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ABSTRACT An algorithm to model both time and revenue response to spend for media
mix modeling is proposed in this article. A Monte Carlo simulation study is conducted to
investigate the possibility of extracting time and revenue response simultaneously from
both revenue- and channel-spend data. The quality and reliability of the underlying model
parameter reconstruction from various sizes of data are also inspected. The outcome of
re-allocating channel spend optimally based on extracted revenue response is evaluated.
Simulation results show that nearly a 60 per cent increase in revenue can be achieved by
channel-spend optimization, relative to arbitrary channel-spend assignment. The algorithm
presented here is very general and can be applied to any budget allocation optimization at
various levels.
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INTRODUCTION

With the rapid growth of e-commerce, an
increasing number of marketing channels are
available to marketers. In addition to
traditional advertising through TV, radio,
direct mail, magazine, newspaper, outdoor
billboard and so on, digital advertising by paid
search, online display, video, social and email
has attracted great attention in recent years
because of their precise targeting and prompt
performance tracking. To drive sales or lead
generation, or for branding, it is not unusual
for several marketing campaigns to run
simultaneously or consequently, via different
online, as well as offline, channels. A user who
is converted –made a purchase or generated a
lead in the end – might have experienced
several advertisements from a variety of
channels. To achieve maximal marketing
efficiency, one needs to determine how a
given budget should be allocated across
channels in order to maximize business target
measures like revenue, ROI, lead generation
or growth rate and so on. For this, media mix
modeling (Tellis, 2006) comes into play.

Mathematically, media mix modeling, as an
optimization procedure, has two steps. First,
one identifies the response of some business
target measure to some spend, which is the key
and basis of whole optimization. Second, the
numerical optimization is performed, using
existing software (for example, James, 1994) or
implementing certain optimization algorithm,
such as Markov Chain Monte Carlo
(Metropolis et al, 1953).

Practically, the target response to spend can
be approached in two ways – top-down and
bottom-up. With the bottom-up method, the
attribution model (Shao and Li, 2011) is
developed at the user level, and applied to every
conversion. Then, contribution from each
channel can be quantified by the sum over all
the conversions. Given a precise attribution
model, the response curve of the business target,
such as revenue, leads generated and so on,
versus spend can be built individually for all
channels, assuming that the budget allocation

can be optimized (Basu and Batra, 1984).
However, building a reliable attribution model
could be very challenging because there are too
many factors that need to be considered. For
example, channel interaction and user behavior
related features, such as the order and time
interval between using various channels, as well
as a user’s preference, may all affect the final
conversion probability, in addition to the
impact of the channels used.

Alternatively, the top-down approach
ignores all user level details, and works
directly on each channel’s spend and business
target output data. Instead of building an
attribution model, the top-down method
makes some appropriate assumptions on the
underlying response function forms, and then
extracts all the channel response curves at the
same time by data fitting. As input data are
aggregated at the level that the budget is
going to be optimized, an individual user’s
personal preference is averaged out and thus
ignored. Furthermore, because the response
curves of all channels are simultaneously
extracted directly from observable
measurement – business target metric and
channel spend, and channel interactions are
addressed automatically.

However, there is another problem with
the top-down method in dealing with media
mix modeling: prolonged or lagged effect of
advertising on user’s conversion behavior,
generally known as advertising adstock, or
carry-over effect (Broadbent, 1979). This
time-response effect couples tightly with so-
called shape effect, or, in other words,
response of business target measure to spend.
In the bottom-up approach, such carry-over
effect can be addressed by user’s history
related timing variables and attribution in
the conversion basis. With the top-down
method, to extract business target measure
response to spend precisely and reliably,
time response has to be well-modeled and
extracted at the same time. The commonly
advocated additive or multiplicative
regression modeling method to fold both
effects simply by introducing time lag
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related or transformed variables (Tellis,
2006; Bhattacharya, 2008) may not be a
good choice in this case. To the best
knowledge of the authors, a unified
treatment of modeling and extracting both
effects simultaneously is lacking, and is the
contribution of this article.

To make the description concise and easy
to understand, hereafter, we will use revenue
as the business target measure in the context.
But the assumptions, methods and procedures
described in this article are very general and
applicable to other metrics too.

As spend and revenue data are sensitive
information for any company, and restricted
for publication, a Monte Carlo simulation
study is conducted in this work. The purpose
of this study is twofold: (i) to prove that the
proposed algorithm works, and (ii) to set up a
framework where real data can be processed
and results can be obtained immediately.

This article is organized as follows. In the
next section the modeling of time response is
presented. The following section is devoted
to detailing assumptions on revenue response.
The procedure to extract both time and
revenue response from historical data is
explained in the section after that. The Monte
Carlo simulation set up and process, which
serves to verify that our algorithm to extract
response model parameters does indeed work,
is described in the subsequent section. Then,
in the penultimate section the optimization
algorithm and results from simulation data are
described. Conclusions and some related
issues are summarized and discussed in the
final section.

FROM SPEND TO REVENUE –

RESPONSE IN TIME
In the real world, if we advertise today, no
matter via what channel – online display, paid
search or offline TV, newspaper or direct mail –
we can never expect to receive response-
related revenue at one time point, but, rather,
a distribution of revenue over time. This is

because individual consumers’ responses to an
advertisement may vary in time. Some users
may act quickly as they planned to buy long
ago, and they see better offer from
advertisement now. Others may have to wait
to the next payday because of tight budget.
And so the campaign effect can last for days or
weeks after campaign has ensued or ended.

