## Viewpoints

## DANTZIG-WOLFE DECOMPOSITION ALGORITHM

Mr. Goncalves's attempt to derive a criterion ${ }^{1}$ for recognizing when a basic feasible solution to the master program in Dantzig-Wolfe's decomposition method corresponds to a non-basic feasible solution of the original problem is both inaccurate and unhelpful.

The original problem is

$$
\operatorname{Max} x_{0}=\mathbf{C}_{1} \mathbf{X}+\mathbf{C}_{2} \mathbf{Y}
$$

subject to

$$
\begin{aligned}
\mathbf{A}_{1} \mathbf{X}+\mathbf{A}_{\mathbf{2}} \mathbf{Y} & =\mathbf{b} \ldots m \text { equations, } \\
\mathbf{A X} & \leqslant \mathbf{p} \ldots n \text { inequalities, } \quad \mathbf{X} \geqslant 0, \quad \mathbf{Y} \geqslant 0 .
\end{aligned}
$$

$\mathbf{X}$ and $\mathbf{Y}$ are column vectors of dimension $r$ and $s$ respectively.
If we take a column vector $\mathbf{Z}$ of dimension $n$ and transform

$$
\mathbf{A X} \leqslant \mathbf{p} \quad \text { into } \quad \mathbf{A X}+\mathbf{I Z}=\mathbf{p}
$$

then a basic feasible solution is obtained if and only if

$$
V=V_{x}+V_{y}+V_{z} \geqslant r+s-m,
$$

where
and

$$
\begin{aligned}
V_{x} & =\text { the number of vanishing } x_{i}, \\
V_{y} & =\text { the number of vanishing } y_{i}, \\
V_{z} & =\text { the number of vanishing } z_{i}
\end{aligned}
$$

in the solution.
Mr. Goncalves omits $V_{z}$ and writes $V=V_{x}+V_{y} \geqslant r+s-m$ as necessary and sufficient condition.

However, his equation for $V_{x}$ is really the equation for $V_{x}+V_{z}$, so that the two errors compensate for each other, producing the correct result.

But what is the point of it all? To use his criterion we have to go from a basic feasible solution of the master program, to the corresponding solution of the original problem. Having done that, why is it better to use a formula requiring the dimension of the face that contains $\mathbf{X}$ as in the convex polyhedron $\mathbf{A X} \leqslant \mathbf{p}, \mathbf{X} \geqslant 0$, the degree of degeneracy of that face and of the basic feasible solution to the master program, and the number of not-vanishing $t_{i}$ variables in the master program than to count simply $V_{x}+V_{y}+V_{z}$ ?

G. M. Appa

Enfield College of Technology

## REFERENCE

[^0]
[^0]:    ${ }^{1}$ A. S. Goncalves (1968) Basic feasible solutions and the Dantzig-Wolfe decomposition algorithm. Opl Res. Q. 19, 465.

