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Abstract We present a recent innovation to portfolio construction called full-scale

optimisation. In contrast to mean–variance analysis, which assumes that returns are

normally distributed or that investors have quadratic utility, full-scale optimisation identifies

the optimal portfolio given any set of return distributions and any description of investor

preferences. It therefore yields the truly optimal portfolio in sample, whereas mean–

variance analysis provides an approximation to the in-sample truth. Both approaches,

however, suffer from estimation error. We employ a bootstrapping procedure to compare

the estimation error of full-scale optimisation to the combined approximation and

estimation error of mean–variance analysis. We find that, to a significant degree, the

in-sample superiority of full-scale optimisation prevails out of sample.
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Part I: Introduction
For three decades, mean–variance analysis

has served as the standard procedure for

constructing portfolios. Recently, investors

have experimented with a new optimisation

procedure, called full-scale optimisation, to

address certain limitations of mean–variance

analysis. Specifically, mean–variance analysis

assumes that returns are normally distributed

or that investor preferences are well

approximated by mean and variance.1 Full-

scale optimisation relies on sophisticated

search algorithms to identify the optimal

portfolio given any set of return distributions

and based on any description of investor

preferences. Full-scale optimisation yields the
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truly optimal portfolio in sample, whereas

the mean–variance solution is an

approximation to the in-sample truth.

Both approaches to portfolio formation,

however, suffer from estimation error.2

Mean–variance analysis requires investors to

estimate the means and variances of all assets

and the covariances of all asset pairs. To the

extent the out-of-sample experience of these

parameters departs from the in-sample

parameter values, the mean–variance

approximation will be even less accurate.

Full-scale optimisation requires investors to

estimate the entire multivariate return

distribution. To the extent it varies from the

in-sample distribution, full-scale optimisation

will also yield sub-optimal results out of

sample. We employ a bootstrapping procedure

to compare the estimation error of full-scale

optimisation to the combined approximation

and estimation error of mean–variance

analysis. We find that to a significant degree

the in-sample superiority of full-scale

optimisation prevails out of sample.

We organise the paper as follows. In

Part II, we review mean–variance analysis

and its limiting assumptions, and we describe

full-scale optimisation. In Part III, we review

our bootstrapping procedure for generating

out-of-sample results. We present these

results in Part IV, and we conclude the paper

in Part V.

Part II: Alternative approaches
to optimisation

Mean–variance analysis and its

limitations

In his classic paper, ‘Portfolio Selection’

(1952), Markowitz submitted that investors

should not choose portfolios that maximise

expected return, because this criterion by

itself ignores the principle of diversification.

He proposed that investors should instead

consider variances of returns, along with

expected returns, and choose portfolios that

offer the highest expected return for a given

level of variance. He called this rule the E–V

maxim.

Markowitz demonstrated that, for given

levels of risk, we can identify particular

combinations of securities that maximise

expected return. He deemed these portfolios

‘efficient’ and referred to a continuum of

such portfolios in dimensions of expected

return and standard deviation as the efficient

frontier. According to Markowitz’s E–V

maxim, investors should choose portfolios

located along the efficient frontier.

This approach to portfolio formation is

sufficient for maximising expected utility if

portfolio returns are normally distributed or

if investors have quadratic utility, which is

defined as E(U)¼ m –l s2, where m equals

portfolio expected return, l equals risk

aversion, and s2 equals portfolio variance.

If returns are normally distributed, investors

can infer the entire distribution of returns

from its mean and variance; hence the

irrelevance of specific periodic returns or

higher moments. And even if returns are not

normally distributed, quadratic utility

assumes that investors are indifferent to other

features of the distribution.

Many assets display return distributions

that are approximately normal; however, no

asset produces a perfectly normal

distribution. Moreover, quadratic utility is

not a realistic description of any investor’s

attitude toward risk for several reasons. It

assumes investors are as averse to upside
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deviations as they are to downside deviations.

Also at certain wealth levels it assumes

investors prefer less wealth to more wealth.

And finally quadratic utility assumes investors

have increasing absolute risk aversion.

Financial economists usually assume that

investors have power utility functions, which

define utility as 1/g� Wealthg. A log wealth

utility function is a special case of power utility.

As g approaches 0, utility approaches the

natural logarithm of wealth. A g equal to 1/2;

implies less risk aversion than log wealth, while

a g equal to �1 implies greater risk aversion.3

These utility functions, along with a quadratic

utility function, are shown in Figure 1.

