible

parameter realisations. We will see that this in

reality means to be very pessimistic as the

solution has to provide a ‘good’ outcome

even if the worst parameter specification

becomes true. Problems like this can be

reformulated to fit traditional optimisation

software.1 Essentially we maximise the worst

case utility. For a large number of securities

and a large set of mean vectors and

Robust portfolio optimisation
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covariance matrices, it becomes infeasible to

solve (1). Tüntücü and König (2004) have,

however, shown that under the assumption

of a long only constraint (all asset must be

held in non-negative quantities), Equation

(1) can be replaced by

max
w�0

wTll �
l
2
wTOhw (2Þ

where ll is the worst case return vector and

Xh is the worst case covariance matrix. The

reason we can readily identify the worst case

inputs rests on the imposed long only

constraint. For a long only position the worst

case is a low expected return, so ll is the

smallest element in Sm, while the worst case

for Xh is little diversification so it must be the

largest element in SO. A high covariance for

example would not be worst case for a long/

short position as this implies that short

positions are risk reducing (hedging). The

same is true for expected returns. Low

expected returns would actually be best case

for a short position as there is on average less

to loose. Tüntücü and König (2004),

therefore, use bootstrapping to elementwise

construct ll and Xh. For lets say 1,000

resamplings from the original inputs l0,X0,

we get 1,000 mean vectors and covariance

matrices.2 We now look at the top left hand

element (variance for asset 1) in the variance

covariance matrix and select the 5 per cent

largest entry across all 1,000 matrices. This

procedure is repeated for all elements3 as well

as for the mean vector. With respect to the

later we select the lower 5 per cent entries.

Note that as XhZX0 by construction it

follows directly that wTXhw�wTX0w¼
wT(Xh�X0)wZ0, that is Xh is riskier. Also

the dispersion of eigenvalues in Xh is much

larger, that is larger fraction of variance is

explained by a smaller number of factors.

This should come as no surprise as the

procedure to construct Xh created high

covariances mimicking the presence of a

dominating market factor.

How should we evaluate this framework?

The main problem in the authors view is that

the above approach translates investment risk

into estimation error. Most prominently we

see this with cash. Cash has neither

investment nor estimation risk and in the

Tüntücü and König (2004) procedure it will

be the highest return asset with the lowest

risk entry (zero volatility and correlation).

Suppose the cash return is 2 per cent, while a

given risky asset is distributed with a 3 per

cent risk premium and 20 per cent volatility.

These numbers have been estimated with 60

monthly observations. If we identify the

‘worst case’ expected return as a three

standard deviation event the respective entry

in ll will become 5%� 2 � 20%ffiffiffiffi
60

p ¼ �0:164%,
4 which is considerably beneath cash. For any

optimisation based on (2) with an investment

universe containing both risky assets and cash

will end up with a 100 per cent cash holding

as long as we look deep enough into the

estimation error tail.5 This seems to be overly

pessimistic.6 Moreover, we can see from (2)

that the Tüntücü/König formulation is

equivalent to very narrow Bayesian priors.

Investors would get the same result by

putting a 100 per cent weight on their priors

about ll and Xh. This is hardly a plausible

proposition.

A more general objective
function for robust portfolio
construction
Suppose we are given an m-dimensional

vector of true expected returns l, that is

distributed around a mean vector, �l, and a

known covariance matrix of estimation

errors, S.7 Suppose further the known

variance covariance matrix of asset returns is

given by the symmetric m�m matrix X.

Note that we focus on errors in expected

returns and assume the covariance matrix of

asset returns to be known, such that

S¼ n�1X, where n denotes the number of

observations used to estimate expected

returns. We will maintain this interpretation

unless otherwise mentioned.

Scherer
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It is well known from statistics that a per

cent of the distribution of expected returns

lie within an ellipsoid defined by

ðl� �lÞTS�1ðl� �lÞ 
 k2
a;m (3Þ

with ka,m
2 ¼ wm

2 (1�a), wn
2(1�a) is the inverse

of a chi-square distribution with m degrees of

freedom. For a¼ 95 per cent and m¼ 8 we

can say that 95 per cent of all expected

returns lie within a statistical distance of 15.5

as defined in (3). Moving alongside the

ellipsoid covers all possible l that are within a

provided confidence band. We can use this

relationship to assess how large the difference

between estimated and realised portfolio

return can become, given a particular

confidence region and vector of portfolio

weights. Analytically we maximise the

difference between expected portfolio return

wT�l and worst case statistically equivalent

portfolio returns wTl, that is those inputs

that are along the ellipsoid defined in (3).