To model this kind of time-response
effect, mathematically, rather than Dirac
δ function, that is defined by

δ xð Þ ¼ +1; x ¼ 0
0; x≠ 0

�

and Z+1
-1

δ xð Þdx ¼ 1

which may properly model time response of
price promotion, some distribution that can
simultaneously model time latency, time
smear and time decay effects of advertisement
is demanded. Here, by time latency effect we
mean the time from advertisement start to first
purchase resulting from an advertisement;
while time smear effects the characteristic of
purchase spread over time, and the time decay
effect refers to how long the advertisement
effect will last. Some studies, by combining
Google analytics and Hewlett Packard (HP)
online conversion data, have shown that the
average time from Google search to purchase
in the HP Home and Home Office store, is
about 1–2 weeks (Liu, 2012). Obviously, one
cannot expect the effects of an advertisement
campaign that ended years ago to persist now
or last forever.

Among many choices, Gaussian
convoluted exponential decay formulated as

f t; μ; σ; τð Þ ¼ 1
2τ

e
1
2τ 2μ+ σ2

τ - 2t
� �

erfc
μ + σ2

τ - tffiffiffi
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and

erfc xð Þ ¼ 1 - erf xð Þ ¼ 2ffiffiffi
π

p
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x

e - u
2
du
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is advocated in our work, where μ is the
Gaussian mean, characterizing time latency,
σ is the Gaussian width, quantifying time
smear or how soon the advertisement effect
reaches its maximum and τ is the decay life
time, indicating how quickly an
advertisement effect diminishes.

Figure 1 shows three typical distribution
of the Gaussian convoluted exponential
decay with different parameter
configuration. Note that the curves can be
shifted along the time axis to the left and
right without shape change, by adjusting μ.
The general time response is expected to be
something like the solid curve. The δ
function like response can be modeled by
very small τ in relative to σ, as the dash-
dotted curve. A prompt response followed
by an observable decay should look like the
dotted curve. Here, the time unit is
determined by input data, at which the
revenue and spend data are aggregated, and
revenue in this plot should be normalized
such that the area under curve equals to 1, as
the amplitude will read from another
distribution for a given spend, that is
introduced in the next section.

Although time response is not involved
in budget allocation optimization, the
extracted time-response model parameters
from real data will provide helpful insights
for business planning. For example,
determining when to start a campaign ahead
of certain day, and when to stop it, in order
to drive maximal purchase in that day, can

be inferred from the model parameters, or
by inspecting the time-response curve
visually, or, more scientifically, by some
optimization calculation.

FROM SPEND TO REVENUE –

RESPONSE IN AMOUNT
The revenue response to spend is expected
to be non-linear, monotonically increasing
and to eventually get saturated when
the maximal return is reached. However,
different channels may respond
differently – some channels may be more
sensitive to small spends, while other
channels may be more sensitive to large
spends because of the threshold effect
(Hanssens et al, 2001). In the first case, the
response curve should be concave down,
and in the second case concave up, in the
low spend range.

The normalized lower incomplete gamma
function

Gamma x; k; θð Þ ¼ γ k; x
θ

� �
Γ kð Þ

and

γ s; xð Þ ¼
Zx
0

ts - 1e - tdt

where k is the shape parameter and
θ the scale parameter (Abramowitz and
Stegun, 1965), could be a good candidate to
model the response amount of revenue
to spend.

Shown in Figure 2 are three curves
corresponding to different shape and scale
parameter configurations. One can see that
the concave up, down and straightforward
response in the low spend range are well-
approximated by the solid, dash-dotted and
dotted curves, respectively.

Note that this function is asymptotic to 1,
like the time response, and, again, it provides
the shape that we are looking for. Therefore,
another parameter, Rmax to gauge the

Figure 1: Time responses with different parameter
configuration.
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maximal absolute amount of revenue
response to the infinite large spend, is still
needed. Therefore, for each channel, we end
up with six parameters in total.

As aforementioned, revenue response to
spend is the basis and key for the budget
allocation optimization. The main task of the
media mix modeling is to model this
response. The optimization output
completely relies on how accurately the
extracted revenue response explains real data.
An inaccurate revenue response input will
bias budget allocation in the output. Hence,
the accuracy of revenue response
reconstructed from real data is very crucial.
Thus, model parameters Rmax, k and θ
have to be reconstructed with high accuracy.

RESPONSE CURVE
RECONSTRUCTION
In this work, the objective is, given historical
data of daily (or hourly, weekly, monthly and
so on) revenue and spend in each channel, to
determine how much marketing budget
should be allocated to each of the channels in
order to maximize total returned revenue.
The first step is to find out revenue to spend
response. Besides the given revenue and
spend data, if a user’s history and transaction
information are also available, then one can
build an attribution model, where for every
conversion, split revenue according to model
predicted channel attribution, sum attributed

revenue over all conversions for every
channel, will get channel revenue, by
combining with channel spend, a revenue
response can be built. Here, we assume that
only revenue and channel spend by time is
available, so the problem has to be
approached differently. On the basis of the
assumptions on time and revenue response
introduced in the previous two sections, we
extract channel response by a minimization
procedure.

Specifically, revenue received in day i, the
ri is modeled by

ri ¼
XM
j¼1

Zt¼i

t¼-1
Rj max ´Gamma s tð Þ; kj; θj

� �

´ f t; μj; σj; τj
� �

dt

where i is a data point or time index that goes
from 1 to N, j is the channel label from 1 to
M. As input data have already been
discretized, the time integral here will be
replaced by a summation over some number
of days before and include the day that the
revenue data point ri corresponds. Therefore,
a cutoff beyond which time response ƒ(t; μj,
σj, τj) drops to a certain level, say 1 per cent of
the time response maximum, for example, is
applied in this work.