Unlike quadratic utility, power utility

functions assume a preference for upside

deviations, they never slope downward,

which would reflect a preference to reduce

wealth, and they assume constant relative risk

aversion. They are therefore a more plausible

description of investor preferences than

quadratic utility. Nonetheless, quadratic

utility serves as an excellent approximation to

most variations of power utility for a wide

range of reasonable investment outcomes.4

Many investors, however, view power utility

functions as overly simplistic. They believe

that investor preferences are better described

by more complex functions such as kinked

utility functions or S-shaped value functions.

A kinked utility function changes abruptly

at a particular wealth or return level and is

relevant for investors who are concerned

with breaching a threshold. Consider, for

example, a situation in which an investor

requires a minimum level of wealth to

maintain a certain standard of living. The

investor’s lifestyle might change drastically if

she penetrates this threshold. Or she may be

faced with a situation in which she will

become insolvent if her wealth breaches some

threshold. Or a particular decline in wealth

may breach a covenant on a loan or a

regulatory requirement. In these and similar

situations, a kinked utility function as described

below is more likely to describe one’s attitude

toward risk. Utility is defined by a log-wealth

function above the threshold return and by a

steeper function below the threshold return.

UðxÞ ¼
lnð1 þ xÞ; for x � y

10� x� yð Þ þ lnð1 þ yÞ;

�

for xoy

The symbol x represents portfolio return,

and y represents the return threshold.

Figure 2 shows a kinked utility function

with the kink located at �5 per cent.

Proponents of behavioural finance also

believe that utility is more complex than

depicted by quadratic or power utility

functions. In particular, Kahnemann and

Tversky (1979) have found that people focus

on returns more than wealth levels and that

they are risk averse in the domain of gains

but risk seeking in the domain of losses. For

example, if a typical investor is confronted

with a choice between a certain gain and an
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uncertain outcome with a higher expected

value, he will choose the certain gain. In

contrast, when confronted with a choice

between a certain loss and an uncertain

outcome with a lower expected value, he

will choose the uncertain outcome. This

behaviour is captured by an S-shaped value

function, which Kahnemann and Tversky

modelled as follows.

UðxÞ ¼ �Aðy� xÞg1 ; for x 	 y
þBðx� yÞg2 ; for x4y

�

Subject to:

A;B40

0og1; g2 	 1

The portfolio’s return is represented by x,

and A and B are parameters that together

control the degree of loss aversion and the

curvature of the function for outcomes above

and below the return threshold, y. Figure 3

shows an S-shaped value function with a

threshold of 0 per cent.

Because returns are not perfectly normally

distributed and because investor preferences

do not conform precisely to quadratic utility,

mean–variance analysis always yields a

solution that is an approximation to the true

in-sample utility-maximising portfolio. It

therefore suffers from approximation error.

In many cases this error is negligible; in other

cases it is overwhelming. Beyond

approximation error, mean–variance analysis

also suffers from estimation error because the

in-sample means, variances, and covariances

will not prevail precisely out of sample.

Full-scale optimisation

Computational efficiency now allows us to

perform full-scale optimisation as an

alternative to mean–variance analysis. With

this approach we calculate a portfolio’s utility

for every period in our sample, considering

as many asset mixes as necessary to identify

the weights that yield the highest expected

utility, given any description of utility. T
a
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Suppose, for example, we wish to find the

optimal blend between two funds whose

returns are displayed in Table 1, assuming the

investor has kinked utility. We compute

utility for each period as ln(1þ x) if the

weighted portfolio return is greater than y,

and as [10 (x–y)þ ln(1þ y)] if the weighted

portfolio return is less than y, where x equals

the weighted portfolio return. We then shift

the fund’s weights using a numerical search

procedure until we find the combination that

maximises expected utility, which for this

example equals a 42.86 per cent allocation to

fund A and a 57.14 per cent allocation to

fund B. The expected utility of the portfolio

reaches a maximum at 1.7093 per cent. This

approach implicitly takes into account all of

the features of the empirical sample,

including skewness, kurtosis, and any other

peculiarities of the distribution.

We can apply full-scale optimisation to

empirical distributions, theoretical

distributions, or combinations based on

empirical returns and theoretical

assumptions. If we assume a theoretical

distribution, we simply discretise it by

randomly drawing returns from it and then

applying the full-scale algorithm to these

discrete returns. If we prefer to preserve the

shape of an empirical sample but modify the

assets’ means to conform with our views

about them prospectively, we simply adjust

each return in the empirical sample by the

difference between our view and the

empirical mean.

Assuming our search algorithm is

sufficiently effective, full-scale optimisation

will yield the true in-sample utility-

maximising portfolio. Unlike mean–variance

analysis, it has no approximation error. But

like mean–variance analysis it too suffers

from estimation error. To the extent any of

the features of the in-sample distribution do

not prevail out of sample, the full-scale

solution will be sub-optimal. In the next

section, we describe the methodology we use

to compare the combination of

approximation and estimation error of

mean–variance analysis to the estimation

error of full-scale optimisation.

