
Minimizing total completion time on a single
machine with step improving jobs
Eun-Seok Kim1 and Daniel Oron2*
1Middlesex University, London, United Kingdom; and 2The University of Sydney Business School, Sydney,
Australia

Production systems often experience a shock or a technological change, resulting in performance improvement.
In such settings, job processing times become shorter if jobs start processing at, or after, a common critical date.
This paper considers a single machine scheduling problem with step-improving processing times, where the effects
are job-dependent. The objective is to minimize the total completion time. We show that the problem is NP-hard in
general and discuss several special cases which can be solved in polynomial time. We formulate a Mixed Integer
Programming model and develop an LP-based heuristic for the general problem. Finally, computational experi-
ments show that the proposed heuristic yields very effective and efficient solutions.
Journal of the Operational Research Society (2015) 66(9), 1481–1490. doi:10.1057/jors.2014.91
Published online 10 December 2014

Keywords: scheduling; step-improving processing times; total completion time; heuristic

The online version of this article is available Open Access

1. Introduction

Most classical scheduling models assume that job processing
times remain constant over time. However, in various real-life
production and manufacturing systems job processing times
change over time. The contributing factors to varying processing
times may be machine or worker learning, machine deteriora-
tion, production system upgrades or technological shocks.
Gawienjnowiz (2008) provides a wide variety of applications
and to date results on scheduling with time-dependent jobs.
Time-dependent scheduling models can be classified into three
general categories. The first category consists of linear models,
whereby job processing times increase or decrease linearly as a
function of the job’s start time. The first papers to introduce time
deteriorating jobs were Gupta et al (1987), Gupta and Gupta
(1998), and Browne and Yechiali (1990). The authors of these
papers assumed that job processing times consist of two
components. The former is a basic processing time which
remains constant throughout the planning horizon. The latter
varies over time and is the product of the job start time and a job-
dependent deterioration index. The makespan minimization
problem on a single machine is shown to be solved in
polynomial time using a simple sorting rule; however, the total
completion time counterpart remains open even when the basic
processing times are assumed to be identical for all jobs (see
Mosheiov, 1991). The second category of time-dependent
processing time scheduling models addresses piece-wise linear
job processing time functions. The underlying assumption of
these models is that job processing times remain constant until a

certain event occurs. Following changes in the production
setting, job processing times begin to increase, or in some cases
decrease, linearly at a predefined point in time. Cheng et al
(2004) and the references within describe a variety of applica-
tions for this class of models, including fire fighting efforts,
searching for items under worsening light or weather conditions
and maintenance scheduling. Wu et al (2009) propose a branch-
and-bound algorithm as well as heuristic algorithms for solving
a single machine scheduling problem with the objective of
minimizing the makespan. Farahani and Hosseini (2013) show
that a single machine scheduling problem with the objective of
minimizing the cycle time where the job processing time is a
piecewise linear function of its start time is polynomially
solvable. The third category is devoted to scheduling settings
where job processing times have two possible values, depending
on their start time. The motivation for such models arises from
systems which experience a single discrete change in setting. For
example, the introduction of a new technology or the purchase
of a more efficient machine. Under this model job processing
times do not change over time and are only affected by the
different machine setting. These models are often referred to as
step-deteriorating or step-improving problems, depending on the
context. Step-deteriorating models were first introduced by
Sundararaghavan and Kunnathur (1994) and later studied by
Mosheiov (1995), Cheng and Ding (2001) and Jeng and Lin
(2004). The makespan minimization problem was shown to be
NP-hard in the ordinary sense by both Mosheiov (1995) and
Cheng and Ding (2001). The same problem under the assump-
tion that each job has a distinct event which affects its processing
time is also NP-hard (see Jeng and Lin, 2004). Cheng and Ding
(2001) also addressed the total completion time objective,

*Correspondence: Daniel Oron, The University of Sydney Business School,
Sydney NSW 2006, Australia.

Journal of the Operational Research Society (2015) 66, 1481–1490 © 2015 Operational Research Society Ltd. All rights reserved. 0160-5682/15

www.palgrave-journals.com/jors/

http://dx.doi.org/10.1057/jors.2014.91
http://www.palgrave-journals.com/jors

showing that the problem is strongly NP-hard. In a recent paper,
Cheng et al (2006) study a makespan minimization problem
with step-improving processing times and a common critical
date. They prove the problem is NP-hard and develop an
efficient pseudo-polynomial time algorithm. They also introduce
a Fully Polynomial Time Approximation Scheme (FPTAS) and
an online algorithm with a worst case ratio of 2. Ji et al (2007)
address the same problem and develop a simple linear time
algorithm with a worst case ratio of 5/4. For earlier results on
scheduling with step-improving or step-deteriorating processing
times, we refer the reader to two extensive survey papers by
Alidaee and Womer (1999) and Cheng et al (2004).
Recently, some studies investigate time-dependent scheduling

models with other variations of classic scheduling models. Cai
et al (2011) consider the single machine scheduling problemwith
time-dependent processing times and machine breakdowns. The
objectives are to minimize the expected makespan and the
variance of the makespan. Mor and Mosheiov (2012) consider a
classical batch scheduling model with step-deterioration of
processing times. The objective is to minimize flowtime. Qian
and Steiner (2013) consider a single machine scheduling problem
with learning/deterioration effects and time-dependent processing
times. By using special assignment problem on product matrices,
they solve the problem in near-linear time. Lu et al (2014)
consider a single machine scheduling problem with decreasing
time-dependent processing times and group technology assump-
tion. The group setup times and job processing times are both
decreasing linear functions of their starting times. They show that
the problem can be solved in polynomial time.
In this paper we consider the same setting as Cheng et al

(2006) and Ji et al (2007): we assume a single machine
scheduling environment and a common critical date after which
job processing times reduce by a job-dependent amount. To the
best of our knowledge, this is the first paper to consider a single
machine setting with step-improving jobs and a critical date
under a scheduling criterion which is not the makespan. We
consider the total completion time objective which is paramount
in determining the work in process of a manufacturing system
and the level of service provided to customers. The focus on a
min-sum type objective gives rise to interesting problem char-
acteristics, various special cases which can be solved optimally
and a very efficient approximation scheme for the general
setting. We begin by introducing some notation in Section 2.
We show that the total completion time minimization problem is
NP-hard in Section 3, and discuss several special cases which
can be solved in polynomial time in Section 4. We formulate a
Mixed Integer Programming (MIP) model and develop an LP-
based heuristic for the problem in Section 5. In Section 6,
computational experiments are performed. Some concluding
remarks and directions for future research are given in Section 7.

