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Practical applications

On top of operational risk, market risk is substantial for hedge fund investors. As hedge fund returns

exhibit highly non-Gaussian features, the issue of choosing a good model to compute and forecast VaR

for hedge funds is crucial. This has become all the more important as hedge funds now deliver weekly

or daily NAV estimates as compared to monthly or quarterly ones’, a few years ago. This paper uses a

high-frequency dataset for a CTA index. We show that the efficiency of one-day-ahead VaR primarily

depends on the type of quantiles used for computing VaR forecasts, not on the variance forecasting

model. More precisely, among popular models, the use of Cornish–Fisher expansion appears to be the

most performing method to compute adequate quantiles.

Abstract

We compare the performance of several Value-at-Risk

(VaR) models when applied to a high-frequency hedge

fund index. Our analysis is carried out on the

Barclay/Calyon CTA daily index available since early

2000. We use 1-day-ahead VaR forecasts for various

thresholds (10, 5 and 1 per cent) and apply univariate

and multivariate VaR backtesting procedures. Our

results show that the efficiency of VaR forecasts

primarily depends on the type of quantiles used for

computing VaR forecasts. The choice of the model used

to forecast volatility (simple smoothing average,

EWMA, symmetric or asymmetric GARCH models)

proves much less important in that specific case. Our

results also show that the most flexible form is the

Cornish–Fisher expansion for 10 and 5 per cent

thresholds, whereas Student quantiles are the best to

forecast efficiently 1 per cent VaRs.
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INTRODUCTION

While alternative management is acknowledged

for its surprisingly high and recurrent returns, it

has also been associated with less favourable

episodes, such as the dramatic bankruptcy of star

fund LTCM. Alternative management investors
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have to contend with numerous risk factors like

liquidity risk, operational risk and credit risk.

For these risks are perhaps even more substantial

in alternative management than in conventional

management, because of its unique legal status

since, they are often offshore companies subject

to less restrictive regulations requiring high entry

tickets and restrictive exit conditions, and

because of their utilisation of sophisticated

instruments with a major leverage effect.

Market risk is also found in the strategies of

hedge funds. This is all the more the case for

directional strategies that lead to unhedged

positions based on an expectation of how the

market as a whole is going to move. We will focus

this study on market risk and primarily on the

canonical measure of market risk, Value-at-Risk

(VaR) that is defined as the maximum loss that

one can expect to incur according to a certain

degree of confidence over a given horizon.

Despite all the afore-mentioned interest in

hedge funds, their VaR for the time being has

led to few analyses, notably in comparison with

other asset classes. Lhabitant1 proposes a

multifactorial approach à la Sharpe,2,3 where the

sensitivity of each hedge fund is estimated

according to indices of the various strategies. In

other words, the VaR of individual hedge funds

is explained according to that of strategies, and

this curbs the model’s predictive capacities.

Pochon and Teı̈letche4,5 condition the returns of

the various strategies of hedge funds on the

returns of standard assets, in this case the S&P

and the Baa/Aaa spread, enabling nonlinear

relationships to be used via a mixture of Gaussian

distributions. Faced with the non-normality of

the returns of hedge funds, Signer and Favre6

propose drawing on the Cornish–Fisher

expansion to calculate VaR as Zangari7 had

proposed for standard assets. Bacmann and

Gawron,8 Bali and Gockan9 confirm the

superiority of this approach, as well as the one

based on the Extreme Value Theory over the more

conventional approaches located within the

Gaussian framework. All these previous approaches

are primarily backward looking, that is, VaR is

estimated from the distribution of past variations in

prices (albeit varying over time). In practice, risk

management in large institutions is often based on

forward-looking approaches, that is, they seek to

predict VaR. To do so, GARCH temporal series

models or constrained versions of such models

(EWMA model of RiskMetrics) are frequently

used. Monteiro10 compares various GARCH

models and various specifications of conditional

distribution. He shows that an estimation of simple

(unconditional) variance combined with a

Cornish–Fisher approach offers the best results.

A common limitation to all these studies is the

fact that they are based solely on monthly

frequency data. This is linked to the fact that

hedge funds for a long time simply published

monthly track records. For various reasons,

notably the larger presence of institutional

investors, the development of fund platforms,

the increasing professionalism and improvement

in risk management within funds, etc,

increasingly publish track records with a higher

frequency, whether daily or weekly, notably

when they invest in liquid vehicles. The main

contribution of this research is that it is, to the

best of our knowledge, the first to draw on this

type of data to analyse the VaR of hedge funds.