The model parameters are determined by

arg
Rj max;kj ;θj ;μj ;σj ;τj

min
XN
i¼1

ri -
XM
j¼1

Zt¼i

t¼ -1
Rj max

0
@

´Gamma sðtÞ; kj; θj
� �

´ f t; μj; σj; τj
� �

dt

!2

Here, the least square loss is adopted.
Other loss function definitions, such as log-
likelihood can also be used for minimization
to fit model parameters.

As each channel is modeled by six
parameters, we will end up with 30
parameters to fit when there are five channels.
Searching for a global minimum of such non-
linear function in as high as 30-dimensional
space is not trivial, and turns out to be the
biggest challenge in this work, as,

Figure 2: Revenue response with different parameter
configuration.
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conceptually, the model we proposed here is
mathematically elegant, practically, we have
to prove that it is doable – even with limited
data points. This is why Monte Carlo
simulation study is needed. With simulation
data, we know what we put in, by checking
the consistency between input and
reconstructed responses, we can get some
sense on how our approach will work when
applied to real data.

MONTE CARLO SIMULATION

To verify that our algorithm to model and
extract both time and revenue responses
works in reality, a Monte Carlo simulation
study is conducted. The simulation study has
two steps: data generation and model
parameter reconstruction. In the data
generation step, each channel’s daily spend is
generated following some statistical
distribution, then the corresponding
channel revenue is calculated according to
revenue response for the set of input
parameters. Owing to time response, one
can expect that, for spend in a given day, the
resulted revenue should be distributed over
a few days. Then the sum of revenue over
channels and over time up to the day will be
‘observed’ revenue. Finally, the generated
spend of each channel and calculated
‘observed’ revenue of every day are fed into
reconstruction.

In the parameter reconstruction step, it is
assumed that we know nothing about the time
and revenue response model parameters that
we used to generate the data. The only input is
daily revenue, and spend of each channel. By
assuming a Gaussian convoluted exponential
decay for time response and incomplete
Gamma for revenue response, we try to extract
the set of parameters, and see if we can
reproduce those parameters that we input in
the generation step. Only in the case where the
reconstructed parameters agree with those
input ones used in generation step, within
error, can we be sure that the algorithm is

working. And only after that can the algorithm
can be reliably applied to real data.

Shown in Table 1 are the parameters used
for our Monte Carlo data generation. Here,
we assume there are five channels. The
channel spend is uniformly generated,
between 0 and 10, which is based on the
revenue to spend response curve, as shown in
Figure 2. Furthermore, note that campaigns
may run in one or more channels, start at
different times and last for specific time
periods, run simultaneously with each other
or stop in the same time to make a black
period. To simulate this kind of campaign
setup, we assume that Channel 1 runs 90 per
cent of the time, Channel 2 60 per cent of the
time, Channels 3 and 4 run 40 per cent of the
time and Channel 5 runs 30 per cent of the
time randomly.

The generated revenue and channel spend
are shown in Table 2. For this work, 1000
data points are generated – assumes we have
about 3 years of daily revenue and spend data.
But only the top 100 rows are shown here.

The reconstructed model parameters based
on the 1000 data points are tabulated in
Table 3. One can see that the input
parameters are very well-reproduced.

The input and reconstructed time and
revenue response curves, with input and
reconstructed parameters, are plotted versus
each other in Figures 3 and 4, respectively.
Although there is a minor difference between
input and corresponding reconstructed
parameters, the reconstructed curve overlaps
almost exactly with those corresponding
input ones.

Table 1: Parameters used to generate time and
revenue response

Channel
1

Channel
2

Channel
3

Channel
4

Channel
5

μ 1.0 0.5 1.0 0.0 2.0
σ 2.0 0.05 0.2 1.5 0.8
τ 3.0 2.5 0.1 1.0 0.5
κ 3.0 2.0 0.5 1.0 0.8
θ 1.0 0.8 4.0 2.5 1.5
Rmax 20.0 17.0 18.0 5.0 0.8
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Table 2: Revenue and channel-spend data by Monte Carlo generation

Day Revenue Channel 1 spend Channel 2 spend Channel 3 spend Channel 4 spend Channel 5 spend