Hence, we solve the following optimisation

problem

Lð�l; yÞ ¼wT�l�wTl

� y
2
ððl� �lÞTS�1ðl� �lÞ � k2

a;mÞ

(4Þ

where y defines the Lagrange multiplier

associated with the ellipsoid constraint.

Essentially we look for the maximum

distance wT�l�wTlusing l as choice variable

for any given allocation w. First take

derivatives of (4) with respect to l and y

dL

dl
¼ �w� yS�1ðl� �lÞ ¼ 0 (5Þ

dL

dy
¼ ðl� �lÞTS�1ðl� �lÞ � k2

a;m ¼ 0 (6Þ

Solving (5) for (l��l) we arrive at

(l��l)¼�(1/y)Rw. This can then be

substituted into (6) to get us

� 1

y
Sw

� �T

S�1 � 1

y
Sw

� �
� k2

a;m ¼ 0

1

y2
wTSS�1Sw� k2

a;m ¼ 0

1

y2
s2 ¼ k2

a;m

(7Þ

We now solve for 1/y to substitute this back

into (5)

l ¼ �l� ka;m
s

� �
Sw (8Þ

Finally, multiply both sides with wT to arrive

at an expression for the distance between

expected portfolio return wT�l and worst

case statistically equivalent portfolio returns

wTl,

wT�l�wTl ¼ ka;m
s

wtSw

wTl ¼ wT�l� ka;ms
(9Þ

In other words: what is the lowest value for

expected portfolio returns as we move along

the a per cent-ellipsoid? The factor ka,m can

be heuristically viewed as an aversion to

estimation error (uncertainty), although

we have calibrated it differently above.

Robust portfolio optimisation uses

wT�l�ka,ms instead of wT�l as estimate for

expected returns. The portfolio construction

problem becomes then8

w�
rob ¼ arg max

w2C
wT�l� ka;ms

� l
2
wTOw (10Þ

instead of

w�
mv ¼ arg max

w2C
wT�l� l

2
wTOw (11Þ

for Markowitz-based portfolio optimisation.

Note that wAC serves as a shorthand for

investment constraints (full investment, non-

negativity, sector neutrality, beta neutrality,

etc).

Robust portfolio optimisation maximises

the worst case expected portfolio return for a

given confidence region subject to risk

Robust portfolio optimisation
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return considerations. The computational

difficulty with (10) is, that it can no longer

be solved using quadratic programming (as it

contains a square root) if the constraint set C

contains non-negativity (wZ0) constraints.

We need to either apply second-order cone

programming9 or use an optimiser that can

handle general convex expressions.

Note that if ka,m is assumed to be large,

this forces the optimal solution towards assets

that are relatively free from estimation error.

For S¼ n�1X, estimation and investment

risk move hand in hand and a larger aversion

to estimation risk also reduces investment

risk. The optimal portfolio invests more

heavily into less risky assets. In the extreme,

cash is the only asset without estimation risk,

as its return is known at the beginning of the

period with certainty. We will exemplify

these statements in the next sections.

Deriving optimal portfolio weights
In this section, we will look at the implicit

assumptions and properties of the robust

portfolio construction mechanism. This

analysis is inherently in sample in nature as it

does not place weight on the actual (out of

sample) performance of constructed

portfolios, but rather checks consistency with

decision theory as well as evaluating the

additional properties relative to established

algorithms.

We start with deriving a closed form

solution for (10) in order to better

understand the mechanics of robust

optimisation. For means of comparison,

we first state the familiar solution to the

traditional portfolio optimisation problem

within our context and notation. The

traditional optimisation problem is given by

Lðw; yÞ ¼ wT�l� l
2
wTOw

þ yðwTI� 1Þ (12Þ
where y denotes the multiplier associated

with the full investment constraint

(wTI¼ 1). After taking first-order derivatives

with respect to the Lagrange multiplier and

the vector of portfolio weights, solving for

the Lagrange multiplier and substituting this

back into the derivative with respect to

portfolio weights, we arrive at the familiar

solution:

w�
mv ¼

1

l
O�1 �l� lTO�11

1TO�11
1

� �

þ O�11

1TO�11
(13Þ

The optimal Markowitz portfolio can be

written as the combination of the minimum

variance portfolio

wmin ¼
O�11

1TO�11
(14Þ

that is neither dependent on preferences (l)

nor expected returns (�l) and a speculative

demand

wspec ¼
1

l
O�1 �l� lTO�11

1TO�11
1

� �
(15Þ

that depends on those factors. Note that

lTX�11/1TX�11 equals the return of the

minimum variance portfolio. The speculative

part increases if returns (opportunities)

increase or risk aversion falls. This is the

familiar two-fund separation.