More precisely, we use the Barclay/Calyon

index covering the performances of a set of CTA

funds. This leads to a more sophisticated

understanding of the market risk hedge funds are

exposed to and enhanced adequacy of academic

research on the other assets that is just about

systematically based on daily data. Looking
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forward, this enables us to implement more

complete back-testing than in previous studies.

We show that efficient 1-day-ahead VaR

forecasts are achievable. In our case, the results

primarily relies on the type of quantiles used for

VaR computations, with the Cornish–Fisher

quantiles being the most flexible ones for 10 and

5 per cent VaRs, and the Student’s the most

suitable for 1 per cent VaR. Interestingly, the

choice of the models used to forecast volatility

proves much less important. After presenting our

methodology in the next section, we give

detailed results in the penultimate section and

draw a conclusion in the final section.

METHODOLOGY

General principle

Generally speaking, the VaR of an investment

represents the maximum loss that can be

considered, given a certain degree of confidence

at a given horizon. More formally, if we denote

by 1�a the degree of confidence and rt the

return linked to the investment as recorded at

date t, VaR is defined by the following

relationship:

Pr½rtoVaRt t�1j ðaÞ� ¼ a

Note that VaR is defined here in an ex ante

manner, that is, the VaR expected in period t

conditional on the information available in

period t�1. For we are trying here to test which

models enable an efficient VaR to be constructed

with respect to a track record t¼ 1,y,T. More

precisely, we introduce the indicative function

associated with violations of VaR:

ItðaÞ ¼
1 if rtoVaRtjt�1ðaÞ

0 otherwise

�

It is accepted that the problem of the validity

of the VaR model is then summarised by the

verification of two hypotheses (Christoffersen,11

Campbell12):

Unconditional coverage

The probability that an ex post loss exceeds VaR

forecasts must be exactly equal to a, that is,

Pr½ItðaÞ ¼ 1� ¼ E½ItðaÞ� ¼ a .

Independence

Violations of VaR at various periods must be

independent over time. In particular, I(a) has to

be independent from past returns and past values

of VaR.

Berkowitz et al. 13 show that these two

hypotheses can be regrouped in a single

hypothesis, so-called conditional coverage. It is

expressed in statistical terms as the fact that

demeaned violations of the VaR threshold

represent a martingale difference:

E½ItðaÞ � a Ot�1j � ¼ 0

where the information set Ot�1 includes past

values of violations of VaR, It�1(a), It�2(a)y,

but also any other variables known in period

t�1, such as the levels of VaR or past returns.

Several tests of the conditional coverage

hypothesis have been proposed in the literature.

Christoffersen11 starts off from the transition

matrix of violations of VaR,

P ¼
1 � p01 p01

1 � p11 p11

� �

where pij¼Pr[It(a)¼ j|It�1(a)¼ i]. He shows

that under the hypothesis of nil conditional

efficiency of VaR, the two linear restrictions

p01¼ p11¼ a must be verified, and this can be
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tested via a likelihood ratio:

LRCC ¼� 2 log½LðP2; I1ðaÞ; :::; IT ðaÞÞ

� LðP1; I1ðaÞ; :::; IT ðaÞÞ�	w2

with

LðP1; I1ðaÞ; :::; IT ðaÞÞ

¼ ð1 � p01Þ
n00pn01

01 ð1 � p11Þ
n10pn11

11

for nij the number of cases where It(a)¼ j

for It�1(a)¼ i and LðP2; I1ðaÞ; :::;
IT ðaÞÞ ¼ ð1 � p2Þ

ðn00þn10Þpðn01þn11Þ

2 with

p2 ¼ ðn01 þ n11Þ=ðn00 þ n10 þ n01 þ n11Þ. The

Christoffersen test is thus as a joint test of a

correct unconditional coverage noted LUC,

where under the null It	i:i:d Bernouilli ðaÞ , and a

test of independence denoted LIND, where under

the null p01¼ p11,: LRCC ¼ LRUC þ LRIND

where LRUC and LRINDBw2. The

Christoffersen test LRCC presents however the

drawback of dealing only with first-order

dependencies — and is therefore not very

general — as well as a second drawback of not

allowing dependency with other variables such

as returns.

The Engle and Manganelli test,14 the so-called

CaViar test, solves this problem simply by

proposing a regression of demeaned violations,

so-called Hits with Hitt(a)¼ It(a)�a, on their

past values and any other variable:

HittðaÞ ¼lþ
XK

k¼1

bkHitt�kðaÞ

þ
XL

k¼1

gkg½Hitt�kðaÞ;

Hitt�k�1ðaÞ; :::; rt�k; :::� þ �t

g[.] stands for any function. The conditional

coverage hypothesis is then simply tested via

Student or Fisher tests of the nullity of regression

coefficients including the constant. We use the

Wald statistics in association with the test of

conditional efficiency hypothesis, we note

EMCC:

EMCC ¼
ĉZ 0Zĉ0

að1 � aÞ
	w2ðK þ L þ 1Þ;

with c ¼ ðl; b1; :::; bk; g1; :::; glÞ
0 and Z the

matrix of the corresponding explanatory

variables. In our application, we set K¼ 5 and

g½Hitt�kðaÞ; Hitt�k�1ðaÞ; :::; rt�k; :::� ¼ VaRt t�1j

(ie the ex ante VaR).