2. Problem description

A set of n non-preemptive jobs N= {1,…, n} is available for
processing at time zero. All jobs in N share a common critical

date D which affects their processing times. The processing
time of job j is specified by two integers aj and bj with
0⩽ bj⩽ aj. If job j begins processing at some time t<D, then
its processing time equals aj; if it starts at some time t⩾D,
then its processing time is aj− bj. The goal consists of finding
a non-preemptive schedule which minimizes the total com-
pletion time.
A schedule σ is an assignment of the jobs in N to the single

machine such that each job receives an appropriate amount of
processing time, and no two jobs can be processed on the single
machine at the same time. Let Sj(σ) and Cj(σ) denote the start
and finish times of job j in schedule σ, respectively. We
represent Sj(σ) as Sj and Cj(σ) as Cj when schedule σ is clear
from the context. Let σ* represent the optimal schedule, that is,
the one which minimizes the total completion time, and let
∑Cj(σ*) denote the minimum total completion time associated
with this schedule. Let [i] denote the job in the ith position of
the job sequence.
The standard classification scheme for scheduling problems

(Graham et al, 1979) is α1 |α2 |α3, where α1 describes the
machine structure, α2 gives the job characteristics or restrictive
requirements, and α3 defines the objective function to be
minimized. We extend this scheme to provide for the step-
improving processing time with a common critical date by
using pj= aj or pj= aj− bj and dj=D in the α2 field. Our
problem can be denoted as 1| pj= aj or pj= aj− bj, dj=D |∑Cj.

3. Complexity results

This section studies the complexity issue of the considered
problem. A reduction method is used from the following
problem, which is known to be NP-complete.
Even-odd partition (Garey and Johnson, 1979): Given

positive integers x1, x2,…, x2t, where x1⩽ x2⩽⋯⩽ x2t, does it
exist a set X⊆T= {1, 2,…, 2t} such that∑j∈Xxj=∑j∈T\Xxj= r,
and X contains exactly one of {x2j− 1, x2j} for j= 1, 2,…, t?
Assume without loss of generality that r> 3t. If not, then we
can multiply each partition element and partition size by 3t
without changing the solution of the problem.
Given any instance of even-odd partition problem with t, r

and xj for j= 1,…, 2t, we consider the following instance of
1| pj= aj or pj= aj− bj, dj=D |∑Cj, called instance I:

n= 2t + 1;

aj = 2r2 + xj; bj = 2r2; j= 1; ¼ ; 2t;

a2t + 1 = 2r2 + 2r; b2t + 1 = 2r2;

D= 2tr2 + r:

A threshold value, K, is defined as K=Σj= 1
t (t− j+1)(x2j− 1 +

x2j) + (3t
2 + 3t)r2 + (t+4)r. In the following we prove that there

exists a schedule for this instance of 1 | pj= aj or pj= aj− bj,-
dj=D |∑Cj with ∑Cj⩽K if and only if there exists a solution
to even-odd partition problem.

1482 Journal of the Operational Research Society Vol. 66, No. 9

Lemma 1 If there exists a solution to even-odd partition
problem, there exists a feasible schedule for instance I.

Proof Since there exists a solution to even-odd partition, the
elements are reindexed such that Σj= 1

t x2j− 1=Σj= 1
t x2j= r.

Consider a schedule σ as constructed in Figure 1. The jobs
2j− 1 for j= 1,…, t are scheduled in this order without idle
time. Then, since Σj= 1

t a2j− 1=D, jobs 2j for j= 1,…, t and
job 2t+1 are scheduled in this order starting at time D
without idle time. Thus,

X2t + 1
j= 1

Cj =
Xt
j= 1

C2j - 1 +
Xt
j= 1

C2j +C2t + 1

=
Xt
j= 1

Xj
i= 1

a2i - 1 +
Xt
j= 1

D +
Xj
i= 1

a2i - b2ið Þ
 !

+ D +
Xt
j= 1

a2j - b2j
� �

+ a2t + 1 - b2t + 1

 !

=
Xt
j= 1

t - j + 1ð Þ 2r2 + x2j - 1
� �

+
Xt
j= 1

t - j + 1ð Þx2j

+ t + 1ð ÞD + 3r

=
Xt
j= 1

t - j + 1ð Þ x2j - 1 + x2j
� �

+ 3t2 + 3t
� �

r2 + t + 4ð Þr

=K:

The third equality follows because Σj= 1
t (a2j− b2j)= r. This

implies that there exists a feasible schedule with ∑Cj⩽K
for instance I. □

We now show that a feasible solution to instance I implies a
solution to even-odd partition. Let σ* denote a optimal schedule
for instance I.

Lemma 2 In σ*, job 2t+ 1 is the last job to be processed.

Proof Suppose that job 2t+1 starts processing before D in σ*.
Since a2t+1=2r2 +2r>2r2 + xj=aj for j=1,…, 2t, job
2t+1 and the last job for processing, job [2t+1], can be
interchanged while the total completion time decreases or
remains the same, where job [i] denotes the job in the ith
position in a given sequence. Alternatively, suppose that job
2t+1 starts processing after D in σ*. For the jobs starting
after D, the SPT (Shortest Processing Time) rule is optimal
(Smith, 1956). Therefore, job 2t+1must be the last job in σ*
because a2t+1−b2t+1=2r> xj=aj−bj for j=1,…, 2t. □

Lemma 3 In σ*, there are exactly t jobs that start processing
before D, and the total processing time of these jobs is not
greater than D.