0 0.2097 1.2697 0.0000 0.0000 0.0000 0.0000
1 1.8243 3.3622 4.5138 8.4026 1.2310 5.4303
2 27.8845 3.7301 0.0000 0.0000 8.5988 8.2039
3 12.2110 3.5205 0.0000 7.7678 5.9478 0.0000
4 30.3847 8.5290 0.0000 0.0000 0.0000 5.7401
5 13.3539 0.6127 0.0000 2.4535 3.4044 9.8473
6 26.5303 0.0000 0.3777 8.6155 7.5357 0.0000
7 30.4581 3.4353 1.7092 0.0000 0.0000 2.7459
8 16.9978 4.6235 8.7137 4.0113 6.1059 1.1797
9 36.8738 7.0218 0.0000 0.0000 0.0000 0.0000
10 17.9293 0.9974 0.0000 0.0000 0.0000 0.0000
11 17.2150 4.9731 8.3880 8.9733 7.3259 0.0000
12 39.5939 5.6066 4.7148 0.0000 0.0000 0.0000
13 25.5586 1.3410 6.3070 6.3957 4.3349 0.0000
14 44.4703 8.6261 0.0000 0.0000 0.0000 0.0000
15 21.9615 0.0000 8.4894 0.0000 0.0000 0.0000
16 25.5165 6.1938 3.9504 6.7240 8.0998 3.8700
17 44.0401 5.4476 9.8895 0.0000 0.0000 5.6294
18 28.6012 2.4977 0.0000 0.0000 0.0000 0.0000
19 23.9062 0.2989 2.0790 0.0000 6.5730 2.4932
20 25.4285 9.9312 0.3094 0.0000 2.4734 1.8792
21 20.5973 0.0000 6.8968 8.8619 0.0000 6.9083
22 41.9029 6.0604 0.6097 1.6859 9.1332 0.0000
23 32.8630 2.1680 0.0000 6.9093 0.0000 0.0000
24 33.5213 0.2270 0.0000 0.0000 0.0000 0.0000
25 13.5998 3.7256 4.1551 0.0000 0.0000 0.0000
26 17.9485 7.8462 6.9739 5.0074 0.0000 0.0000
27 36.6921 0.0000 7.7019 0.3036 0.0000 0.0000
28 29.4978 4.2177 0.0000 0.0000 3.5566 0.0000
29 21.9731 5.9171 0.0000 7.5113 6.8636 0.0000
30 36.9483 9.7264 0.0000 0.0000 0.0000 0.0000
31 19.1024 5.5925 8.6702 0.0000 1.2310 0.0000
32 25.5777 5.4794 4.0020 0.0000 8.1869 0.0000
33 29.1065 1.4017 0.0000 0.0000 5.3702 0.0000
34 24.8140 6.5822 6.5487 0.0000 0.0000 2.0461
35 27.5024 8.2368 4.5498 9.8099 0.0000 3.9591
36 48.1771 9.7976 0.0000 0.0000 7.1659 0.0000
37 27.0624 7.8987 0.0000 2.5714 0.0000 0.0000
38 37.6918 6.3610 0.0000 5.2766 0.0000 0.8785
39 38.3931 6.2261 6.8770 0.0000 0.0000 2.5085
40 27.8389 6.1002 4.2012 0.0000 4.0182 0.0000
41 30.8027 0.1176 0.2292 0.0000 5.9020 0.0000
42 25.0339 0.0000 5.9889 0.0000 0.0000 0.0000
43 26.1982 8.0307 0.0000 0.0000 0.0000 3.0375
44 21.2264 1.1682 3.6456 0.0000 9.8614 0.0000
45 24.7792 5.6151 0.0000 7.4069 2.8738 0.0000
46 36.8097 0.1069 4.7452 0.0000 0.0000 3.1709
47 23.1668 2.6646 7.1239 0.0000 7.0581 0.0000
48 25.2821 7.4098 1.0916 4.5667 0.0000 0.0000
49 39.2775 2.3651 7.6969 0.0000 5.3066 0.0000
50 24.6092 0.2292 0.0000 0.2937 0.0000 0.0000
51 24.3938 2.6075 0.0000 7.6148 0.0000 0.0000
52 33.0313 5.1877 9.9155 0.0000 0.0000 0.0000
53 19.9722 4.9917 6.5885 0.0000 0.0000 1.5715
54 24.4054 3.0896 0.7863 0.0000 5.3771 0.0000
55 24.4247 9.4860 5.9716 0.0000 7.0365 0.0000
56 29.2324 6.6406 6.2640 0.0000 5.4060 0.0000
57 32.3825 8.0726 0.0000 0.0000 2.7931 7.0186
58 28.7563 3.5939 7.0817 0.0000 9.6430 9.7691
59 31.4368 0.0000 1.0405 0.0000 8.9609 0.0000
60 29.6983 8.6044 0.0000 0.0461 2.8833 0.0000
61 26.6711 4.4917 0.0000 0.0000 0.0000 0.0000
62 19.2733 0.3522 0.0000 5.0792 0.0000 9.7356
63 33.7970 7.2737 7.0049 5.1539 3.3771 0.0000
64 39.0248 6.9788 0.0000 0.4359 0.7463 0.0000
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To account for the case in which less data
points are available, the stability and quality of
model parameter reconstruction are
investigated with less than 50 data points. The
reconstructed model parameters are tabulated
in Table 4. The input and reconstructed time
and revenue response curve comparisons are
shown in Figures 5 and 6, respectively. From

these tables and plots, one can see that the
reconstruction quality is pretty good even for
the case of less available data points. However,
one should keep in mind that the real data
may contain various uncertainties resulting

Table 2: (Continued )

Day Revenue Channel 1 spend Channel 2 spend Channel 3 spend Channel 4 spend Channel 5 spend