Robust optimisation instead aims at

trading off the minimum expected return for

a given level of confidence against risk.

Using the same notation as in (12), this

problem can be written as maximising

Lðw; yÞ ¼ wT�l� ka;mn�
1
2sp

� l
2
s2
p þ yðwT1� 1Þ (16Þ

where sp
2¼wTOw, 1 is a m� 1 vector of

ones an n�1/2sp¼ (wTn�1Xw)1/2¼ n�1/2

(sp
2)1/2. The first-order condition with

respect to w is given as

dL

dw
¼ �l� n�

1
2ka;m þ lsp

sp

 !
Ow� l1 ¼ 0

(17Þ

Scherer
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Note that the bracketed term in (17) is a

scalar which allows us to solve for w

w ¼ sp
n�

1
2ka;m þ lsp

 !
O�1ð�l� yIÞ (18Þ

Transpose both sides, multiply by 1 and use

wT1¼ 1 to arrive at

wT1 ¼ sp
n�

1
2ka;m þ lsp

 !
ð�lT � y1TÞO�11

¼ sp
n�

1
2ka;m þ lsp

 !
ðb� yaÞ ¼ 1

(19Þ
where b¼ �lTX�11, a¼ 1TX�11. From (19),

we can solve for y

y ¼ 1

a
b� n�

1
2ka;m þ lsp

sp

 !
(20Þ

Substituting (20) into (18) yields

w�
rob ¼ 1 � n�

1
2ka;m

ls�p þ n�
1
2ka;m

 !
1

l
O�1

� �l� �lTO�11

1TO�11
1

� �
þ O�11

1TO�11

¼ 1 � n�
1
2ka;m

ls�p þ n�
1
2ka;m

 !
w�

spec þwmin

(21Þ
where sp

� denotes the standard deviation of

the optimal robust portfolio.10 For low

required confidence levels (ka,m!0) as well

as for many data (n!N) the optimal

portfolio converges to a mean variance

efficient (frontier) portfolio as (1�(n�1/2ka,m)/

lsp
�þ n�1/2ka,m)!1, which results in11

w�
rob ¼

1

l
O�1 �l� lTO�11

1TO�11
1

� �

þ O�11

1TO�11

¼ w�
mv (22Þ

If ka,m!N, or if n!0 the robust portfolio,

however, converges to the minimum

variance portfolio

w�
rob ¼

O�11

1TO�11
¼ wmin (23Þ

We see that the robust portfolio ranges

between a mean variance efficient portfolio

(with speculative investment demand) and

the minimum variance portfolio (that ignores

the information in return estimates).

In sample critique

How well is uncertainty aversion rooted

in decision theory?

The author argues, that what matters after all

for investors is the predictive distribution of

future returns (as it determines an investors

expected utility) given by p(r̃|rhist), where r̃

denotes the future returns yet unknown.

The distribution is conditioned only by the

observed data rhist and not by any fixed

realisation of the parameter vector h
(covariances, means). We can express the

predictive distribution as12

pðr̃jrhistÞ ¼
Z

pðr̃jyÞpðyjrhistÞdy (24Þ

From (24) we can easily see, that it is

irrelevant where the variation in future

returns comes from. It could either come

from estimation error p(h|rhist) or from the

conditional distribution of asset returns

p(r̃|h). In this respect, it seems to makes little

sense to differentiate between model

uncertainty and risk. Both are inseparable.

In other words: if investors believe, returns

could come from an array of different

distributions with different parameters, they

will use (24) to model the predictive

distribution taking account for parameter

uncertainty. If an investor is shown the

predictive distribution he does not care how

much of it is due to parameter uncertainty

and how much to investment risk.