Proof Observe that aj> 2r2 for j= 1,…, 2t and 2r2t<D<
2r2(t+1). Thus, there are at most t+1 jobs that start
processing before D. Suppose that t+1 jobs start

processing before D. Then, it follows that C[t+1]>2r2(t+1).
Since 2r2(t+1)>D+ (a[t+1]− b[t+1]), the total completion
time can be decreased by inserting idle time so that job
[t+1] start processing at D. Consequently, exactly t jobs
start processing before D in σ*.
Furthermore, the total processing time of the first t jobs is
not greater than D. Otherwise, since Σj= 1

2t (aj− bj)= 2r, it
follows that Σj= t+1

2t a[j]<D. Therefore, for j= 1,…, t, job
[j] and job [t+ j] can be interchanged while the total
completion time decreases or remains the same. □

Theorem 1 The problem 1| pj= aj or pj= aj− bj, dj=D |∑Cj

is NP-hard even when bj= b for all j.

Proof Lemma 1 shows that a solution to even-odd partition
implies a feasible schedule for instance I. To complete the
proof, we must now show that a feasible schedule for
instance I implies a solution to even-odd partition.
From the results of Lemma 2 and Lemma 3, exactly t jobs
in {1,…, 2t} start processing before D, and t jobs in
{1,…, 2t} and job 2t+ 1 start processing from D. Thus,
similar to the analysis in Lemma 1, the total completion
time can be expressed as

X2t + 1
j= 1

Cj =
Xt
j= 1

C j½ � +
Xt
j= 1

C t + j½ � +C 2t + 1½ �

=
Xt
j= 1

Xj
i= 1

a i½ � +
Xt
j= 1

D +
Xj
i= 1

a t + i½ � - b t + i½ �
� � !

+ D +
Xt
j= 1

a t + j½ � - b t + j½ �
� �

+ a 2t + 1½ � - b 2t + 1½ �

 !

=
Xt
j= 1

t - j + 1ð Þ 2r2 + x j½ �
� �

+
Xt
j= 1

t - j + 1ð Þx t + j½ � + tD

+ D + 2r -
Xt
j= 1

x j½ �

 !
+ r3

 !

=
Xt
j= 1

t - j + 1ð Þ x j½ � + x t + j½ �
� �

+ 3t2 + 3t
� �

r2

+ t + 4ð Þr + r -
Xt
j= 1

x j½ �

 !

=K +
Xt
j= 1

t - j + 1ð Þ x j½ � + x t + j½ � - x2j - 1 - x2j
� �

+ r -
Xt
j= 1

x j½ �

 !
:

Figure 1 The structure of schedule σ.

Eun-Seok Kim and Daniel Oron—Minimizing total completion time on a single machine with step improving jobs 1483

The third equality follows from the fact that Σj= 1
t (a[t+ j]−

b[t+ j])=Σj= 1
t x[t+ j]= 2r−Σj= 1

t x[j].
Since Σj= 1

2t+1Cj⩽K and Σj= 1
t x[j]⩽ r, it follows that {x[j],

x[t+ j]}= {x2j− 1, x2j} for j= 1,…, t and Σj= 1
t x[j]= r. As a

result, the set of jobs that start processing before D provides
a solution to even-odd partition problem, which indicates
that a feasible schedule for instance I implies a solution to
even-odd partition.
By combining Lemma 1 and the proof above, there exists a
schedule for this instance of 1 | pj= aj or pj= aj− bj,
dj=D |∑Cj with ∑Cj⩽K if and only if there exists a
solution to even-odd partition problem. Therefore, the
problem 1 | pj= aj or pj= aj− bj, dj=D |∑Cj is NP-hard
even when bj= b for all j. □

4. Polynomially solvable cases

In this section, we study several special cases of the problem
which can be solved in polynomial time.

4.1. All processing times improve according to a fixed ratio bj=
δaj for all 1⩽ j⩽n, and there exists k such that Σj=1

k aj=D

We first focus on the case where jobs are shortened according to
a fixed ratio if they start processing at, or after, the common
critical date D. If there exists k such that Σj= 1

k aj=D, then we
show that a simple sorting procedure yields an optimal solution
for the problem. Otherwise, the problem remains NP-hard.

Lemma 4 Suppose that a1⩽ a2⩽…⩽ an and bj= δaj for ∀ j
where 0< δ< 1. If there exists k such that Σj= 1

k aj=D, then
the SPT rule with respect to aj is optimal.

Proof For a given schedule, there are two sets of jobs: jobs
that start processing before D and jobs that start processing
after D. Since the SPT rule on each set of jobs is optimal, it
suffices to show that jobs in {1,…, k} are scheduled in the
time interval [0,D] in an optimal schedule.
Consider a schedule σ where some jobs in {k+1,…, n}
start processing before D. In σ, let A denote a set of jobs
that start processing before D, let B denote a set of jobs that
start processing after D. Let X=A∩ {k+ 1,…, n} and
Y=B∩ {1,…, k}. Note that the SPT rule on each set of
jobs is optimal. Thus, since ai⩽ aj for i∈A\X and j∈X,
jobs in X do not precede any jobs in A\X. Similarly, since
ai− bi= (1− δ)ai⩽ (1− δ)aj= aj− bj for i∈Y and j∈B\Y,
jobs in Y have to precede jobs in B\Y. Let x[i] and y[i] denote
the jobs in the ith position of the job sequences in X and Y,
respectively. Figure 2 depicts the schedule σ.
We first show that |X | ⩽ |Y | . Suppose that |X | > |Y | .
From the assumption that a1⩽ a2⩽…⩽ an, we obtain that
ax½i� ⩾ ay½i� for i= 1,…, |Y | . Therefore, we can exchange

x[i] and y[i] for i= 1,…, |Y | without increasing the start
time of x[|Y | +1]. This implies that k+1 jobs can start its

processing before D, which contradicts to the assumption
that Σj=1

k aj=D, that is, at most k jobs can start it processing
before D. Alternatively, we assume that |X | ⩽ |Y | .
As shown in Figure 2, there are two cases:∑ j∈Aaj<D and
∑j∈Aaj⩾D.