65 26.9523 6.6185 5.2468 4.4625 0.0000 0.0000
66 40.0193 3.6116 2.0534 9.4874 0.0000 0.0000
67 42.1174 1.6429 0.0000 8.4770 0.0000 1.1104
68 37.7920 2.5212 0.3363 0.0000 0.0000 0.0000
69 17.6625 2.1956 2.4374 0.0000 0.0000 0.0000
70 21.7365 7.3611 1.3917 0.0000 6.5780 0.0000
71 22.4528 6.1118 1.3662 9.8496 0.0000 1.2344
72 39.2682 0.0000 6.1867 0.0000 0.4790 0.0000
73 23.5284 0.0000 0.0000 5.6802 0.0000 0.0000
74 35.5526 3.0904 2.7458 0.0000 2.5899 0.0000
75 20.9443 3.7025 0.0000 0.0000 0.0000 0.0000
76 16.3820 0.0000 5.9600 0.0000 0.0000 0.0000
77 19.8575 1.2310 0.0000 3.1862 5.2651 0.0000
78 31.7803 8.6081 5.1874 0.0000 3.8472 0.0000
79 21.4590 5.0572 6.1453 8.9194 0.0000 0.0000
80 41.6985 4.8056 3.7853 0.0000 0.0000 0.0000
81 25.2604 1.4129 0.0000 0.0000 0.0000 0.0000
82 19.8299 0.0000 8.9616 0.0000 0.0000 0.0000
83 21.9062 3.1006 9.3079 0.0000 0.0000 0.0000
84 23.4496 3.2107 0.0000 0.0000 0.0000 5.1673
85 19.3303 8.9413 9.7144 1.4135 0.0000 0.0000
86 34.4828 9.5467 8.0131 2.9377 0.0000 0.0000
87 39.8311 1.9809 0.0000 0.0000 0.0000 0.0000
88 21.5741 3.6596 6.1706 1.0425 0.0000 0.0000
89 34.4791 9.6127 0.0000 0.0000 0.0000 0.0000
90 22.9477 4.8090 0.0000 7.2260 4.3570 0.7027
91 37.7514 0.0000 2.1581 0.0000 4.3385 0.0000
92 24.4988 5.2616 0.0000 0.3208 8.0848 0.0000
93 27.3963 9.8670 0.0000 0.0000 0.0000 0.0000
94 18.2438 1.6229 5.8535 1.9908 0.0000 0.0000
95 34.4905 7.8881 3.0116 8.9845 0.0000 9.5098
96 42.0727 0.0000 8.6674 0.0000 5.8008 6.2044
97 28.0638 4.3445 0.0000 0.0000 7.3861 0.0000
98 23.4404 2.8231 0.0000 0.0000 0.0000 0.0000
99 20.0103 6.8762 5.3242 0.0000 0.0000 0.0000

Table 3: Reconstructed model parameters with 1000
data points

Channel
1

Channel
2

Channel
3

Channel
4

Channel
5

μ 1.0014 0.4948 1.0177 0.4457 1.9505
σ 2.0037 0.0383 0.2508 1.7802 0.7822
τ 2.9936 2.5012 0.0798 0.3536 0.5529
κ 2.9949 1.9965 0.5021 1.0847 0.8498
θ 1.0023 0.8005 3.9641 2.1951 1.4404
Rmax 20.0136 17.0036 17.9842 4.9038 0.8056

Figure 3: Input versus reconstructed time-response
curves with 1000 data points.
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from marketing condition change and/or data
collection and so on. To extract the
underlying model parameters accurately,
more data points are always desired and
preferred.

In our work, both TMINUIT
minimization subroutine call (James, 1994)
and Markov Chain Monte Carlo
optimization algorithm (Metropolis et al,
1953) are tried, and produced very close
results. On the basis of our experience, the

Markov Chain Monte Carlo algorithm is
preferred, as with properly chosen step size
and temperature parameter, it generally
converges very well and always reproduces
the input parameters with relatively high
accuracy.

BUDGET ALLOCATION
OPTIMIZATION
Once revenue responses are extracted for all
channels, the budget allocation can be
optimized by

arg
skk¼1; 2; ¼ ;M

max
XM
k¼1

r skð Þ

Here, sk is the spend to be allocated into
channel k and r(sk) the corresponding revenue
from the response curve. This optimization is
done on a daily basis for our simulation, that
is, to re-allocate every day’s total spend of the
five channels, to maximize total revenue. In
reality, it is to optimally allocate the daily
budget to achieve maximal revenue return.
This can be done again, by TMINUIT and
Markov Chain Monte Carlo.

Note that, for optimization performance
evaluation, optimizing spend allocation is
always based on reconstructed model
parameters. As estimation on optimization
resulted lift could be biased, revenue
calculated with reconstructed parameters
while reconstruction is actually failed or
significantly off from input for Monte Carlo

Figure 4: Input versus reconstructed revenue
response curves with 1000 data points.

Table 4: Reconstructed model parameters with 50
data points

Channel
1

Channel
2

Channel
3

Channel
4

Channel
5

μ 0.9873 0.1391 1.0552 0.0000 2.0549
σ 1.9972 0.0088 0.1594 1.5078 0.8286
τ 3.0108 2.4994 0.0903 0.9989 0.4144
κ 2.9864 1.9835 0.5005 1.1172 0.8986
θ 1.0065 0.8081 3.9986 2.1015 1.3683
Rmax 20.0117 17.0005 18.0003 4.9214 0.7997

Figure 6: Input versus reconstructed revenue
response curves with 50 data points.

Figure 5: Input versus reconstructed time-response
curves with 50 data points.
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Table 5: Revenue and channel spend, left – from Monte Carlo generation, right – after daily budget allocation optimization, no time-response smear is applied

Simulated spend and revenue – No optimization Revenue and spend – After optimization

Day Revenue Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Revenue Channel 1 Channel 2 Channel 3 Channel 4 Channel 5