It should, however, be mentioned that the

literature provides conflicting views on the

above. Robust optimisation traces back to

Robust portfolio optimisation
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Knight (1921) who distinguishes (without

axiomatic foundations) between aversion to

risk, where objective probabilities exist to

guide investment decisions and aversion to

uncertainty where decision makers cannot

even define probabilities. Very much to the

contrast, Savage (1951) showed that decision

makers rationally act by placing a prior on

the parameter space to maximise posterior

expected utility as long as they satisfy a set

of axioms on coherent behaviour. In fact,

individuals use all available tools to calculate

subjective probabilities for expected utility

maximisation (SEU).13 This framework

came under attack on behavioural grounds.

Ellsberg (1961) observed ambiguity aversion

in a series of experiments similar to the

following.14 An urn contains 300 balls, with

200 being a mixture of blue and green and

100 being red. Participants receive 100 Euro

if a random draw selects a ball from a

prespecified colour. Participants are asked,

whether they prefer this colour to be red or

blue. Alternative participants receive 100

Euro if the selected ball is not from the

prespecified colour. Again do you prefer red

or blue? The most frequent response is red in

both cases. If, however, red is preferred in

the first case, the subjective probability for

red must be higher than for blue. This must

mean that you should prefer blue in the

second experiment as the probability of not

receiving blue (where you now receive

money for) is higher than observing blue.

A choice of red in both experiments is not

coherent and therefore a violation of Savages

SEU. What do we make from this? For a start

this is merely empirical evidence that some

investors might behave irrationally.

Dismissing SEU on these grounds is similar

to dismissing stochastic calculus because

many students repeatedly fail in experiments

called exams. In fact, scientists should help

individuals to make better decisions, that is

erecting a normative framework, rather than

following a more descriptive approach that

tries to ex post rationalise the Ellsberg

paradox. For example, Gilboa and

Schmeidler (1989) showed that ‘inventing’ a

decision maker following the minmax

principle (under a different set of axioms)

could reconcile the Ellsberg Paradox. Despite

the intellectual beauty of their work a major

problem remains. Minmax preferences are

not in any respect superior to those already

established by maximising expected utility

with subjective utilities. Not only do they

violate Savage’s sure thing principle (if

decision makers prefer x to y in all possible

states of the world, then they should also

prefer x to y in any particular state of the

world) but they can also lead to a Dutch

Book outcome, a situation where someone

agrees to a set of bets that cause him to lose

money with probability one.15 In the authors

mind these are more serious consequences

than the Ellsberg paradox is for SEU.

How different is robust optimisation

relative to already existing methods?

Let us interpret (21). The careful reader will

realise that the previous result essentially

views robust optimisation as shrinkage

estimator that combines the minimum

variance portfolio with a speculative

investment portfolio, where the weighting

factor is given by

1 � n�
1
2ka;m

ls�p þ n�
1
2ka;m

 !

 1 (25Þ

Note that the weighting factor contains

sp
�, that is the optimal volatility of robust

portfolios, which is only known after the

robust portfolio has been constructed.

This makes ‘robust shrinkage’ a very in-

transparent and difficult to control process as

the weighting factor is endogeneous. As long

as estimation error aversion is positive, this

term will always be smaller than one. Robust

portfolio construction will not be different

from a shrinkage estimator like Jorion (1986)

as it simply interpolates between the

minimum variance portfolio and the

maximum Sharpe-Ratio portfolio.

Scherer
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Additionally, the efficient set (the set of all

solutions, ie optimal portfolio) coincides

with the mean variance efficient set.

Solutions for investors with a particular risk

aversion only differ to the extent lower

weight is given to the speculative portfolio.

An alternative way to see this is to rewrite

(10) as U ¼ wT�l� l1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wTOw

p
� ðl2=2Þ

wTOw. Taking first derivatives yields and

solving for w� yields w�¼ (1/(l11/sþ l2)

X�1�l which is essentially equal to

w�¼ 1/l�X�1�l, where l� is the pseudo risk

aversion that makes Markowitz and robust

optimisation coincide. In other words: the

appropriate choice of l� in mean variance

optimisation will recover the robust

optimisation result. Viewed this way robust

optimisation offers nothing additional apart

from increased in-transparency. The return

adjustments are not user specified but

determined during the optimisation. Also we

note an increased ambiguity in parameter

choice: How can we justify our choice of

ka,m and how can we make it ‘consistent’

with risk aversion.16

What are the implicit return refinements

made by robust optimisation?

