
GUEST EDITORIAL

Model-driven systems development: an

introduction

Mark Lycett1,
Esperanza Marcos2 and
Veda Storey3

1Brunel University, Uxbridge, U.K.; 2Rey Juan

Carlos University, Madrid, Spain; 3Georgia State

University, Atlanta, U.S.A.

European Journal of Information Systems (2007)

16, 346–348. doi:10.1057/palgrave.ejis.3000684

There is a significant disconnect between the ideals of ‘on-demand’
business and the way in which we currently develop information systems.
Growing competition, globalization, increasing regulation, mergers and
acquisitions, and innovative business models all require organizations to
be flexible and adaptable. The ability of existing computer-based informa-
tion systems to meet the challenges of on-demand business is, however,
limited.
Historically, business models have been embedded in code that does

not distinguish those models from the assumptions and platform
constraints of particular technology approaches. In many cases, models
are not semantically well formed: The description of business things
and relationships vary greatly across different systems and the code is, in
fact, the only representation of the model. In addition, in many
legacy environments, the human ‘memory’ of the business knowledge
has evaporated as staff members retire and/or move to other jobs.
The reality of this situation is evidenced in the general cost profile
of systems development, where the bulk of spending and effort lies
in the (evolutionary) maintenance, integration and interoperability of
existing systems – not in the development of new systems. This situation
provides a challenge to the generally accepted approaches to systems
development.
In response, model-driven development (MDD) (Selic, 2003; Bézivin,

2005) has emerged as a potential means of divorcing business issues
from the underlying technology platforms, in a way that makes change
more manageable. Model-driven approaches see the primary system
development artefacts only as models and their transformations. The
technological element of an information system is simply generated from
models. Models have always been considered in software development
and, as the technologies related with software development have evolved,
the role models play in software development has taken on great
relevance. Until MDD appeared, models were generally considered
just as simple documentation and, in the best case, they were used to
generate a reduced skeleton of the final code. From this point of view,
models were discarded as soon as the corresponding development phase
was finished, and they were not updated to reflect the changes made in
subsequent models or in the working code. Consequently, those models
could not be used for maintenance or management tasks as they did not
accurately reflect the system deployed. With MDD, this situation has
changed – automation comes as the other key element. Developers
therefore have an opportunity to shift their focus from coding to
modelling, defining models with as much accuracy as possible in order
to capture all the requirements and specifications of the system alongside
the platform where it will be deployed. In theory, the final code for the
whole system (and not only a skeleton) is then automatically generated
from these models.

European Journal of Information Systems (2007) 16, 346–348
& 2007 Operational Research Society Ltd. All rights reserved 0960-085X/07 $30.00

www.palgrave-journals.com/ejis

The model-driven architecture
Following the principles of MDD, the Object Manage-
ment Group (OMG) proposed, in 2001, the Model-Driven
Architecture (MDA) (Kleppe et al., 2003; Miller and
Mukerji, 2003). MDA is a framework for software
development aligned with MDD. The main characteris-
tics of the framework are the definition of models as first
class elements for the design and implementation of
systems, and the definition of mappings between those
models to allow transformations to be automated. To
help manage the journey from ‘real world’ to code, the
MDA architectural approach partitions models into those
that are: (a) Computation Independent Models (CIMs),
which represent the system domain, the business process,
etc.; (b) Platform Independent Models (PIMs), which re-
present the system functionality but without taking into
account any specific platform; and (c) Platform-Specific
Models (PSMs), which represent the specifications de-
scribed in the PIMs for some specific platform and
technology. As per the ideal, the MDA approach proposes
that code be automatically generated from the PSMs.
One of the main objectives of the MDA is to automate

as much of possible the code generation as possible from
PIMs and even from CIMs – this is possible if we are able
to automate models and mappings. In this sense, recent
history shows an increase in research activity. As a result,
it is now possible to differentiate and choose between
different approaches to automating mappings such as
graph theory based transformations, mathematical mod-
els based transformations, etc. The main problem is that
all of these approaches are ad hoc transformations for
some specific platform – so maintaining the transforma-
tion process forces a re-implementation of the mappings.
To solve this problem OMG is working in a new standard
for model transformation called QVT (Query View
Transformation) (OMG, 2005).

Benefits
The MDD approach can help to solve some traditional
problems of Information Systems development. The
main advantages are, perhaps, the facility for code
generation and migration. These two benefits arise
directly from the independence between models of
different layers in the MDA. Since the system is described
in the PIM layer independently of the platform, it is easily
transportable from one platform to another. The degree
of portability will depend, of course, of the existent tools
for mappings to the chosen platform.
MDD could also help to solve interoperability pro-

blems. As is well known, different PSMs obtained from
the same PIM could have relationships, called bridges in
MDA, which it is necessary to preserve. With this aim,
MDA proposes generating both the PSMs for the required
platforms and also the bridges between them.

The research challenges
Such frameworks are not easily translated into practice
however, and many research challenges with regard to

MDD exist. For example, the computation independent
layer is not well understood but implicitly makes strong
demands in relation to understanding the types of things
and relations that exist in the real world. Across the
board, models also need to be developed at an appro-
priate level of (a) abstraction, (b) generalization and (c)
precision and accuracy. Similarly, the transformations
between models should be considered as first class
models in their own right and demand strong semantic
treatment. Another open issue is related to the transfor-
mations between CIMs and PIMs that could not be
automatically performed because they need, in addition
to the strong semantic treatment, the intervention of the
designer.
In practical terms, the MDD approach therefore

requires significant thinking in relation to both model
development and the modelling process if it is to be of
value to organizations. In this regard, we divide the open
problems in three categories:

(a) Technological problems related with the basic tools
needed to build information systems with an MDD
approach. Among these problems are modelling
languages, model transformation languages and tools
supporting modelling and transformation between
models.