Lastly, Berkowitz et al.,13 propose carrying out

simple tests of the absence of autocorrelation in

the time series of Hitt’s via a standard Ljung–Box

test for which the statistic is given by LBðKÞ ¼

T ðT þ 2Þ
PK

k¼1 r
2
k=ðT � kÞ	w2ðKÞ and they

recommend having K¼ 5. Hurlin and Tokpavi15

propose widening the test to a multivariate case,

that is the various levels of coverage a, via the

statistic of the Li and McLeod test16

QmðKÞ ¼T
XK

k¼1

ðvecRkÞ0ðR
�1
0 � R�1

0 Þ

�ðvecRkÞ	w2ðKm2Þ

where m stands for the different levels of

coverage. The authors recommend drawing on

m¼ 3 for a¼ {1 per cent, 5 per cent, 10 per

cent}. We denote this test HT in the Tables

below.

Construction of volatility forecast:

GARCH models and distributional

hypotheses

In compliance with academic and professional

practice, all the VAR forecasting models we use

in this study are based on the following formula:

VaRt t�1j ðaÞ ¼ zt t�1j ðaÞ � ht

The VaR forecast in t�1 at horizon t is thus

calculated as the product of the volatility forecast

in t�1 at horizon t, denoted ht,with a scalar that
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depends on the level of confidence, that is the

a-quantile denoted zt|t�1(a).

With respect to volatility, we have chosen

three types of models:

(i) Estimators based on simple sample standard

deviation estimated on the latest n returns:

ht ¼ n�1
Xn

t¼1

r2
t�t:

In practice, we use three alternative

windows: 22 days (n¼ 22, denoted

SMA22), 66 days (n¼ 66, denoted SMA66)

and 250 days (n¼ 250, SMA250).

(ii) Estimators based on GARCH models

estimated over the last 250 trading days. In

practice, we have drawn on five types of

models that are presented in detail in the

Table 1 (more details about the estimated

models are available from the authors on

request). These models stand out because

of their specification, with notably a

distinction between asymmetric models

and symmetric models.

(iii) Estimators of an EWMA moving average

type: h2
t ¼ lh2

t�1 þ ð1 � lÞr2
t�1 . In

compliance with recommendations made

by RiskMetrics, we pick l¼ 0.94. Note

that the EWMA model has common

characteristics with conventional

estimators, since the latter is a specific case

of EWMA where all the observations are

equally weighted (l¼ 1/n) and with the

GARCH estimators, since the EWMA

model is obtained as a GARCH with nil

long-term variance (o¼ 0) and integrated

(aþ b¼ 1).

Note that in the calculation of VaR and the

estimation of volatilities; whether in historical

models or GARCH models, we omit the impact

of the short-term average of returns. However, it

is well known that the addition of the average,

which is unstable over time and nearly nil on

average in the long term, leads to adding noise,

and this lowers the efficiency of volatility

estimators (Canina and Figlewski17, Jorion18).

For the quantile zt|t�1(a), we have chosen

three measures:

— Quantiles resulting from the normal standard

distribution.

— Quantiles stemming from a Student

distribution. Student distribution, which

includes normal distribution as a specific case

for an infinite number of degrees of freedom,

Table 1: Univariate GARCH models

Model (A)Symmetric response

depending on returns sign

Specification

GARCH Symmetric ht ¼ oþ ar2
t�1 þ bht�1

AV-GARCH – Absolute value Symmetric h
1=2
t ¼ oþ ajrt�1j þ bh

1=2
t�1

NARCH – Nonlinear GARCH Symmetric h
l=2
t ¼ oþ ajrt�1j

l þ bh
l=2
t�1

EGARCH - Exponential GARCH Asymmetric if g 6¼ 0 logðhtÞ ¼ oþ a jrt�1j

ht
þ g rt�1

ht
þ b logðht�1Þ

GJR-GARCH Asymmetric if g 6¼ 0 ht ¼ oþ ar2
t�1 þ gI½rt�1o0�r

2
t�1 þ b ht�1
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makes it possible to take into account the

non-normality of the series. In particular,

the distribution associated with Student

distribution can be compatible with the

phenomenon of excess kurtosis, as witnessed

in daily returns of CTAs (cf below), once the

number of degrees of freedom is reduced.