0 2.7194 1.2697 0.0000 0.0000 0.0000 0.0000 11.2624 0.0000 0.9101 0.3596 0.0000 0.0000
1 49.6615 3.3622 4.5138 8.4026 1.2310 5.4303 57.1946 7.2029 4.5999 6.5137 4.0510 0.5723
2 20.0301 3.7301 0.0000 0.0000 8.5988 8.2039 56.1156 6.8140 4.3300 5.6768 3.4081 0.3040
3 35.3179 3.5205 0.0000 7.7678 5.9478 0.0000 54.0451 6.2336 3.9315 4.5370 2.4689 0.0651
4 20.6076 8.5290 0.0000 0.0000 0.0000 5.7401 51.3063 5.6561 3.5418 3.5226 1.5420 0.0067
5 18.1814 0.6127 0.0000 2.4535 3.4044 9.8473 53.3042 6.0624 3.8148 4.2179 2.1890 0.0337
6 23.4635 0.0000 0.3777 8.6155 7.5357 0.0000 53.4820 6.1006 3.8413 4.2922 2.2553 0.0395
7 24.7545 3.4353 1.7092 0.0000 0.0000 2.7459 39.8801 3.9763 2.4785 1.4356 0.0000 0.0000
8 54.0507 4.6235 8.7137 4.0113 6.1059 1.1797 57.7958 7.4681 4.7860 7.1050 4.4931 0.7819
9 19.4169 7.0218 0.0000 0.0000 0.0000 0.0000 37.0614 3.5999 2.2648 1.1572 0.0000 0.0000