We have seen in (8) that robust optimisations

uses �l�(ka,m/s)Rw instead of �l as inputs for

expected returns. The return adjustment

consists of factor ka,m plus a measure for the

marginal contribution to estimation risk.

Essentially this describes a situation where

assets with the highest marginal contribution

to estimation error ((1/s)Rw) are more

heavily penalised in terms of expected

returns than assets with lower estimation

error contributions. The effective expected

return in robust optimisation thus depends

on both estimation error and actual position.

Assets that carry positive weights get a return

subtraction (to make the overweight less

attractive), while assets with negative weights

get a return add on (to make the short

position less attractive). While this is aimed at

mitigating estimation error maximisation, it

is not extremely pessimistic. Essentially

robust optimisation moves alongside the

ellipsoid (3) and implicitly assumes that

estimation error is always on the wrong side,

overestimating the expected returns of assets

that are over-weighted and underestimating

the expected returns of under-weighted

assets. Apart from an unsymmetric treatment

of estimation error, it also creates a logical

impossibility. Expected returns (before

transaction costs) can never be dependent on

position size or sign. In fact, return

expectations are made separate from

portfolio construction.

Out of sample critique
So far we have seen that robust optimisation

is similar to Bayesian shrinkage, without its

theoretical foundation or transparency. As

such it is unclear why investors should prefer

it to Bayesian analysis. Additionally, this

section will show that robust optimisation

methods can severely underperform

traditional mean variance optimisation as the

inability to consistently determine ka,m and l
can lead to severe out of sample

underperformance of robust optimisation

relative to naive optimisation.

Before we start with our out of sample

testing example, we should summarise the

key principles for out of sample evaluation as

they apply to our case.

1. Out of sample testing is not equivalent to a

rolling period analysis through a historical

sample path: A particular sample path

might have characteristics that put an

unfair advantage (ie an advantage that is

not universal across many sample path) to

a particular method. For example:

downside risk-based methodologies

might find little downside risk in an

upwards trending markets and hence

overweight risky assets (based on their

low downside risk) leading to an

immediate advantage over mean

variance-based measures that is spurious

and does not generally hold. We therefore

need to employ a large number of

Robust portfolio optimisation
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simulations across many economic

environments to evaluate a portfolio

construction mechanism. This is best

done with the use of Monte Carlo

simulations where we have perfect control

over the underlying processes.

2. Out of sample testing requires the evaluation of

expected (out of sample) utility, as this is the

only measure with a sound foundation in

decision theory: What are alternatives to

compare portfolio construction

methodologies? Is it the probability of

one method outperforming the other in

terms of realised return? Is it the turnover

generated as new information becomes

available? The author believes that out of

sample comparisons always need to be

made on the basis of expected out of

sample utility. This is the only way to

ensure that comparable decisions are

made across samples with different risk

return trade offs. Minimising risk for a

given return target does not meet these

criteria as it leads to relatively risky

portfolio for samples with depressed risk

premium and relatively less risky

portfolios across samples with high risk

premium. This implies that risk aversions

change dependent on the market risk

premium, which is highly implausible.

Secondly, even if all the above is met, out

of sample tests are purely statistical results.

3. Without underlying theoretical arguments, the

results of out of sample tests are impossible to

generalise and hence are highly data dependent:

While we could to certain extent address

this concern by sampling across a wide

array of alternative covariance matrices,

we can never generalise an argument that

is essentially build upon pure empirical

results. To put it differently: how can we

be certain that it works for other than the

tested situations if we have no theoretic

underlying?

How should we design the out of sample

testing for robust portfolio optimisation?

The author suggests the following set up

described in Figure 1.

1. Assume a true mean vector �l and

covariance matrix X. Draw

s¼ 1,y, S¼ 1,000 samples from

�ls � Nð�l; n�1OÞ (26Þ
with n¼ 60,120. Estimation error is

equivalent to five or ten years of monthly

data. Essentially this means that we focus

on estimation error in means, while we

assume the covariance matrix to be

perfectly known.
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Figure 1 Out of sample testing. We choose one vector of true expected returns (out of many alternatives,
indicated by the grey area). From this, we resample 1,000 statistically equivalent vectors of expected returns for
alternative data equivalents, that is for n¼ 60,120 according to �lsBN(�l,n�1X). For each s¼ 1,y,1,000 realisations
we calculate optimal portfolios for both construction methodologies. These portfolios are then evaluated (out of
sample) with the true distribution �l,X.
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2. For each realisation (sample draw), we

construct traditional as well as robust

portfolios using (10) and (11) for varying

risk aversions (l¼ 0.01, 0.025, 0.05) and

confidence requirements (a¼ 99.99,

97.5, 95 per cent).