Case 1: ∑ j∈Aaj<D.

Since ∑ j∈Aaj<D, observe that

X
j2Y

aj =D -
X
j2A nX

aj >
X
j2A

aj -
X
j2A nX

aj =
X
j2X

aj:

Construct a new schedule σ′ by interchanging jobs in
A and jobs in B in the same order as in σ. Let t=D−
∑j∈A\Xaj. Then,

Cj σ′ð Þ=

Cj σð Þ if j 2 A nX;

Cj σð Þ - t + δPj
i= 1

ay i½ � if j 2 Y ;

Cj σð Þ + t - δPj
i= 1

ax i½ � if j 2 X;

Cj σð Þ + 1 - δð Þ P
j2X

aj -
P
j2Y

aj

 !
if j 2 B n Y :

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

Since |X | ⩽ |Y | ,

X
j2N

Cj σ′ð Þ -Cj σð Þ� �
=
X
j2A nX

Cj σ′ð Þ -Cj σð Þ� �

+
X

j2X ∪ Y

Cj σ′ð Þ -Cj σð Þ� �

+
X
j2B nY

Cj σ′ð Þ -Cj σð Þ� �

= δ
XXj j

j= 1

Xj
i= 1

ay i½ � - ax½i�
� �

+
XYj j

j= jX j + 1
- t + δ

Xj
i= 1

ay i½ �

 !

+ 1- δð Þ
X
j2B nY

X
j2X

aj -
X
j2Y

aj

 !

< 0:

Figure 2 Two possible structures of schedule σ.

1484 Journal of the Operational Research Society Vol. 66, No. 9

The last inequality follows because ay½i� ⩽ ax½i� for i= 1…

|X | , and δ∑ j∈Yaj< t and ∑ j∈Xaj<∑ j∈Yaj. As a result,
we can create a new schedule σ′ where jobs in {1,…, k}
are scheduled in the time interval [0,D] without increasing
the total completion time.

Case 2: ∑ j∈Aaj⩾D.

Since∑ j∈Aaj⩾D, we obtain

X
j2Y

aj =D -
X
j2A nX

aj ⩽
X
j2A

aj -
X
j2A nX

aj =
X
j2X

aj:

Let s=∑ j∈Xaj and t=D−∑ j∈A\Xaj, respectively. Observe
that s⩾ t. Construct a new schedule σ′ by interchanging jobs
in A and jobs in B in the same order as in σ. Then,

Cj σ′ð Þ=

Cj σð Þ if j 2 A nX;

Cj σð Þ - s + δPj
i= 1

ay½i� if j 2 Y ;

Cj σð Þ + t - δPj
i= 1

ax½i� if j 2 X;

Cj σð Þ + δ P
j2Y

aj -
P
j2X

aj

 !
if j 2 B n Y:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

Since |X | ⩽ |Y | ,

X
j2N

Cj σ′ð Þ -Cj σð Þ� �
=
X
j2A nX

Cj σ′ð Þ -Cj σð Þ� �

+
X

j2X ∪ Y

Cj σ′ð Þ -Cj σð Þ� �

+
X
j2B n Y

Cj σ′ð Þ -Cj σð Þ� �

= δ
XXj j

j= 1

t - s +
Xj
i= 1

ay i½ � - ax i½ �

� � !

+
XYj j

j= Xj j + 1
- s + δ

Xj
i= 1

ay i½ �

 !

+ δ
X
j2B n Y

X
j2Y

aj -
X
j2X

aj

 !

< 0:

The last inequality follows because t⩽ s, and ay½i� ⩽ ax½i� for

i= 1… |X | , and δ∑ j∈Yaj< s and ∑ j∈Yaj⩾∑ j∈Xaj. As a
result, we can create a new schedule σ′ where jobs in
{1,…, k} are scheduled in the time interval [0,D] without
increasing the total completion time. □

In the following we present an example to demonstrate that
even when a1⩽ a2⩽…⩽ an and bj= δaj for ∀ j where
0< δ< 1, if there does not exist any k such that Σj= 1

k aj=D,
then the SPT rule may not be optimal. Consider an example
where there are three jobs with a1= 16, a2= 18 and a3= 22
while D= 20 and δ= 0.5. Therefore, aj − bj are 8, 9 and 11,
respectively, for j= 1, 2, 3. The SPT rule yields a solution
value of 95 (the completion times are 16, 34 and 45,
respectively). If we schedule job 2 first and insert an idle
time of 2 time units, followed by jobs 1 and 3, then the total
completion time is 85 (with completion times of 18, 28
and 39). Clearly, since at most one job can start processing
before the critical date, it is beneficial to sequence the
longest job which does not exceed the critical date D, that
is, job 2 in our case.

4.2 All improved processing times are identical ai− bi=
aj− bj for all 1⩽ i,j⩽ n

We consider the special case where jobs have different proces-
sing times if scheduled before D, but the same improved
processing time if they start processing after D. If D does not
coincide with the completion time of a job, it may be beneficial
to insert some idle time before D, as shown below.

Lemma 5 Suppose that a1⩽ a2⩽…⩽ an and ai− bi= aj− bj
for all 1⩽ i, j⩽ n. The SPT rule with respect to aj is
optimal.