It partly explains the non-normality of the

series, but distribution remains symmetric

(asymmetric versions of Student distribution

do exist, however; cf Hansen19). When

we estimate the parameters of Student

distribution throughout the period for the

various GARCHs models, we find an

average degree of freedom equal to 8.43

(ranging from 7.37 to 9.10). This is why we

draw on a Student distribution with eight

degrees of freedom for the calculation of the

quantile.

— So-called Cornish–Fisher quantiles, which

are based on an expansion around the

normal distribution in order to take into

account the asymmetry and the fat tails of

the distribution. Formally, the quantile

associated with the Cornish–Fisher

expansion is given by:

zCFðaÞ ¼znormalðaÞ þ
1

6
ðznormalðaÞ

2
� 1ÞSK

þ
1

24
ðznormalðaÞ

3
� 3znormalðaÞÞðKU � 3Þ

�
1

36
ð2znormalðaÞ

3
� 5znormalðaÞÞSK2

with znormal(a) the quantile of the normal

distribution, SK the skewness coefficient and

KU the kurtosis coefficient. In the above

estimates, we use the values of these two

parameters found over the whole of the period.

Finally, the quantiles used for the various

thresholds and the various methods are

summarised in the Table 2 (values rounded

off to simplify their presentation).

RESULTS

Data

Our analysis is based on the Calyon Financial

Barclay index, which is an equiweighted index,

covering the returns of a set of large CTA funds

that are open to new investments. In July 2006,

the index was made up by 14 funds, while 17

belonged to it when the index was launched in

January 2000. The list is reviewed at the

beginning of each year. The index is not

investable. The index and associated log-returns

are represented in Figure 1. The sample ranges

from January 2000 to June 2006 offering 1,693

daily returns. Table 3 shows descriptive statistics

of these returns.

With a standard deviation of 0.58 per cent per

day, the volatility of the index is close to 9 per

cent per year. This is a high figure for an overall

index of hedge funds, but typical for a CTA

index. Even though the average return and the

median return are very similar, distribution is

significantly asymmetric in the direction of

negative returns. It also presents kurtosis

significantly above 3 so that the overall

Table 2: Quantiles

VaR

thresholds

Gaussian Student

(8 degrees

of freedom)

Cornish-Fisher

Expansion

1% �2.33 �2.90 �2.99

5% �1.64 �1.86 �1.67

10% �1.28 �1.40 �1.16
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distribution is significantly different from a

normal distribution. Such non-normality of

unconditional distribution of returns might be

linked to the presence of ARCH effects but

could also combine with non-normality of

conditional distribution. This is why we

consider various distributional hypotheses,

including some that are typical of fat tail or

asymmetric distribution, and in particular, a

Student distribution and a Cornish–Fisher

expansion (see above). For their part, Ljung–Box

statistics show that the series of returns does not

display any dependence on average but high

dependence on variance. This finding,

(i) Index level
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(ii) Daily log-return
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Figure 1: Calyon Financial Barclay CTA Index.

Source: http://www.calyonfinancial.com/tools/barclay.html
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combined with an ARCH-LM test, provides

a justification for using GARCH models —

without an ARMA-like component.

Out-of-sample VaR comparisons

Results are reported in Tables 4–6, with

univariate tests in panel As and the HT

multivariate test in panel Bs. All the tests were

computed on 1-day-ahead VaR forecasts. For

every VaR threshold (10, 5 and 1 per cent), we

compare the ability of various models to forecast

volatility and VaR (historical smoothing

averages, EWMA and GARCH models). Given

the GARCH models are estimated on 250-day

rolling windows, we are left with 1,442 out-of-

sample forecasts.

We report the asymptotic p-values of the test

statistics. Berkowitz et al. 13 show that for small

sample sizes and for 1 per cent VaR, the

asymptotic critical values can be significantly

misleading and thus use Dufour20 Monte Carlo

technique to compute correct p-values.

However, complementary analyses (not

reported) showed us that the sample bias was not

significant, given our sample size (1442

observations), and that Monte-Carlo p-values

were very similar to asymptotical ones. We

consider the null hypothesis can be rejected

when p-values are smaller than 0.10.