10 1.5965 0.9974 0.0000 0.0000 0.0000 0.0000 9.1465 0.0000 0.6269 0.3705 0.0000 0.0000
11 56.5740 4.9731 8.3880 8.9733 7.3259 0.0000 59.0409 8.2237 5.3195 8.8889 5.7719 1.4563
12 35.0367 5.6066 4.7148 0.0000 0.0000 0.0000 45.5547 4.8879 3.0402 2.3933 0.0000 0.0000
13 40.7816 1.3410 6.3070 6.3957 4.3349 0.0000 54.8571 6.4430 4.0741 4.9335 2.8037 0.1244
14 19.8320 8.6261 0.0000 0.0000 0.0000 0.0000 41.9043 4.2710 2.6544 1.7007 0.0000 0.0000
15 16.9951 0.0000 8.4894 0.0000 0.0000 0.0000 41.5510 4.2179 2.6217 1.6498 0.0000 0.0000
16 57.5617 6.1938 3.9504 6.7240 8.0998 3.8700 58.8809 8.1028 5.2337 8.5932 5.5661 1.3421
17 35.9538 5.4476 9.8895 0.0000 0.0000 5.6294 56.3327 6.8838 4.3782 5.8294 3.5250 0.3501
18 9.1119 2.4977 0.0000 0.0000 0.0000 0.0000 19.1912 0.0000 1.7900 0.7077 0.0000 0.0000
19 17.8523 0.2989 2.0790 0.0000 6.5730 2.4932 47.5185 5.0795 3.1571 2.6481 0.5584 0.0010
20 24.6990 9.9312 0.3094 0.0000 2.4734 1.8792 51.6544 5.7285 3.5973 3.6349 1.6324 0.0001
21 35.1304 0.0000 6.8968 8.8619 0.0000 6.9083 57.0866 7.1595 4.5697 6.4188 3.9791 0.5399
22 38.2502 6.0604 0.6097 1.6859 9.1332 0.0000 54.2349 6.2807 3.9635 4.6247 2.5441 0.0762
23 24.2385 2.1680 0.0000 6.9093 0.0000 0.0000 43.0024 4.4423 2.7595 1.8755 0.0000 0.0000
24 0.0329 0.2270 0.0000 0.0000 0.0000 0.0000 4.7485 0.0000 0.0000 0.2270 0.0000 0.0000
25 30.7930 3.7256 4.1551 0.0000 0.0000 0.0000 39.8513 3.9723 2.4760 1.4324 0.0000 0.0000
26 52.6185 7.8462 6.9739 5.0074 0.0000 0.0000 55.7384 6.6931 4.2464 5.4356 3.2133 0.2391
27 22.4453 0.0000 7.7019 0.3036 0.0000 0.0000 40.2174 4.0238 2.5066 1.4751 0.0000 0.0000
28 19.6365 4.2177 0.0000 0.0000 3.5566 0.0000 39.5317 3.9277 2.4505 1.3960 0.0000 0.0000
29 40.4161 5.9171 0.0000 7.5113 6.8636 0.0000 55.9903 6.7740 4.2997 5.5954 3.3420 0.2808
30 19.9307 9.7264 0.0000 0.0000 0.0000 0.0000 44.4145 4.6789 2.9073 2.1401 0.0000 0.0001
31 37.2838 5.5925 8.6702 0.0000 1.2310 0.0000 52.5623 5.8991 3.7017 3.9316 1.9429 0.0183
32 39.3319 5.4794 4.0020 0.0000 8.1869 0.0000 54.3657 6.3141 3.9857 4.6876 2.5969 0.0840
33 7.7547 1.4017 0.0000 0.0000 5.3702 0.0000 36.1539 3.4842 2.2020 1.0857 0.0000 0.0000
34 36.7962 6.5822 6.5487 0.0000 0.0000 2.0461 52.2562 5.8378 3.6632 3.8283 1.8343 0.0135
35 54.6660 8.2368 4.5498 9.8099 0.0000 3.9591 58.3539 7.7616 4.9928 7.7817 4.9862 1.0333
36 24.6501 9.7976 0.0000 0.0000 7.1659 0.0000 53.8339 6.1824 3.8969 4.4425 2.3875 0.0542
37 33.0792 7.8987 0.0000 2.5714 0.0000 0.0000 45.8189 4.9380 3.0712 2.4608 0.0000 0.0000
38 35.6070 6.3610 0.0000 5.2766 0.0000 0.8785 49.1235 5.2980 3.3054 2.9601 0.9507 0.0019
39 36.6103 6.2261 6.8770 0.0000 0.0000 2.5085 52.6718 5.9389 3.7186 3.9526 1.9869 0.0147
40 39.2881 6.1002 4.2012 0.0000 4.0182 0.0000 51.3622 5.6636 3.5497 3.5415 1.5580 0.0068
41 5.1110 0.1176 0.2292 0.0000 5.9020 0.0000 34.1023 3.2301 2.0711 0.9476 0.0000 0.0000
42 16.9191 0.0000 5.9889 0.0000 0.0000 0.0000 33.0032 3.0962 2.0065 0.8862 0.0000 0.0000
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43 20.4580 8.0307 0.0000 0.0000 0.0000 3.0375 46.8983 5.0003 3.1127 2.5582 0.3969 0.0002
44 23.1857 1.1682 3.6456 0.0000 9.8614 0.0000 51.7449 5.7375 3.5970 3.6585 1.6734 0.0088
45 38.8083 5.6151 0.0000 7.4069 2.8738 0.0000 52.9332 5.9973 3.8187 4.0627 1.9954 0.0217
46 17.4242 0.1069 4.7452 0.0000 0.0000 3.1709 40.2679 4.0309 2.5103 1.4818 0.0000 0.0000
47 31.6334 2.6646 7.1239 0.0000 7.0581 0.0000 53.7411 6.1609 3.8818 4.4015 2.3521 0.0503
48 41.9415 7.4098 1.0916 4.5667 0.0000 0.0000 49.8651 5.4127 3.3782 3.1373 1.1385 0.0014
49 29.8124 2.3651 7.6969 0.0000 5.3066 0.0000 52.4429 5.8746 3.6895 3.8930 1.8959 0.0156
50 5.4057 0.2292 0.0000 0.2937 0.0000 0.0000 7.0357 0.0000 0.0000 0.5229 0.0000 0.0000
51 26.7506 2.6075 0.0000 7.6148 0.0000 0.0000 45.3742 4.8517 3.0184 2.3521 0.0000 0.0000
52 34.8049 5.1877 9.9155 0.0000 0.0000 0.0000 52.1831 5.8233 3.6535 3.8027 1.8110 0.0127
53 35.0379 4.9917 6.5885 0.0000 0.0000 1.5715 49.9727 5.4272 3.3940 3.1488 1.1791 0.0025
54 20.7347 3.0896 0.7863 0.0000 5.3771 0.0000 43.4033 4.5045 2.8021 1.9464 0.0000 0.0000
55 41.5337 9.4860 5.9716 0.0000 7.0365 0.0000 57.0165 7.1318 4.5507 6.3587 3.9334 0.5194
56 40.5894 6.6406 6.2640 0.0000 5.4060 0.0000 54.8120 6.4293 4.0650 4.9100 2.7844 0.1218
57 23.8997 8.0726 0.0000 0.0000 2.7931 7.0186 54.5197 6.3527 4.0125 4.7623 2.6608 0.0961
58 36.5932 3.5939 7.0817 0.0000 9.6430 9.7691 59.1186 8.2885 5.3676 9.0398 5.8775 1.5143
59 11.2090 0.0000 1.0405 0.0000 8.9609 0.0000 44.9587 4.7755 2.9694 2.2564 0.0000 0.0001
60 25.4233 8.6044 0.0000 0.0461 2.8833 0.0000 47.6606 5.0759 3.1840 2.6984 0.5756 0.0000
61 16.5097 4.4917 0.0000 0.0000 0.0000 0.0000 26.2651 0.0000 2.7064 1.7853 0.0000 0.0000
62 16.9130 0.3522 0.0000 5.0792 0.0000 9.7356 52.2464 5.8358 3.6618 3.8249 1.8311 0.0134
63 56.2453 7.2737 7.0049 5.1539 3.3771 0.0000 57.1435 7.1818 4.5863 6.4680 4.0171 0.5565
64 27.1572 6.9788 0.0000 0.4359 0.7463 0.0000 40.6605 4.0870 2.5439 1.5300 0.0000 0.0000
65 51.5949 6.6185 5.2468 4.4625 0.0000 0.0000 53.3126 6.0625 3.8143 4.2223 2.1945 0.0342
66 43.8009 3.6116 2.0534 9.4874 0.0000 0.0000 52.2319 5.8330 3.6599 3.8199 1.8265 0.0132
67 22.3420 1.6429 0.0000 8.4770 0.0000 1.1104 47.1698 5.0352 3.1337 2.5929 0.4679 0.0005
68 10.3729 2.5212 0.3363 0.0000 0.0000 0.0000 20.8894 0.0000 1.9883 0.8692 0.0000 0.0000
69 21.2535 2.1956 2.4374 0.0000 0.0000 0.0000 26.6012 0.0000 2.7589 1.8741 0.0000 0.0000
70 33.0117 7.3611 1.3917 0.0000 6.5780 0.0000 52.4065 5.8683 3.6840 3.8798 1.8831 0.0156
71 45.5608 6.1118 1.3662 9.8496 0.0000 1.2344 54.9774 6.4742 4.0955 4.9974 2.8566 0.1383
72 17.8068 0.0000 6.1867 0.0000 0.4790 0.0000 35.7543 3.4341 2.1755 1.0561 0.0000 0.0000
73 16.3451 0.0000 0.0000 5.6802 0.0000 0.0000 31.6270 2.9298 1.9313 0.8191 0.0000 0.0000
74 29.7259 3.0904 2.7458 0.0000 2.5899 0.0000 41.3840 4.1932 2.6075 1.6254 0.0000 0.0000
75 14.2998 3.7025 0.0000 0.0000 0.0000 0.0000 24.0607 0.0000 2.3890 1.3135 0.0000 0.0000
76 16.9165 0.0000 5.9600 0.0000 0.0000 0.0000 32.8776 3.0811 1.9995 0.8794 0.0000 0.0000
77 21.2136 1.2310 0.0000 3.1862 5.2651 0.0000 44.3244 4.6636 2.8975 2.1211 0.0000 0.0000
78 40.5622 8.6081 5.1874 0.0000 3.8472 0.0000 54.3472 6.3090 3.9826 4.6784 2.5898 0.0829
79 51.9089 5.0572 6.1453 8.9194 0.0000 0.0000 55.8996 6.7431 4.2808 5.5373 3.2943 0.2664
80 33.3012 4.8056 3.7853 0.0000 0.0000 0.0000 41.8143 4.2574 2.6459 1.6876 0.0000 0.0000
81 3.3926 1.4129 0.0000 0.0000 0.0000 0.0000 12.3581 0.0000 1.0358 0.3771 0.0000 0.0000
82 16.9972 0.0000 8.9616 0.0000 0.0000 0.0000 42.7305 4.3988 2.7325 1.8303 0.0000 0.0000
83 28.9774 3.1006 9.3079 0.0000 0.0000 0.0000 48.9719 5.2719 3.2877 2.9299 0.9180 0.0009
84 13.2301 3.2107 0.0000 0.0000 0.0000 5.1673 41.2557 4.1738 2.5960 1.6081 0.0000 0.0000
85 47.6587 8.9413 9.7144 1.4135 0.0000 0.0000 55.8712 6.7342 4.2747 5.5191 3.2798 0.2614
86 50.8520 9.5467 8.0131 2.9377 0.0000 0.0000 56.0975 6.8080 4.3258 5.6646 3.3985 0.3005
87 6.3631 1.9809 0.0000 0.0000 0.0000 0.0000 16.2812 0.0000 1.4652 0.5157 0.0000 0.0000
88 40.6216 3.6596 6.1706 1.0425 0.0000 0.0000 46.5626 4.9724 3.0985 2.5016 0.2995 0.0006
89 19.9240 9.6127 0.0000 0.0000 0.0000 0.0000 44.1806 4.6380 2.8812 2.0934 0.0000 0.0002
90 38.6431 4.8090 0.0000 7.2260 4.3570 0.7027 53.9363 6.2045 3.9140 4.4872 2.4305 0.0585
91 16.8838 0.0000 2.1581 0.0000 4.3385 0.0000 35.1004 3.3525 2.1332 1.0109 0.0000 0.0000
92 28.3192 5.2616 0.0000 0.3208 8.0848 0.0000 50.6123 5.5341 3.4601 3.3240 1.3448 0.0041
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simulation optimization performance study
should be calculated with input parameters
instead of reconstructed ones. For real data,
revenue calculation has to be based on
reconstructed model parameters, and
compared with received revenue to get
optimization lift estimation, as no input –
the real underlying parameters available in
this case.