Proof Let k denote the maximum number of jobs which can
finish processing before D. Construct a schedule σ based
on the SPT rule: Assign the first k jobs in non-decreasing
order of aj before D; If Σj= 1

k+ 1aj⩽D+ ak+1− bk+ 1 (which is
equivalent to Σj=1

k aj⩽D− bk+1), then job k+1 starts
directly after job k finishes at time Σj= 1

k aj. If Σj=1
k aj>D−

bk+1, then job k+1 starts at timeD inserting idle time; The
remaining jobs are assigned in non-decreasing order of
aj− bj without any idle time.
We now show that any feasible schedule can be changed
into σ without increasing its total completion time. Take
a feasible schedule σ′. Let k′ denote the number of jobs
which finish processing before D in σ′. It is clear that in
order to minimize the total completion time of the first
k′ jobs they must be ordered according to the SPT rule
with respect to aj. The remaining jobs can be ordered
arbitrarily as they have identical improved processing
times. Without loss of generality we assume that the
jobs processed after time D are also in SPT order. Now
construct a new schedule σ″ by interchanging jobs [k′]
and [k′ + 1], without changing the start time of the jobs
[k′] and [k′ + 1]. From the assumption that the first k′
jobs and the latter n − k′ jobs are in SPT order, we have
that a½k′� ⩾ a½k′+ 1�. Therefore,X

j2N
Cj σ′′ð Þ -Cj σ′ð Þ� �

= a k′ + 1½ � - a k′½ � ⩽ 0:

Eun-Seok Kim and Daniel Oron—Minimizing total completion time on a single machine with step improving jobs 1485

By repeating this procedure, we can construct σ without
increasing the total completion time for the given
schedule. □

4.3. All initial processing times are identical aj= a for all
1⩽ j⩽ n

Next, we consider a special case for which all jobs have the
same processing time initially but different processing times if
they begin processing no earlier than D. It is clear that exactly
k= ⌊D/a⌋ jobs can finish their processing beforeD. The focus is
on the job [k+1] which is in the (k+1)st position in the
sequence: if b[k+1]⩽D− ka=D− ⌊D/a⌋a, then job [k+1]
should start at time ka; if, on the other hand, b[k+1]⩽D− ka,
then job [k+1] should start at time D.

Lemma 6 Suppose that aj=a for ∀ j and that b1⩾b2⩾…⩾bn.
The SPT rule with respect to aj − bj (or Longest Process
Time (LPT) rule with respect to bj) is optimal.

The proof of Lemma 6 is based on a standard pair-wise
interchange argument and is similar to the proof of Lemma 5.
For the sake of brevity we omit the formal proof. These results
are meaningful considering that the problem is NP-hard even
when bj= b, but polynomially solvable either when aj= a or
when ai− bi= aj− bj.

5. The LP-based heuristic

In this section, we develop an LP-based heuristic for the
proposed problem. The scheduling problem is expressed in an
MIP formulation in Section 5.1. Then, an LP-based heuristic is
developed on the basis of an LP relaxation of MIP in
Section 5.2.

5.1. The MIP formulation

In this section we develop an MIP formulation of the proposed
problem. Without loss of generality, we assume that the jobs are
indexed in non-decreasing order of aj.

Variables

Si = starting time of job in the ith position in the job sequence:

xij =

1 if job j is in the ith position in the job
sequence and job j starts beforeD;

0 otherwise:

8><
>:

yij =

1 if job j is in the ith position in the job
sequence and job j starts afterD;

0 otherwise:

8><
>:

MIP:

Min
X
i2N

Si +
X
j2N

ajxij + aj - bj
� �

yij
� � !

(1)

subject to Si + 1 ⩾ Si +
X
j2N

ajxij + aj - bj
� �

yij
� �

8i 2 N n nf g; ð2Þ
X
j2N

xij ⩾
D - Si
M

8i 2 N; (3)

X
j2N

yij ⩾
Si -D
M

8i 2 N; (4)

xij + yij ⩽ 1 8i 2 N; 8j 2 N; (5)X
i2N

xij + yij
� �

= 1 8j 2 N; (6)

X
j2N

xij + yij
� �

= 1 8i 2 N; (7)

xij; yij 2 0; 1f g 8i 2 N; 8j 2 N; (8)

Si ⩾ 0 8i 2 N: (9)

The objective function (1) seeks to minimize the total
completion time. Constraint (2) implies that the starting time
of the job in the (i+1)st position in the job sequence is greater
than or equal to the completion time of the job in the ith
position. Constraints (3) and (4) imply that the processing time
of the job in the ith position in the job sequence is a[i] if the job
starts before D and that the processing time of the job in the ith
position in the job sequence is a[i]− b[i] if the job starts after D.
Note that M is a sufficiently large number. Constraint (5)
implies that a job starts either before or after D. Constraints (6)
and (7) imply that exactly one job occupies exactly one position
in the job sequence. Constraint (8) implies that xij and yij are
binary variables. Constraint (9) implies that starting times of the
jobs are nonnegative.

Lemma 7 Constraint (3) inMIP is equivalent to

X
j2N

xij ⩾
D - Si

D + 1 - min D;
Pi - 1
j= 1

aj

 ! 8i 2 N: (10)

Proof Constraint (3) implies that ∑j∈Nxij= 1 if Si<D and
∑j∈Nxij= 0 if Si⩾D. Suppose that Si<D. Since the jobs
are indexed in non-decreasing order of aj,

Si = a 1½ � + a 2½ � + � � � + a i - 1½ � ⩾ a1 + a2 + � � � + ai - 1 =
Xi - 1
j= 1

aj:

1486 Journal of the Operational Research Society Vol. 66, No. 9

Thus, 0<D− Si<D+ 1−Σj= 1
i− 1aj. If Si<D, then

0<
D - Si

D + 1 - min D;
Pi - 1
j= 1

aj

 ! =
D - Si

D + 1 -
Pi - 1
j= 1

aj

< 1;

which imposes∑j∈Nxij= 1.
Suppose that Si⩾D. Then, the right-hand side of Con-
straint (10) is not greater than zero, which imposes
∑ j∈N xij= 0. As a result, Constraint (10) is equivalent to
Constraint (3) inMIP. □

Observe that Constraint (10) is stronger than Constraint (3).
We use Constraint (10) instead of Constraint (3) in order to
reduce a search space for finding an optimal solution of MIP.