3. We construct 1,000 portfolios for each

method.17 Both algorithms (traditional

mean variance as well as robust

optimisation) adjust to the sampled data

only. The true mean vector is not known

to any method. In contrast to the previous

section we add a non-negativity

constraint on portfolio weights (wZ0)

for both methodologies. Each of these

constructed portfolio is then evaluated

under the true distribution, that is we

calculate

Usðw�
mv;sð�lsÞ; �l;OÞ

¼ ðw�
mv;sÞ

T�l� l
2

�ðw�
mv;sÞ

TOðw�
mv;sÞ (27Þ

Usðw�
rob;sð�lsÞ; �l;OÞ

¼ ðw�
rob;sÞ

T�l� l
2

�ðw�
rob;sÞ

TOðw�
mv;sÞ (28Þ

In other words: we calculate the optimal

response (wmv,s
� , wrob,s

� ) for each s¼ 1,y,1000

draws and calculate the out of sample utility

for the true return distribution, that is the

utility we would experience out of sample.18

Averaging across all draws we get the

expected utility for a given portfolio

construction mechanism.

In order to appreciate the above procedure

we go through a detailed example for

l¼ 0.01, a total of eight assets (m¼ 8) and a

required confidence of a¼ 99.9 per cent

(k99.9 per cent,8¼ 5.11). We use the data from

Michaud (1998) on global equity and fixed

income markets. Running 1,000 draws will

allow us to evaluate the ‘robustness’ of robust

portfolios. After all the main perceived

property of robust optimisation is to dampen

the response of portfolio weights with

respect to variations in expected returns. The

results are summarised in Figure 2 for the

first 100 draws. We see that robust

optimisation indeed creates portfolios that

are robust to changes in expected returns,

that is optimal allocations vary much less as

new and potentially noisy information comes

along. Traditional portfolios seem much

more concentrated in very few assets

(sometimes even only one) hitting corner

solutions in the optimisation process. Why

should ‘robustness’ be a valuable property,

however? We cannot infer this from Figure

2. After all robust portfolios might be overly

diversified, that is not concentrated enough

into high yielding assets for an aggressive

investor. The only way to check the claim

that robust optimisation delivers superior

performance is to compare the expected (out

of sample) utility from the portfolios in

Figure 2 using the true return vector (ie the

one we sampled from at the beginning). If

we then find that

1

S

XS
s¼1

Usðw�
mv;sð�lsÞ; �l;OÞ ¼ EUmv � EUrob

¼ 1

S

XS
s¼1

Usðw�
rob;sð�lsÞ; �l;OÞ ð29Þ

With statistical significance, we can say that

robust optimisation outperforms traditional

optimisation.19

Take a look at the distribution of utilities

(for each s¼ 1,y,1000 draws) in Figures 3

and 4. Utilities across scenarios are positively

correlated (Figure 3). If out of sample utility

is high for traditional portfolios, it also tends

to be high for robust portfolios. While out of

sample utility for robust portfolios is different

for every single sample, it seems to be stuck

at certain levels for traditional portfolio

construction. These are simply the corner

portfolios, that is the optimisation is stuck at

the same solution for a variety of inputs. The

histograms in Figure 4 pick up the same
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effect, where more weight is given to the

more frequent corner portfolios. Moreover,

we see that sample utility is less extremely

distributed in the robust case, which is a

direct consequence of robustness.