Table 4 reports the test results when VaRs are

computed using the Gaussian quantiles (�1.28

for 10 per cent, �1.64 for 5 per cent VaR,

�2.33 for 1 per cent VaR), and GARCH

models are normal GARCH. Results are not

clearcut and depend on the VaR threshold. For a

10 per cent threshold, the worst VaR models are

performed by the 250-day simple historical

smoothing average (SMA250) and the GJR-

GACH models. Both (i) overestimate

significantly the VaR and fail the unconditional

coverage test (the ex post violation rate (VR) is

significantly below 10 per cent) and (ii) fail most

univariate tests (LRCC, EMCC, LB(5) and even

LB(10) tests for the former). On the other hand,

the best performers are the EWMA and the

NARCH, which successfully pass every test.

Other models have mixed results depending on

the test statistics: the AVGARCH and the

GARCH in particular exhibit p-values below

the significance level for LRCC.

For the 5 per cent threshold, results are similar

although less clearcut. The EWMA and the

NARCH models remain the best models along

with the GARCH model and more surprisingly,

Table 3: Descriptive statistics for returns

Mean Median Maximum Minimum Std. Dev. Skewness

(p-value)

Kurtosis

(p-value)

Jarque-Bera

(p-value)

0.0277% 0.0270% 2.642% �3.572% 0.5789% �0.25179

(0.000)

5.15889

(0.000)

346.6715

(0.000)

Q(rt;5)

(p-value)

Q(rt;10)

(p-value)

Q(rt
2;5)

(p-value)

Q(rt
2;10)

(p-value)

ARCH-

LM(5)

9.168

(0.133)

10.978

(0.359)

109.74

(0.000)

150.34

(0.000)

75.95

(0.000)
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Table 4: Normal quantiles and normal GARCH

VR (%) VaR (%) LRUC LRIND LRCC EMCC LB(5) LB(10)

(a) Univariate tests (1-day VaR)

VaR 10%

SMA22 9.57 0.71 0.590 0.231 0.423 0.048 0.603 0.792

SMA66 9.15 0.73 0.282 0.036 0.062 0.193 0.200 0.407

SM250 7.63 0.75 0.002 0.022 0.001 0.010 0.015 0.010

EWMA 8.88 0.72 0.150 0.350 0.230 0.296 0.807 0.847

GARCH 8.88 0.73 0.150 0.039 0.042 0.171 0.227 0.170

EGARCH 8.60 0.74 0.071 0.249 0.101 0.181 0.186 0.232

GJR-GARCH 7.98 0.75 0.008 0.047 0.004 0.042 0.093 0.150

AVGARCH 8.74 0.73 0.105 0.106 0.073 0.433 0.415 0.463

NARCH 8.95 0.73 0.178 0.150 0.143 0.413 0.663 0.369

VaR 5%

SMA22 5.83 0.91 0.159 0.310 0.221 0.115 0.537 0.483

SMA66 5.13 0.94 0.814 0.733 0.918 0.044 0.299 0.297

SM250 5.13 0.96 0.814 0.042 0.123 0.388 0.206 0.168

EWMA 5.55 0.92 0.345 0.214 0.296 0.121 0.418 0.417

GARCH 5.27 0.94 0.636 0.299 0.522 0.461 0.523 0.555

EGARCH 4.72 0.94 0.621 0.004 0.015 0.039 0.011 0.048

GJR-GARCH 4.72 0.96 0.621 0.004 0.015 0.071 0.026 0.160

AVGARCH 4.99 0.94 0.995 0.010 0.035 0.160 0.076 0.300

NARCH 5.20 0.94 0.723 0.516 0.760 0.308 0.512 0.571

VaR 1%

SMA22 2.01 1.29 0.001 0.586 0.003 0.000 0.782 0.896

SMA66 1.66 1.32 0.020 0.357 0.045 0.005 0.838 0.910

SM250 1.46 1.36 0.102 0.420 0.190 0.303 0.716 0.832

EWMA 1.73 1.31 0.011 0.338 0.025 0.011 0.812 0.901

GARCH 1.25 1.33 0.360 0.216 0.307 0.479 0.597 0.901

EGARCH 1.53 1.34 0.062 0.398 0.123 0.142 0.883 0.921

GJR-GARCH 1.39 1.35 0.162 0.442 0.280 0.411 0.686 0.920

AVGARCH 1.32 1.33 0.247 0.465 0.391 0.723 0.935 0.989

NARCH 1.53 1.33 0.062 0.336 0.111 0.062 0.738 0.921
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SMA22; the GJR-GARCH, the AV-GARCH

are still among the least performing models,

along with the EGARCH.

At the 1 per cent level, the ex post VR is

larger than the initial coverage rate (1 per cent)

for every model and reflects the leptokurtic

feature of the Calyon index. The LRUC test,

however, indicates that this difference is only

significant for the SMA22, SMA66, EWMA and

NARCH models. SMA22, SMA66 and EWMA

also fail the LRCC and EMCC tests. SMA250,

GARCH, EGARCH, AVGARCH and GJR-

GARCH face no rejections.