Part III: Methodology
We base our analysis on a sample of monthly

hedge fund returns covering a 10-year

period from January 1994 to December

2003. We use this sample because hedge

funds tend to display significantly non-

normal higher moments. For evidence of

non-normality in hedge funds returns, see

Alexiev (2004), Davies et al. (2003), Fung

and Hsieh (2000), Gregoriou and Gueyie

(2003), Kat and Lu (2002), Lo (2001),

Lo (2005), and McFall (2003).

We conduct two out-of-sample tests. In

the first test, we use the monthly returns from

January 1994 to December 1998 to solve for

the in-sample utility-maximising portfolio

based on full-scale optimisation, and we also

solve for the mean–variance efficient

portfolio with the same expected return.

Although we preserve the exact shape of

the funds’ in-sample distributions, we scale

each return so that the average returns of the

distributions conform to the implied returns

of an equally weighted portfolio of hedge

funds. By scaling the returns, we mitigate the

effect of survivorship bias and selection bias

on the means, and we mitigate the likelihood

that the optimisations will yield corner

solutions. This scaling does not affect the

comparisons we wish to make, because both

optimisation methods use the same scaled

data and because our focus is on the shape of

the return distributions and not the location

of their means. We do not scale the out-of-

sample returns.

We consider four utility functions: kinked

with the kink set at �1 per cent; kinked with

the kink set at -5 per cent; S-shaped with

the inflection point set at 0 per cent; and

S-shaped with the inflection point set at

0.5 per cent5. We do not consider power

utility functions because the approximation

errors of mean–variance analysis are

arbitrarily small for these utility functions.6

Adler and Kritzman
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We solve for the in-sample utility-

maximising portfolio using our full-scale

optimisation algorithm. Then we solve

for the mean–variance portfolio on the

efficient frontier that has the same expected

return as the full-scale optimal portfolio.

We record the asset weights of these

portfolios, as well as their expected

utility, expected return, standard deviation,

kurtosis, and skewness.

We next bootstrap one-month vectors

of cross-sectional returns with replacement

60 times from the period beginning January

1999 and ending December 2003 to generate

a new five-year sample of returns. This

sample does not overlap with the sample used

to determine the portfolio weights, nor are

the returns in this sample scaled. We repeat

this procedure until we have 1,000 new

five-year samples. We then apply the

weights of the full-scale and mean–variance

portfolios generated from the January

1994 to December 1998 sample to the

1,000 bootstrapped samples generated

from the subsequent five-year period, and

we compute portfolio metrics for these

1,000 out-of-sample histories.

We perform one additional test. We use

the second five-year period ( January 1999 to

December 2003) to determine the full-scale

and mean–variance weights, and we

bootstrap from the first five-year period

(January 1994 to December 1998) to

generate the 1,000 out-of-sample histories.

Again, we apply the weights from the

in-sample full-scale and mean–variance

optimisations to these new return samples

and compute portfolio metrics for these

out-of-sample histories.

These results allow us to compare

how well the full-scale and mean–variance

weights derived in sample perform out

of sample. In the case of the full-scale

optimal portfolios, the differences from

Table 2 In-sample results

In-sample periods 1994–1998 1999–2003

F-S M–V F-S M–V

Kinked at �1%
Expected return 5.85% 5.85% 8.34% 8.34%
Standard deviation 4.25% 2.79% 6.00% 5.29%
Skewness 0.43 �2.29 1.31 �0.05
Kurtosis 2.32 12.15 5.01 3.22

Expected utility 0.47% 0.19% 0.66% 0.16%

Kinked at �5%
Expected return 6.78% 6.78% 9.63% 9.63%
Standard deviation 10.44% 9.06% 14.86% 14.60%
Skewness 0.01 �1.76 0.66 0.10
Kurtosis 2.49 9.62 3.45 3.18

Expected utility 0.52% �0.09% 0.71% 0.12%

S-shaped at 0%
Expected return 5.79% 5.79% 7.74% 7.74%
Standard deviation 2.72% 2.44% 1.84% 1.58%
Skewness �2.74 �2.22 0.60 0.03
Kurtosis 16.09 11.30 3.04 2.82

Expected utility 113.85% 94.68% 126.48% 114.23%

S-shaped at 0.5%
Expected return 7.01% 7.01% 8.85% 8.85%
Standard deviation 11.06% 10.64% 10.33% 8.94%
Skewness �3.16 �1.75 �0.47 �0.03
Kurtosis 19.28 9.45 3.84 3.26

Expected utility 65.84% 23.44% 71.87% 14.74%

Mean–variance versus full-scale optimisation
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the in-sample results arise purely from

estimation error. In the case of the mean–

variance portfolios, the differences arise

from a combination of approximation

and estimation error.

