Viewpoints

DANTZIG-WOLFE DECOMPOSITION ALGORITHM

MR. GONCALVES's attempt to derive a criterion¹ for recognizing when a basic feasible solution to the master program in Dantzig–Wolfe's decomposition method corresponds to a non-basic feasible solution of the original problem is both inaccurate and unhelpful.

The original problem is

$$\operatorname{Max} x_0 = \mathbf{C}_1 \mathbf{X} + \mathbf{C}_2 \mathbf{Y}$$

subject to

 $\mathbf{A}_1 \mathbf{X} + \mathbf{A}_2 \mathbf{Y} = \mathbf{b} \dots m$ equations,

 $\mathbf{AX} \leq \mathbf{p} \dots n$ inequalities, $\mathbf{X} \geq 0$, $\mathbf{Y} \geq 0$.

X and Y are column vectors of dimension r and s respectively.

If we take a column vector \mathbf{Z} of dimension n and transform

$\mathbf{AX} \leq \mathbf{p}$ into $\mathbf{AX} + \mathbf{IZ} = \mathbf{p}$

then a basic feasible solution is obtained if and only if

where

and

 V_x = the number of vanishing x_i ,

 $V = V_x + V_y + V_z \ge r + s - m,$

$$V_y$$
 = the number of vanishing y_i ,

 V_z = the number of vanishing z_i

in the solution.

Mr. Goncalves omits V_z and writes $V = V_x + V_y \ge r + s - m$ as necessary and sufficient condition.

However, his equation for V_x is really the equation for $V_x + V_z$, so that the two errors compensate for each other, producing the correct result.

But what is the point of it all? To use his criterion we have to go from a basic feasible solution of the master program, to the corresponding solution of the original problem. Having done that, why is it better to use a formula requiring the dimension of the face that contains X as in the convex polyhedron $AX \leq p$, $X \geq 0$, the degree of degeneracy of that face and of the basic feasible solution to the master program, and the number of not-vanishing t_i variables in the master program than to count simply $V_x + V_y + V_z$?

G. M. Appa

Enfield College of Technology

REFERENCE

¹ A. S. GONCALVES (1968) Basic feasible solutions and the Dantzig-Wolfe decomposition algorithm. *Opl Res. Q.* 19, 465.

19

or. STOR www.jstor.org