All in all, no clear distinction emerges

between the models, neither between GARCH

and simple moving average estimators, nor

between symmetric or asymmetric GARCH

models — when relying on the univariate

statistics. Panel 4b reports the HT multivariate

statistic computed for three thresholds (1, 5 and

10 per cent) and with five lags. The larger p-

values are obtained by the NARCH and the

GARCH models indicating that they are the

best VaR performers throughout the thresholds.

SMA250 and EGARCH both fail the test.

Turning to the VaRs computed using the

Cornish–Fisher quantiles (GARCH models are

still normal GARCHs), results in Table 5 turn a

bit more unanimous. Quite surprisingly, with

the use of these quantiles, almost every forecast

method considered pass the univariate tests,

including simple historical moving averages, no

matter the threshold (10, 5 or 1 per cent). The

only failure exceptions are the SMA250 for 10

(b) Multivariate test

HT P-val

SMA22 40.33 0.670

SMA36 41.42 0.625

SMA250 67.56 0.016

EWMA 45.60 0.447

GARCH 37.90 0.764

EGARCH 67.45 0.017

GJR-GARCH 44.77 0.482

AVGARCH 48.38 0.338

NARCH 31.51 0.936

Notes: VR stands for the percentage of time returns prove inferior to the ex ante VaR forecast (ex post violation

rate). VaR stands for the average value of the 1-day-ahead VaR forecasts. LRUC, LRIND, LRCC stand, respectively,

for p-values of the unconditional coverage test statistic, the independence test statistic and Christoffersen’s

conditional coverage test statistic; EMCC stands for the Engle and Magnanelli’s test p-values (5 lags). LB(k) stands

for the Ljung–Box’s p-value with k lags. GARCH models are estimated using a 250-day rolling window.

Notes: HT stands for the multivariate portmanteau’s p-value (Li and Mc Leod16) as used by Hurlin and

Tokpavi.15 We use k=5 lags and use three coverage rates a=1%,5%,10%. GARCH models are estimated using a

250-day rolling window.

Table 4: Continued
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Table 5: Cornish–Fisher expansion quantiles with normal GARCH

VR (%) VaR (%) LRUC LRIND LRCC EMCC LB(5) LB(10)

(a) Univariate tests (1-day VaR)

VaR 10%

SMA22 11.37 0.64 0.087 0.326 0.142 0.015 0.256 0.178

SMA66 10.61 0.66 0.439 0.175 0.295 0.158 0.205 0.299

SM250 9.36 0.68 0.420 0.056 0.116 0.021 0.003 0.003

EWMA 11.03 0.65 0.197 0.306 0.258 0.536 0.722 0.472

GARCH 10.47 0.66 0.547 0.220 0.393 0.659 0.713 0.238

EGARCH 10.47 0.66 0.547 0.141 0.282 0.510 0.356 0.435

GJR-GARCH 10.12 0.67 0.868 0.130 0.313 0.626 0.422 0.609

AVGARCH 10.47 0.66 0.547 0.049 0.120 0.502 0.368 0.469

NARCH 10.61 0.66 0.439 0.175 0.295 0.582 0.673 0.257

VaR 5%

SMA22 5.55 0.92 0.345 0.214 0.296 0.089 0.358 0.502

SMA66 5.06 0.95 0.909 0.718 0.931 0.064 0.349 0.394

SM250 4.99 0.98 0.995 0.085 0.227 0.470 0.277 0.197

EWMA 5.41 0.94 0.478 0.354 0.506 0.163 0.365 0.414

GARCH 4.99 0.96 0.995 0.205 0.448 0.360 0.400 0.543

EGARCH 4.65 0.96 0.537 0.013 0.037 0.102 0.032 0.106

GJR-GARCH 4.65 0.97 0.537 0.003 0.011 0.052 0.019 0.136

AVGARCH 4.85 0.95 0.803 0.022 0.070 0.262 0.132 0.434

NARCH 4.99 0.96 0.995 0.421 0.724 0.218 0.461 0.523

VaR 1%

SMA22 0.90 1.65 0.704 0.614 0.819 0.981 0.988 1.000

SMA66 0.76 1.70 0.346 0.667 0.585 0.970 0.994 1.000

SM250 0.62 1.75 0.124 0.723 0.287 0.932 0.998 1.000

EWMA 0.76 1.68 0.346 0.667 0.585 0.990 0.994 1.000

GARCH 0.69 1.71 0.217 0.695 0.432 0.978 0.996 1.000

EGARCH 0.62 1.72 0.124 0.723 0.287 0.942 0.998 1.000

GJR-GARCH 0.55 1.74 0.064 0.751 0.171 0.853 0.999 1.000

AVGARCH 0.69 1.71 0.217 0.695 0.432 0.978 0.996 1.000

NARCH 0.69 1.71 0.217 0.695 0.432 0.978 0.996 1.000
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per cent VaR estimates, the EGARCH and