5.2. Heuristic

In this section, we develop an LP-based heuristic using the
optimal solutions of an LP relaxed problem of MIP. In the LP
relaxed problem of MIP, we relax the binary constraint for xij
and yij, Constraint (8), and using Lemma 7, we develop the LP
relaxed problem ofMIP as follows.

LPR:

Min
X
i2N

Si +
X
j2N

ajxij + aj - bj
� �

yij
� � !

subject to (2), (4), (5), (6), (7), (10) and

0⩽ xij ⩽ 1 8i; 8j; (11)

0⩽ yij ⩽ 1 8i; 8j: (12)

Note that the LPR can be solved in polynomial time, using
the ellipsoid method (Grotschel et al, 1993).
In the LP-based heuristic, let X and Y denote two distinct

subsets of the job set N where jobs in X start processing before
time D and jobs in Y start processing at, or after time D. The
heuristic classifies each job into two sets, X and Y, according to
an optimal solution of LPR. Then, schedule the jobs in X in
non-decreasing order of aj, and schedule the jobs in Y in non-
decreasing order of aj− bj.
We now present a formal description of the heuristic.

The LP-based heuristic algorithm: Construction of a schedule
for 1 ∣ pj= aj or pj= aj− bj, dj=D ∣ΣCj.

Input: aj, bj and D
Output: Sj and Cj

Code:
1. Initialization
X←∅ and Y←∅

2. Obtain an optimal solution of LPR
Solve the LPR: let xij

r and yij
r denote the optimal

solution of the LPR
3. Construction of X and Y

For j= 1,…, |N | ,
if Σi∈Nxij

r ⩾Σi∈Nyij
r ,

X←X∪ {j}
else

Y←Y∪ {j}
4. Construction of a schedule

4.1 Schedule jobs in X in non-decreasing order of aj
from time zero

4.2 Schedule jobs in Y in non-decreasing order of
aj− bj from time max{D, Σj∈Xaj}

The following example demonstrates the LP-based heuristic
algorithm for a small problem containing three jobs.

Example 1 There are three jobs with a1= 16, a2= 18,
a3= 22, b1= 11, b2= 9, b3= 10 and D= 20. The optimal
solution of LPR can be obtained as follows:

xr11 = 0; xr21 = 0; xr31 = 0;

xr12 = 1; xr22 = 0; xr32 = 0;

xr13 = 0; xr23 = 0; xr33 = 0;

yr11 = 0; yr21 = 1; yr31 = 0;

yr12 = 0; yr22 = 0; yr32 = 0;

yr13 = 0; yr23 = 0; yr33 = 1:

Since x11
r + x21

r + x31
r < y11

r + y21
r + y31

r , we assign job 1 in Y.
Similarly, since x12

r + x22
r + x32

r > y12
r + y22

r + y32
r and x13

r +
x23
r + x33

r < y13
r + y23

r + y33
r , we assign job 2 and job 3 in X

and Y, respectively. Consequently, X= {2} and Y= {1, 3}.
We schedule job 2 first, and since max{D, Σj∈Xaj}= 20,
we schedule job 1 time 20 followed by job 3 at time 25.
The heuristic yields a solution value of 80 with C1= 25,-
C2= 18 and C3= 37.

6. Computational study

In this section, we undertake extensive numerical tests to
evaluate the quality of solutions found for problem 1 ∣ pj= aj
or pj= aj− bj, dj=D ∣∑Cj by the proposed heuristic. The
heuristic algorithm is coded in GAMS/CPLEX with the default
settings, and run on a personal computer with an Intel Core
i7-2600, 3.40GHZ processor. Since there is no computational
study which considers the setting addressed in this paper in the
existing literature, we have adapted the data generation scheme
used in Jeng and Lin (2004). In Jeng and Lin (2004), the authors
study a makespan minimization problem under the assumption
that job processing times are a non-linear function of their start
time and due-date. In order to evaluate the performance of their
proposed algorithms, the authors undertake a comprehensive
computational study. We have adapted their framework to our

Continued:

Eun-Seok Kim and Daniel Oron—Minimizing total completion time on a single machine with step improving jobs 1487

problem setting for the purpose of measuring the performance
of our heuristic algorithm. In our study we aim to isolate the
effects, if these exist, of the following factors: the number of
jobs (n), the difference (or ratio) between the job processing
times before and after the common due date (aj and bj), and the
restrictiveness of the common due date (D). The results will
allow us to determine the accuracy of the heuristic algorithm for
any specific problem setting.

To test the effects of varying n and D, we let n∈ {50, 100,
200, 400} and D=α∑aj where α∈ {0.2, 0.4, 0.6, 0.8}. In order
to determine whether or not the range of aj has an impact on the
performance of the heuristic, we let aj ~DU[1, 50], aj ~DU[1,
100], aj~DU[1, 150] and aj~DU[1, 200], where DU[l, u] is the
discrete uniform distribution over the interval [l, u]. Moreover,
the ratio of aj to bj may affect the performance of the heuristic.
For the associated test, we let bj~DU[0, βaj] where
β∈ {0.1, 0.4, 0.7, 1.0}.
Two sets of experiments were run. In the first set, n and D

were allowed to vary, while aj~DU[1, 100] and bj ~DU[0, aj].
These results are presented in Table 1. In the second set, aj and
bj were allowed to vary, while n= 100 and D= 0.6∑aj. These
results are presented in Table 2. Since calculating the optimal
solution is computationally difficult, we use the lower bound
which is the optimal solution value of the LPR as a surrogate.
As a result, our performance indicator, the relative error,
100× (zH− zL)/zL, provides an upper bound for the actual
sample relative error, where zH and zL represent the solution
value of the proposed heuristic and a lower bound, respectively.
For each condition, the table entry is the average of 20
instances. Times are given in seconds and only include
computation time.
In Table 1, one can observe that the error increases as

the number of jobs increases. Also, the error decreases as the
common critical date (D) increases. This may be due to the
quality of the lower bounds obtained from the LPR. As D
increases, more jobs start their processing before the common
critical date increases. Therefore, as shown in the proof of
Lemma 7, the set of valid inequalities of LPR becomes larger,
that is, the number of Constraints (10) increases. As a result, the