For means of comparison we will

calculate three statistics. First, we state the

difference in expected utility between both

construction methodologies. A difference of

0.1, for example, means a 10 basis points

Fi.EU
Fi.US
Eq.US
Eq.UK
Eq.Jap
Eq.Ger
Eq. Fra
Eq.Can

Traditional Optimization

Robust Optimization
Fi.EU
Fi.US
Eq.US
Eq.UK
Eq.Jap
Eq.Ger
Eq. Fra
Eq.Can

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

Figure 2 Robust versus traditional portfolio construction (l¼0.01, n¼ 60, a¼99.99 per cent, S¼ 1,000). Robust
portfolio react less sensitive to changes in expected returns. Given the high required confidence of a¼ 99.99 per
cent, robust portfolios invest heavily in assets with little estimation error. This is entirely different with our intuition
that error in return estimates becomes less and less important as we move towards the minimum risk portfolio. The
data are taken from Michaud (1998) and the abbreviations used are FI.EU (fixed income Europe), FI.US (fixed
income US), EQ.US (equity US), EQ.UK (equity UK), EQ.Jap (equity Japan), EQ.Ger (equity Germany), EQ.Fra
(equity France) and EQ.Can (equity Canada).
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Figure 3 Mean variance versus robust optimisation (l¼ 0.01, n¼60, a¼99.99 per cent, S¼ 1,000). We plot the
utility from mean variance optimisation U(wmv

� (�ls),�l,O) versus the utility from robust optimisation U(wrob
� (�ls),�l,O).

The vertical lines represent corner solutions, that is the optimiser arrives at the same solution for different set of
inputs.
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(bps) return advantage (measured as security

equivalent) per month. Secondly, we

calculate the statistical significance of the

difference in expected utility. You can think

of this as the t-value on the intercept of a

regression of utility differences against a

constant. Finally, we also calculate the

probability that robust optimisation

outperforms traditional optimisation simply

stated as percentage. In our example, we find

that the difference in expected utility

amounts to �26.24 bps per month, which

adds to a return disadvantage of more than

300 bps per year. Not only is this a very

sizeable result, but it also comes with a

t-value of 16 and the probability of robust

optimisation outperforming traditional is

a mere 6.8 per cent. Robust optimisation

underperforms traditional optimisations

significantly for the above example. The

reason for this is, that the high aversion to

estimation error conflicts with the low risk

aversion. This is in general the problem with

addressing uncertainty aversion separately

from risk aversion. Portfolios are shrunk too

much towards the minimum variance

portfolio, to be consistent with low risk

aversion. It would be unfair to base a

comparison between two methodologies on

a single parameter constellation. In order to

get a more complete picture, we repeat the

above exercise for many parameters and

summarise the results in Table 1.

Robust optimisation will lead to inferior

out of sample results, if investors show little

risk aversion (l¼ 0.01, 0.025), but high

uncertainty aversion. For high values of ka,m,

the robust optimisation approach forces

investors into portfolios that lean towards

assets with little estimation risk. For the case

R¼ 1/nX, however, this is equal to

portfolios with little investment risk. Out

of sample this leads to a deterioration of

expected utility. Robust portfolios are simply

not aggressive enough.

While this interpretation holds

qualitatively for the case with small (n¼ 60)

as well a large (n¼ 120) estimation error, we

see that robust does increasingly worse if

estimation error is reduced. If the precision
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Figure 4 Histogram of out of sample utilities (l¼0.01, n¼60, a¼99.99 per cent, S¼ 1,000). Out of sample utility
traditional optimisation peaks around corner portfolios, while it seems to be much smoother distributed for robust
optimisation. Both very low and very large utilities are reported under traditional optimisation.
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in estimates becomes larger (estimation error

is removed), the traditional Markowitz-based

approach is more powerful in selecting

optimal portfolios. For very low estimation

errors, it makes little sense to demand a high

estimation error aversion.

Conclusions
Robust portfolio optimisation aims at

explicitly incorporating estimation error into

the portfolio optimisation process. The

above contribution has formally shown that

robust methods are equivalent to shrinkage

estimators and leave the efficient set

unchanged. In other words: they offer

nothing new. All this, however, comes at the

expense of computational difficulties

(second-order cone programming).

Moreover, the return adjustment process is

largely in-transparent relative to Bayesian

alternatives and suffers from a logical

impossibility: Return estimates need to be

independent from position sign and size.

We constructed a simple but realistic

example, that showed how severely robust

optimisation (up to 300 bps in return,

measured via security equivalent) will

underperform even simple mean variance

optimisation.

Notes

1. The mathematics has been developed by Halldorsson and

Tüntücü (2003). Let us, for example, assume that there is

only ambiguity about the mean vector and that the

covariance matrix is known. Further assume we have

1,000 possible mean vector candidates from l1 to l1,000.

We can reformulate (1) into

max
w;Umin

ðUminÞ;wTm1 � l
2
wTOw

� Umin; . . . ;w
Tl1;000 � l

2
wTOw � Umin

Nuopt for S-Plus can deal with problems of this kind

while other dedicated portfolio optimisers cannot.