Part IV: Results
Table 2 shows results for the in-sample

optimal portfolios identified by full-scale

optimisation and the mean–variance

portfolios on the efficient frontier with the

same expected returns.

The results in Table 2 demonstrate that

full-scale optimisation yields significantly

higher in-sample utility across all samples for

investors who care about thresholds or who

have different preferences with respect to

gains and losses. These differences arise

entirely from the approximation error of

mean–variance analysis, because there is

no estimation error in sample.

The first panel shows the results assuming

a kinked utility function with the kink

located at �1 per cent. It reveals that the full-

scale portfolios generate higher expected

utility than mean–variance portfolios.

Moreover, full-scale optimisation identifies

portfolios with positive skewness, whereas

their mean–variance counterparts display

negative skewness, a characteristic that is

undesirable to investors with kinked utility.

The same general pattern prevails in the

second panel, which assumes the kink is

located at �5 per cent.

The third panel assumes an S-shaped

function with the inflection point located

at 0 per cent. Again, the full-scale portfolios

perform better than the mean–variance

portfolios as evidenced by their higher

expected utility. Also, with one exception,

full-scale optimisation produces more

negative skewness than mean–variance

analysis, an attribute that appeals to S-shaped

investors. These investors are not attracted to

extremely bad outcomes; they just do not

especially mind them. They are, however,

strongly attracted to the high density of

moderately good outcomes, which serves as

the offset to the few extremely bad outcomes

in a negatively skewed distribution. Full-scale

optimisation does an excellent job of

accommodating these preferences, while

mean–variance analysis ignores them. This

pattern prevails in the fourth panel, which

assumes S-shaped utility with the inflection

point located at 0.5 per cent.

It is important to note that in all cases

the mean–variance portfolios have lower

standard deviations than the full-scale

portfolios. One might be tempted to

conclude that this lower volatility is

an advantage of mean–variance analysis, but

such a conclusion would be wrong. The

higher standard deviations of the full-scale

portfolios might result from upside

deviations, given the asymmetry of the

return distributions. Moreover, even if lower

volatility is an advantage, the utility functions

may be relatively more sensitive to other

features of the distributions, which mean–

variance analysis ignores.

Next, we show we show how the full-

scale and mean–variance weights derived in

sample perform in the bootstrapped histories

generated from the out-of-sample data.7

Table 3 reveals that the full-scale weights

applied out of sample generate higher

average utility than the mean–variance

weights for every utility function across all

samples, although as should be expected, the

advantage of full-scale optimisation

diminishes out of sample. It also reveals that

the full-scale and mean–variance weights, on

balance, generate differences in higher

moments that are consistent with the

differences of the in-sample results.

Table 4 provides additional support for

the out-of-sample superiority of full-scale

optimisation. It reveals that the full-scale

weights generate higher realised utility than

the mean–variance weights in a majority of

the bootstrapped histories for all cases.

The frequency with which full-scale

optimisation outperforms mean–variance

analysis may seem relatively high given that

Adler and Kritzman
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the average outperformance of full-scale

optimisation is only marginal in some cases.

This combination of results suggests that

although mean–variance analysis usually does

worse than full-scale optimisation, it

occasionally does much better, which raises

its average performance.

Part V: Summary and conclusion
Mean–variance analysis suffers from two

sources of error: approximation error and

estimation error. Because returns are not

precisely normally distributed and investors

do not have quadratic utility, mean–variance

solutions only approximate the true utility-

maximising portfolio. Moreover, the

estimated means, variances, and covariances

are unlikely to match the realised means,

variances, and covariances out of sample.

Full-scale optimisation serves as an

alternative to mean–variance analysis. It relies

on sophisticated search algorithms to identify

the in-sample utility-maximising portfolio

given any empirical or theoretical return

distribution and any description of investor

utility. Therefore, it is not subject to

approximation error as long as the search

algorithm is sufficiently effective. Yet it does

suffer from estimation error, because the

in-sample distribution of returns will not

prevail precisely out of sample.