Table 1 Performance of the heuristic with different numbers of
jobs and different common critical dates

n D Relative error (%) CPU time (s)

Average Maximum Average Maximum

50 0.2∑aj 7.007 10.435 0.282 0.472
0.4∑aj 2.883 5.186 0.293 0.360
0.6∑aj 0.914 1.617 0.283 0.373
0.8∑aj 0.170 0.583 0.242 0.310

100 0.2∑aj 7.513 11.056 1.297 1.562
0.4∑aj 3.030 3.970 1.502 1.739
0.6∑aj 0.989 1.867 1.628 2.027
0.8∑aj 0.239 0.423 1.463 2.055

200 0.2∑aj 7.750 9.053 11.244 15.821
0.4∑aj 3.288 4.246 14.470 19.108
0.6∑aj 1.135 1.731 15.572 23.680
0.8∑aj 0.172 0.312 15.564 25.148

400 0.2∑aj 7.678 8.346 179.707 272.347
0.4∑aj 3.459 3.874 208.010 282.703
0.6∑aj 1.184 1.534 218.957 311.451
0.8∑aj 0.188 0.259 235.220 374.461

Table 2 Performance of the heuristic with different processing times

aj bj Relative error (%) CPU time (s)

Average Maximum Average Maximum

aj~DU[1, 50] bj~DU[0, 0.1aj] 0.282 0.640 1.479 2.578
bj~DU[0, 0.4aj] 1.186 1.631 1.413 2.180
bj~DU[0, 0.7aj] 1.398 1.952 1.551 2.120
bj~DU[0, 1.0aj] 1.051 1.514 1.455 1.763

aj~DU[1, 100] bj~DU[0, 0.1aj] 0.267 0.837 1.505 3.034
bj~DU[0, 0.4aj] 0.991 1.876 1.537 2.252
bj~DU[0, 0.7aj] 1.528 2.034 1.615 2.241
bj~DU[0, 1.0aj] 1.060 1.427 1.551 2.470

aj~DU[1, 150] bj~DU[0, 0.1aj] 0.134 0.954 1.325 1.711
bj~DU[0, 0.4aj] 1.171 1.615 1.589 2.651
bj~DU[0, 0.7aj] 1.318 1.954 1.724 2.276
bj~DU[0, 1.0aj] 1.077 1.728 1.657 2.111

aj~DU[1, 200] bj~DU[0, 0.1aj] 0.200 0.998 1.422 2.039
bj~DU[0, 0.4aj] 1.143 1.749 1.535 2.339
bj~DU[0, 0.7aj] 1.416 2.027 1.634 2.453
bj~DU[0, 1.0aj] 1.050 1.640 1.816 2.117

1488 Journal of the Operational Research Society Vol. 66, No. 9

LPR yields a tighter lower bound as the common critical date
increases.
In Table 2, we observe that the range of aj has no significant

impact on the performance of the heuristic. Moreover, the error
tends to be maximized when bj ~DU[0, 0.7aj]; however, there
is no linear relationship between the error and the ratio of the
standard deviation of aj to the standard deviation of bj.
To evaluate the performance of the proposed heuristic in

terms of the deviation from the optimal solutions, we
generated 20 instances of the problem where n= 70,
aj ~DU[1, 100], bj ~DU[1, aj] and D= 0.4∑aj. Optimal
solutions were obtained using GAMS/CPLEX with a fixed
time limit of 1 h of CPU time. These results are presented in
Table 3. The error is defined as 100 × (zH − zO)/(zO), where
zH and zO represent the solution values of the heuristic
algorithm and the optimal solution, respectively. The heur-
istic algorithm yields near-optimal solutions in short com-
putation times. The average error is 1.942% with the worst
case error of 2.633%. Optimal solutions were not obtained
in six instances among 20 instances within 1 h. In these
cases, the best feasible solutions obtained within the time
limit were used for comparison. The average computation
time required for the heuristic algorithm is less than 1 s,
while approximately 50 min are required for GAMS/
CPLEX. Considering that real-life manufacturing systems
are often required to process thousands of jobs, even
commercial optimization software packages would be

unable to find optimal solutions for the problem. Therefore,
it is sensible to use the heuristic algorithm instead of an
optimal algorithm.

7. Conclusions

We study a total completion time minimization problem on a
single machine with step-improving processing times. We
establish that the problem is NP-hard for the general case, and
develop polynomial time solution procedures for several inter-
esting special cases. For solving the general case, we formulate
an MIP model and develop an LP-based heuristic for the
problem.
In order to evaluate the effectiveness and efficiency of the

heuristic, extensive computational experiments are carried out.
The experimental results show that the heuristic yields very
close-to-optimal solutions in short computational times. More-
over, the proposed heuristic algorithm performs better as the
common critical date increases and as the number of jobs
decreases.
Future research may focus on studying step-improving

processing times with different scheduling criteria, such as
total weighted completion time. Also, it would be interest-
ing to extend our results to the various multiple machine
environments.

References

Alidaee B and Womer NK (1999). Scheduling with time dependent
processing times: Review and extensions. Journal of the Operational
Research Society 50(7): 711–720.

Browne S and Yechiali U (1990). Scheduling deteriorating jobs on a
single processor. Operations Research 39(3): 495–498.

Cai X, Wu X and Zhou X (2011). Scheduling deteriorating jobs on
a single machine subject to breakdowns. Journal of Scheduling
14(2): 173–186.

Cheng TCE and Ding Q (2001). Single machine scheduling with step-
deteriorating processing times. European Journal of Operational
Research 134(3): 623–630.