GJR-GARCH models for the 5 per cent VaR

estimates, which all exhibit significant violation

clustering (cf panel 3a). Note that contrary to

the pure Gaussian case in Table 2, the ex post

VR are much closer to the ex coverage rate for

the 10 and 5 per cent thresholds with only one

rejection for LRUC. These results are largely

confirmed by the multivariate HT statistic

reported in panel 3b with only one rejection for

the SMA250; the NARCH model has the

highest p-value.

Table 6 reports the results for the VaR

estimates using the Student quantiles with eight

degrees of freedom. GARCH volatility forecasts

are also taken from t-GARCH estimates. Panel

4a shows that for large VaR thresholds (10 or 5

per cent), no variance forecasting model is

optimal. Interestingly, every model fails LRCC

and EMCC tests at these thresholds. For the

former test, most of failures stem from the failure

of the unconditional coverage tests: using

Student quantiles induce a substantial

overestimation of the VaR of the CTA index for

10 and 5 per cent thresholds, whatever the

models used to make volatility forecasts (the

results are unchanged using seven degrees of

freedom instead of eight). With a more stringent

threshold of 1 per cent, the results get much

better since every model then pass the univariate

tests successfully. Interestingly, at this threshold

level, p-values are almost systematically larger

than those obtained in Tables 4 and 5 by the

Gaussian and Cornish–Fisher methods, showing

Table 5: Continued

(b) Multivariate test

HT P-val

SMA22 47.66 0.365

SMA36 45.37 0.457

SMA250 64.15 0.032

EWMA 47.02 0.390

GARCH 44.90 0.476

EGARCH 55.05 0.145

GJR-GARCH 54.67 0.153

AVGARCH 47.03 0.389

NARCH 39.97 0.684

Notes: VR stands for the percentage of time returns prove inferior to the ex ante VaR forecast (ex post violation

rate). VaR stands for the average value of the 1-day-ahead VaR forecasts. LRUC, LRIND, LRCC stand, respectively,

for p-values of the unconditional coverage test statistic, the independence test statistic and Christoffersen’s

conditional coverage test statistic; EMCC stands for the Engle and Magnanelli’s test p-values (5 lags). LB(k) stands

for the Ljung–Box’s p-value with k lags. GARCH models are estimated using a 250-day rolling window.

Notes: HT stands for the multivariate portmanteau’s p-value (Li and Mc Leod16) as used by Hurlin and

Tokpavi.15 We use k=5 lags and use three coverage rates a=1%,5%,10%. GARCH models are estimated using a

250-day rolling window.
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Table 6: Student quantiles and t-GARCH

VR (%) VaR (%) LRUC LRIND LRCC EMCC LB(5) LB(10)

(a) Univariate tests (1-day VaR)