We bootstrap returns from out-of-sample

periods to generate thousands of alternative

histories. We then apply the in-sample

Table 3 Out-of-sample results

Out-of-sample periods 1999–2003 1994–1998

F-S M–V F-S M–V

Kinked at �1%
Expected return 14.45% 13.07% 12.13% 15.50%
Standard deviation 4.78% 3.45% 5.27% 6.51%
Skewness 0.33 �0.46 �0.64 �0.95
Kurtosis 4.02 4.36 4.34 6.09

Average utility 0.87% 0.82% 0.21% 0.17%

Kinked at �5%
Expected return 14.45% 13.09% 18.13% 18.02%
Standard deviation 10.70% 8.00% 11.92% 13.62%
Skewness 0.72 �0.11 �1.05 �1.03
Kurtosis 3.62 4.16 6.97 6.81

Average utility 1.00% 0.96% 0.19% �0.06%

S-shaped at 0%
Expected return 14.33% 12.99% 12.64% 13.30%
Standard deviation 3.89% 3.35% 3.07% 4.07%
Skewness �0.62 �0.50 �0.60 �0.61
Kurtosis 4.38 4.12 3.85 3.11

Average utility 119.59% 114.98% 115.28% 112.65%

S-shaped at 0.5%
Expected return 15.67% 13.84% 17.39% 16.95%
Standard deviation 8.65% 9.41% 10.57% 9.27%
Skewness �0.12 0.00 �1.24 �1.13
Kurtosis 4.26 3.90 7.00 7.27

Average utility 48.47% 35.72% 61.39% 58.75%

Table 4 Frequency (%) of F-S utility>M–V utility

Out-of-sample periods

1998–2003 1994–1998

Kinked at �1% 61 67
Kinked at �5% 56 85
S-shaped at 0% 78 93
S-shaped at 0.5% 91 98

Mean–variance versus full-scale optimisation
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weights of the full-scale and mean–variance

portfolios to the bootstrapped samples to

evaluate their out-of-sample robustness. Our

analysis shows that full-scale optimisation

offers a better in-sample solution than mean–

variance analysis based on a representative set

of hedge funds for investors with kinked or

S-shaped preferences. We also show that this

result prevails out of sample on average and

most of the time, although as should be

expected, with some attenuation.

We feel obliged to add two cautionary

comments. First, we chose a sample of

returns that is significantly non-normal, and

we assumed a set of utility functions that,

while perhaps realistic, are unconventional. If

instead we used returns that were more

normally distributed or based our analysis on

variations of power utility, we would unlikely

observe significant in-sample approximation

error from mean–variance analysis.

Second, our out-of-sample results are

specific to the sample we used for comparing

full-scale optimisation to mean–variance

analysis. If we were to use other samples for

which the higher moments were not as

persistent, full-scale optimisation might

not dominate mean–variance analysis out

of sample. It is therefore important

to understand qualitatively why we should

expect a particular distribution from an asset

or fund. In the case of hedge funds, there are

compelling reasons to expect non-normal

higher moments. Consider merger arbitrage

funds, for example. These funds attempt

to profit by acquiring the stock of

companies that are takeover targets and

by selling the stock of the acquiring

companies. The return of such a strategy

depends on a binary event. Either the

merger occurs or it does not. If it does,

the arbitrage generates an unusually high

return, and if it does not, the arbitrage

produces an unusually low return. It

makes sense, therefore, to expect a higher

concentration of returns in the tails of

the distribution than near the centre

of the distribution from this strategy.

In conclusion, we suggest that if you

optimise among assets that are likely to have

persistent non-normal higher moments and

you care about thresholds or view gains and

losses differently, you should consider full-

scale optimisation as an alternative to mean–

variance analysis.
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Notes

1. Mean–variance analysis does not strictly require normality.

It is suitable for a broader class of distributions called

elliptical distributions. See, for example, Embrechts et al.

(2002). However, normality does not always justify mean–

variance analysis. Even though all information about a

normal distribution is captured by the first two moments,

this information is not linear in variance. Kurtosis, for

example, is proportional to variance squared; hence mean–

variance analysis may fail to maximise utility for functions

that are relatively more sensitive to kurtosis than to variance.

We thank Jarrod Wilcox for pointing this out to us.

2. There is a large literature on estimation error in portfolio

construction. See, for example, Bawa et al. (1979), Jobson

et al. (1979), Jobson and Korkie (1980), and Jorion (1992).

3. When g equals �1, utility is expressed as 1–W�1.

4. See, for example, Levy and Markowitz (1979).

5. S-shaped utility parameters A, B, g1, g2 are the same as

illustrated in Figure 3.

6. See, for example, Cremers et al. (2005).

7. Note that some of the out-of-sample results have higher

utility than their corresponding in-sample results. This

outcome arises because we scaled the in-sample returns to

produce better behaved means, but we did not scale the

out-of-sample returns.
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