2. Note that mean vector entries are uncorrelated with

covariance entries.

3. As all covariance matrices are symmetric, it suffices

to work through the upper or lower triangle.

4. For simplicity, we assumed s to be known.

5. Also see Brinkmann (2005) for a review on Tüntücü and

König (2004) as well as some out of sample tests. Using

synthetic data with equal volatilities, he does not expose

their method to this major deficiency and still gets only

mixed results for Tüntücü/König.

6. Maxmin criteria are known to be overly pessimistic.

Their use has recently be motivated by Gilboa and

Schmeidler (1989) that try to capture ambiguity by

applying maxmin to expected utility. See more on this in

the section In sample critique.

7. This section draws on the work by Ceria and Stubbs

(2005) and clean up some of their notation. We will

extent their setting in the next section.

8. Ceria/Stubbs use the term 8S1/2w8, which is the vector

norm of a product that uses the square root of a matrix.

This is computationally inefficient. Using the definition

of a vector norm, we get 8S1/2w8¼ (wTS1/2S1/2w)1/2¼
(wTSw)1/2¼ s which is much easier to interpret as

estimation error and easier to implement.

9. See Ghaoui et al. (2003).

10. Note that s�p is the solution to the polynomial

a4sp
4þ a3sp

3þ a2sp
2þ a1spþ a0 where the coefficients

depend on the above model parameters. A proof is

Table 1 Out of sample performance for full
investment universe (m=8)

a=95% a=97.5% a=99.99%

Small sample size (n=60)
l=0.05 9.7 bps 8.7bps 7.79bps

(20.16) (17.76) (16.09)
68.5% 63.4% 61.0%

l=0.025 �3.13bps �5.54bps �6.96bps
(�18.23) (�14.84) (�11.85)
39.14% 32.6% 28.8%

l=0.01 �19.8bps �24.09bps �26.14bps
(�49,6) (�63.33) (�70.07)
13.0% 8.1% 6.8%

Large sample size (n=120)
l=0.05 4.3 bps 3.1bps 2.1 bps

(12.5) (8.82) (5.99)
57.4% 50.7% 45.4%

l=0.025 �5.7 bps �8.7bps �10.5bps
(�16.65) (�26.71) (�33.31)
29.1% 20.1% 16.4%%

l=0.01 �18.4bps �24.1bps �27.2bps
(�44.8) (�72.22) (�89.2)
12.3% 5.0% 3.6%

Table shows the relative performance of robust
portfolio optimisation relative to traditional portfolio
optimisation. The first number is the difference in
expected utility, which we can interpret in terms of a
security equivalent (ie basis points of monthly
performance). The second number (in round brackets)
represents the t-value of the difference in expected
utility (a value of about 2 would be significant at the 5%
level, for a two-sided hypothesis), while the third
number represents the percentage of runs, where
robust optimisation generated a higher out of sample
utility than traditional optimisation.
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available from the author upon request. As sp
� is

determined endogenously we have little control over the

degree of implied shrinkage.

11. We know that (dsp
�)/(dka,m)o0, that is an increase in

estimation error risk aversion will result in portfolios that

carry less investment risk. This is needed to ensure that

1�(n�1/2ka,m)/(lsp
�þ n�1/2ka,m) converges to 0 as ka,m

increases.

12. See Scherer (2004, p. 106)

13. Given that the whole finance industry is devoting its

resources to this task, this seems highly uncontroversial to

the author.

14. See Kreps (1990).

15. See Sims (2001) for a critical view on minmax utility.

16. Recently there has been some work on this problem. See

for example Maenhout (2004) and the quoted literature

therein. The author, however, arrives at a similar result: a

dramatic decrease in the demand for risky assets.

17. Robust optimisation has been implemented in Nuopt for

S-Plus. For more details, see Scherer and Martin (2005).

18. One might be tempted to argue that we cannot compare

both methods on the basis of expected utility as an

investor with uncertainty aversion actually exhibits a

different utility function. This argument would, however,

be misplaced as we investigate whether a mean variance

investor can benefit from robust optimisation methods.

19. Note, that no reference is made here to transaction costs.

If all transactions were free of cost, trading would have no

impact on performance, but if transaction costs were

substantial investors would be well advised to explicitly

consider the costs of trading, rather than implicitly limit

transactions.
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