Cheng TCE, Ding Q and Lin BMT (2004). A concise survey of
scheduling with time-dependent processing times. European Journal
of Operational Research 152(1): 1–13.

Cheng TCE, He Y, Hoogeven H, Ji M and Woeginger GJ (2006).
Scheduling with step-improving processing times. Operations
Research Letters 34(1): 37–40.

Farahani MH and Hosseini L (2013). Minimizing cycle time in single
machine scheduling with start time-dependent processing times.
International Journal of Advanced Manufacturing Technology
64(9–12): 1479–1486.

Garey MR and Johnson DS (1979). Computers and Intractability:
A Guide to the Theory of NP-Completeness. Freeman: San
Francisco, CA.

Gawienjnowiz S (2008). Time-Dependent Scheduling. Springer: Berlin,
Germany.

Graham RL, Lawler EL, Lenstra JK and Rinnooy-Kan AHG (1979).
Optimization and approximation in deterministic machine scheduling:
A survey. Annals of Discrete Mathematics 5: 287–326.

Grotschel M, Lovasz L and Schrijver A (1993). Geometric Algorithms
and Combinatorial Optimization. Springer: Berlin.

Table 3 Performance of the heuristic algorithm compared with
optimal solutions

Instance Solution values CPU time (s)

Heuristic Optimal Error (%)* Heuristic Optimal

1 71 452 70 257 1.701 0.567 3600†

2 88 801 86 890 2.199 0.611 487.891
3 76 105 74 540 2.100 0.649 3600†

4 86 105 84 334 2.100 0.618 3600†

5 69 873 68 655 1.774 0.567 2946.807
6 79 151 77 714 1.849 0.550 2205.906
7 78 611 76 594 2.633 0.535 3600†

8 73 834 72 348 2.054 0.601 2819.861
9 81 328 79 653 2.103 0.474 2528.148
10 72 983 71 514 2.054 0.573 2732.801
11 69 318 67 832 2.191 0.627 3600†

12 71 831 70 420 2.004 0.673 3207.812
13 76 491 75 322 1.552 0.542 1989.288
14 75 965 74 717 1.670 0.502 3462.738
15 76 675 75 509 1.544 0.480 3600†

16 82 234 81 003 1.520 0.475 3178.294
17 67 527 66 247 1.932 0.578 3029.668
18 76 570 75 177 1.853 0.523 3093.316
19 69 566 67 917 2.428 0.495 2905.341
20 73 928 72 779 1.579 0.557 3040.961
Average 1.942 0.560 2961.543

*Error=100× (heuristic solution− optimal solution) / optimal solution.
†The best feasible solutions found within the time limit of 1 h.

Eun-Seok Kim and Daniel Oron—Minimizing total completion time on a single machine with step improving jobs 1489

Gupta JND and Gupta SK (1998). Single facility scheduling with
nonlinear processing times. Computers and Industrial Engineering
14(4): 387–393.

Gupta SK, Kunnathur AS and Dandanpani K (1987). Optimal repayment
policies for multiple loans. OMEGA 15(4): 323–330.

Jeng AAK and Lin BMT (2004). Makespan minimization in single
machine scheduling with step-deterioration of processing times.
Journal of the Operational Research Society 55(3): 247–256.

Ji M, He Y and Cheng TCE (2007). A simple linear time algorithm for
scheduling step-improving processing times. Computers and Opera-
tions Research 34(8): 2396–2402.

Lu Y-Y, Wang J-J and Wang J-B (2014). Single machine group
scheduling with decreasing time-dependent processing times subject
to release dates. Applied Mathematics and Computation 234:
286–292.

Mor B and Mosheiov G (2012). Batch scheduling with step-deteriorating
processing times to minimize flowtime. Naval Research Logistics
59(8): 587–600.

Mosheiov G (1991). V-shaped policies for scheduling deteriorating jobs.
Operations Research 39(6): 979–991.

Mosheiov G (1995). Scheduling jobs with step-deterioration: Minimizing
makespan on a single and multi-machine. Computers and Industrial
Engineering 28(4): 869–879.

Qian J and Steiner G (2013). Fast algorithms for scheduling with learning
effects and time-dependent processing times on a single machine.
European Journal of Operational Research 225: 547–551.

Smith WE (1956). Various optimizers for single-stage production. Naval
Research Logistics Quarterly 3(3): 59–66.

Sundararaghavan PS and Kunnathur AS (1994). Single machine sche-
duling with start time-dependent processing times: Some
solvable cases. European Journal of Operational Research 78(3):
394–403.

Wu C-C, Shiau Y-R, Lee L-H and Lee W-C (2009). Scheduling
deteriorating jobs to minimize the makespan on a single machine.
International Journal of Advanced Manufacturing Technology
44(11–12): 1230–1236.

Received 7 August 2013;
accepted 8 September 2014 after four revisions

This work is licensed under a Creative Com-
mons Attribution 3.0 Unported License. The

images or other third party material in this article are included in
the article’s Creative Commons license, unless indicated other-
wise in the credit line; if the material is not included under the
Creative Commons license, users will need to obtain permission
from the license holder to reproduce the material. To view a
copy of this license, visit http://creativecommons.org/licenses/
by/3.0/

1490 Journal of the Operational Research Society Vol. 66, No. 9

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

	Minimizing total completion time on a single machine with step improving jobs
	1. Introduction
	2. Problem description
	3. Complexity results
	4. Polynomially solvable cases
	4.1. All processing times improve according to a fixed ratio bj=δaj for all 1⩽j⩽n, and there exists k such that Σj=1kaj=D
	4.2 All improved processing times are identical ai−bi=aj−bj for all 1⩽i,j⩽n
	4.3. All initial processing times are identical aj=a for all 1⩽j⩽n

	5. The LP-based heuristic
	5.1. The MIP formulation
	5.2. Heuristic

	6. Computational study
	7. Conclusions
	Notes
	References