(b) Engineering problems related to how to build
information systems using MDD technologies – that
is, using models and model transformations. Among
the problems here is the process of modelling, quality
of models, model management, etc.

(c) Experience problems related to the applicability of
MDD to different domains reflecting learning from
the experience.

Special issue
This special issue broaches recent challenges and
advances in MDD Engineering and Technology as well
as the application of the Model-Driven Techniques to
different domains, such as Data Warehouses or Web
Engineering. The special issue also broaches orthogonal
aspects such as security and the quality in the MDD
process. A total of 35 papers were submitted to the special
issue, of which seven papers were selected following the
review process (a 20% acceptance rate). Work comes from
a variety of countries including Belgium, France, Spain,
the United Kingdom and the United States. It is
interesting to note that none of the papers selected
addressed MDSD from a ‘soup-to-nuts’ MDA perspective
– that is, developing an application from inception
through to final code-generation. Our view on this
observation is that it provides an indication that the
state-of-the-art is still immature. Researchers are starting
to experiment with aspects of the model-driven approach
in ‘safe’ environments, but the approach is not robust
enough for more ambitious projects. To that end, we
intend that the special issue provides insight into the
research challenges that lie ahead.

Editorial Mark Lycett et al 347

European Journal of Information Systems

In very broad terms, the special issue is divided into
themes where the papers deal with model transformation
issues, applications of particular aspects of the model-
driven approach and, as a variation, application in the
context of the Web. We start the special issue with an
examination of model differentiation techniques, which
seek to identify differences and deal with mapping
between models. There, Lin et al. from the ATLAS group
at INRIA, LINA and University of Nantes (France), examine
domain specific languages as an alternative to UML
(which conforms to a single metamodel). Their work
presents algorithms and tools to detect and potentially
deal with differences in the metamodels that underlie
different domain specific languages, providing facilities
for graphical visualization of the detected differences.
The second paper on this theme deals with platform
transformation. There, Wagelaar and van der Straeten
from Vrije University (Brussels), propose an ontological
model that can be used to reason about platform
dependencies in model transformations (in order that
platformmodels can be reused) and how platformmodels
can be integrated into a model-driven configuration
framework.
In relation to the second theme, the third paper

examines security and confidentiality in relation to data
warehouses and online analytic processing. There, Fer-
nandez-Medina et al. from the University of Castilla-La
Mancha and University of Alicante (Spain), present an
Access Control and Audit (ACA) model appropriate
to conceptual multidimensional modelling (equivalent
to the PIM level) in order to automate the enforcement
of security considerations in model-driven systems. They
extend the UML language to represent at PIM level for
this ACA model, representing constraints by using the
OSCL (Object Security Constrains Language). The fourth

paper addresses the direct transformation of business
models into running systems in an agent-based environ-
ment. There, Xiao and Greer, from the University
of Southampton (U.K.) and Queen’s University Belfast
(U.K.) respectively, demonstrate that, when business
changes occur, it should not be necessary to directly edit
the low level code models (as code).
In relation to the last theme, the fifth paper presents a

model-driven process underlying a Web engineering
method. There Montero et al. from the DEI Laboratory at
Carlos III University of Madrid (Spain) present ontologically
based specifications that provide semantics and reason-
ing for both model-transformations and model validation
– instantiated through a method and toolset. The sixth
paper concentrates on navigability in Web applications.
There Cachero et al., representing joint work between
research groups at the University of Alicante (Spain), the
University of Castilla-La Mancha (Spain) and the University
of Gent (Belgium), present a model-driven approach to
improve the reuse and adoption of navigability measures
alongside a generic navigability model. Last, Moreno
et al. from Malaga University (Spain), address the problem
of integrating applications in a Web context. The authors
propose a model-driven approach to deal with the
adaptation between a Web application and external
assets – in essence using design patterns to promote
generic reuse.

Acknowledgements
We would like to thank all the reviewers that have

contributed to the quality of this special issue. In part, our

work on the special issue has been made possible through

the framework of the GOLD project, financed by the Spanish
Ministry of Science and Technology (TIN 2005-00010).

References
BéZIVIN J (2005) On the unification power of models. Software and System

Modeling (SoSym) 4(2), 171–188.
KLEPPE A, WARMER J and BAST W (2003) MDA Explained, the Model Driven

Architecture: Practice and Promise. Addison Wesley, Reading, MA.
MILLER J and MUKERJI J (eds) (2003) MDA Guide Version 1.0.1, Object

Management Group, Framingham, Massachusetts, June 2003.

OMG (2005) 2nd revised submission to the MOF 2.0 QVT RFP, March
2005, OMG Document -ad/05-03-02, http://www.omg.org/cgi-bin/
doc?ad/05-03-0.

SELIC B (2003) The pragmatics of model-driven development. IEEE
Software 20(5), 19–25.

Editorial Mark Lycett et al348

European Journal of Information Systems

	Model-driven systems development: an introduction
	The model-driven architecture
	Benefits
	The research challenges

	Special issue
	Acknowledgements
	References