The generated and re-allocated daily
channel spend, as well as corresponding
revenue – before and after optimization – are
shown in Table 5. Again, only the first 100 of
the 1000 data points are shown. One can see
that the lift in revenue is very significant.
Overall, nearly 60 per cent increase in total
revenue by re-allocating channel spend
optimally for this simulated data set is
obtained.

CONCLUSION AND
DISCUSSION
In this work, an algorithm to model both time
response and revenue to spend response at the
same time for media mix modeling is
presented. A Monte Carlo simulation study is
conducted to investigate the possibility of
extracting time and revenue response
simultaneously from revenue and channel-
spend data. The quality and reliability of
model parameter reconstruction from
various sizes of data are also investigated.
The performance of re-allocating channel
spend optimally based on extracted revenue
response is evaluated. Our simulation
results show, relative to arbitrary assignment
of daily budget to each channel, that
nearly a 60 per cent increase in revenue
can be achieved by channel-spend
optimization.

The algorithm described here is very
general and can be applied to any budget
allocation optimization at any level, for
example, business unit, region or country,
product category, retail store and so on,
wherever budget is going to be allocated toT
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multiple places, where time responses may
behave differently and need to be taken into
consideration carefully. At the company level,
for instance, when allocating budget to
R&D, production, marketing and so on, one
may have to keep in mind that R&D
generally takes a much longer time than
marketing to see its return. Although
revenue is taken as an example in this work,
it can be replaced by any other business
target metric like profit, growth rate, lead
generation and so on.

Throughout this work, the marketing
condition is assumed to be static, and so our
target metric – revenue here depends only on
time and channel spend. This is to simplify
our modeling effort. In a real marketing
environment, many other factors such as
competitive effect, context effects and so on
(Tellis, 2006) have to be considered. In
addition, possible non-linear effects of time
response to spend, that is, time-response
model parameters may change with
advertising intensity, and so be a function of
spend, is ignored.

Compared with an autoregressive model,
which is popularly advocated in economics,
our algorithm models time and revenue
response separately, while an autoregressive
model mixes them together. Although
mathematically, an autoregressive model
is as simple as a regression, intuitively,
our approach offers a clearer picture and
description about the problem. When some
channel or business function unit has a very
long time lag in responding to an
investment/spend, like, say, research and
development, it is addressed by time
response in our model the same way as for
other channels or business functions that
have no time lag. But, with limited data
points, an autoregressive model could be
hard to fit, as the number of time lag-related
terms have to be added in.

Finally, although our algorithm has been
proven to work by a Monte Carlo
simulation study, it is still subject to be tested
with real data and in a real marketing

environment. Further, results from the
application of this algorithm to business will
be tested in future.
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