VaR 10%

SMA22 7.98 0.77 0.008 0.451 0.023 0.038 0.587 0.908

SMA66 7.63 0.80 0.002 0.097 0.002 0.009 0.066 0.098

SM250 6.80 0.82 0.000 0.040 0.000 0.003 0.117 0.205

EWMA 7.63 0.78 0.002 0.649 0.007 0.048 0.829 0.821

GARCH 7.07 0.80 0.000 0.070 0.000 0.009 0.254 0.264

EGARCH 7.00 0.80 0.000 0.061 0.000 0.002 0.080 0.126

GJR-GARCH 6.80 0.81 0.000 0.016 0.000 0.000 0.002 0.004

AVGARCH 7.56 0.80 0.001 0.285 0.003 0.021 0.136 0.221

NARCH 7.42 0.80 0.001 0.030 0.000 0.014 0.175 0.244

VaR 5%

SMA22 4.30 1.03 0.214 0.060 0.079 0.026 0.104 0.303

SMA66 3.74 1.06 0.023 0.470 0.057 0.010 0.189 0.115

SM250 2.84 1.09 0.000 0.117 0.000 0.007 0.348 0.732

EWMA 3.68 1.04 0.016 0.437 0.040 0.098 0.664 0.411

GARCH 3.40 1.06 0.003 0.712 0.012 0.111 0.806 0.901

EGARCH 2.98 1.07 0.000 0.009 0.000 0.001 0.013 0.081

GJR-GARCH 3.12 1.08 0.000 0.059 0.000 0.021 0.200 0.622

AVGARCH 3.05 1.06 0.000 0.011 0.000 0.002 0.014 0.057

NARCH 3.47 1.06 0.005 0.345 0.012 0.068 0.476 0.707

VaR 1%

SMA22 0.97 1.60 0.913 0.587 0.858 0.990 0.983 0.999

SMA66 0.83 1.65 0.511 0.640 0.722 0.950 0.992 1.000

SM250 0.69 1.69 0.217 0.695 0.432 0.975 0.996 1.000

EWMA 0.83 1.63 0.511 0.640 0.722 0.992 0.992 1.000

GARCH 0.76 1.66 0.346 0.667 0.585 0.988 0.994 1.000

EGARCH 0.76 1.66 0.346 0.667 0.585 0.984 0.994 1.000

GJR-GARCH 0.62 1.69 0.124 0.723 0.287 0.915 0.998 1.000

AVGARCH 0.69 1.65 0.217 0.695 0.432 0.978 0.996 1.000

NARCH 0.69 1.66 0.217 0.695 0.432 0.978 0.996 1.000
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logically that Student quantiles are better to

forecast extreme losses. The HT statistics in panel

4b indicate three rejections for the EGARCH,

GJR-GARCH and N-GARCH models.

To conclude, our results first show that for the

Barclay/Calyon CTA index, efficient VaR

forecasts depends much more on the quantile

used for computing VaR, than on the choice of

the model used to forecast volatility (simple

smoothing average, EWMA, symmetric or

asymmetric GARCH models). Second, and in

line with Monteiro,10 the Cornish–Fisher

quantiles appear the easiest and the most flexible

way to obtain efficient VaR forecasts: even

combined with very simple volatility estimators,

VaR forecasts manage to respect the

unconditional coverage and violation

independence conditions at least for 10 and 5 per

cent thresholds.

CONCLUSION

As NAV were formerly exclusively available on a

monthly basis, there is a growing pressure for

hedge funds to issue weekly or even daily NAV

estimates, so as to improve transparency as well as

risk management capacity. The main

contribution of this paper is to conduct an

empirical investigation of hedge fund VaR using

daily returns of an hedge fund index, namely the

Barclay CTA index, which starts as early as

January 2000.

For various thresholds, we consider several

methods to compute 1-day-ahead VaR forecasts

(b) Multivariate test

HT P-val

SMA22 38.63 0.737

SMA36 49.55 0.297

SMA250 48.08 0.349

EWMA 37.22 0.789

GARCH 43.70 0.527

EGARCH 58.45 0.086

GJR-GARCH 71.10 0.008

AVGARCH 72.24 0.006

NARCH 42.24 0.590

Notes: VR stands for the percentage of time returns prove inferior to the ex ante VaR forecast (ex post violation

rate). VaR stands for the average value of the 1-day-ahead VaR forecasts. LRUC, LRIND, LRCC stand, respectively,

for p-values of the unconditional coverage test statistic, the independence test statistic and Christoffersen’s

conditional coverage test statistic; EMCC stands for the Engle and Magnanelli’s test p-values (5 lags). LB(k) stands

for the Ljung–Box’s p-value with k lags. GARCH models are estimated using a 250-day rolling window.

Notes: HT stands for the multivariate portmanteau’s p-value (Li and Mc Leod16) as used by Hurlin and

Tokpavi.15 We use k=5 lags and use three coverage rates a=1%,5%,10%. GARCH models are estimated using a

250-day rolling window.

Table 6: Continued
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using different types of quantiles (Gaussian,

Cornish–Fisher expansion, Student) and

volatility forecasting models (historical averages,

EWMA, GARCH and t-GARCH). We

compare these estimates, using univariate and

multivariate back-testing procedures aimed at

checking their efficiency both in terms of

unconditional coverage and independence of

VaR violations.

Our results show that for the Barclay/Calyon

CTA index, the efficiency of VaR forecasts

primarily depends on the type of quantiles used

for computing VaR. The choice of the model

used to forecast volatility (simple smoothing

average, EWMA and symmetric or asymmetric

GARCH models) proves much less important in

that specific case. Our results also show that the

most flexible form is the Cornish–Fisher

expansion, since it enables even very simple

volatility models to pass successfully back-testing

tests for 10, 5 or even 1 per cent VaR thresholds.

Thus, our results seem in line with those of

Monteiro10 on monthly data. On the other

hand, Student VaRs are the best to compute 1

per cent VaR forecasts, although they are ill-

adapted for larger thresholds (with large VaR

overestimations). All in all, if on the one hand,

our results need confirmation before being

generalised, they are, on the other hand,

somewhat reassuring for risk managers as they

show that making good VaR estimations for

hedge funds seems achievable.
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