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ABSTRACT This article provides an improvedmodel-independent lower bound of
European call options written on defaultable assets. On the basis of static arbitrage argu-
ments, improved lower bounds are established, which also depend on the probability of
option-implied default. The results are also extended to dividend-paying stocks. Moreover,
our findings imply that it is never optimal to exercise certain American call options. Finally,

we discuss the implications of our results for constructing an arbitrage-free volatility surface

and extracting risk-neutral densities from option prices.
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INTRODUCTION

One of the classic results of financial economics is
that the model-independent lower bound of
European call option is given by either zero or
the underlying price minus the present value of
the exercise price (Merton, 1973). This result can
be easily verified by constructing a portfolio with
0 initial value, which yields a profit with positive
probability without taking any risk.

Since Merton’s seminal paper, the bounds on
option prices have been tightened using a variety
of approaches (see Handley, 2005, for a

comprehensive review). However, the

probability of default of the underlying is rarely
addressed in this context. Although some recent
work by Klein and Yang (2013) explores the
early exercise of American options in the
presence of counterparty credit risk, their results
are too general to be applicable to our case.

In this article, we present an improved lower
bound of European call options written on
defaultable assets when the option-implied
probability of default is observable in the market.
Moreover, we demonstrate that exercising
American calls early is not an optimal strategy in

certain cases. Finally, we discuss the implications

© 2014 Macmillan Publishers Ltd. 1753-9641 Journal of Derivatives & Hedge Funds Vol. 20, 3, 127-130
www.palgrave-journals.com/jdhf/


mailto:gorosi@ucalgary.ca
http://dx.doi.org/10.1057/jdhf.2014.14
http://www.palgrave-journals.com/jdhf

%E- Orosi

of our results for some financial engineering

applications.

ASSUMPTIONS AND NOTATION
Following Merton (1973), we make the
following assumptions: (i) capital markets are
perfect; (i1) there is no arbitrage; (iii) investors
have positive marginal utility of wealth; and
(iv) current and future interest rates are strictly
positive. In addition, we assume that if a
company defaults, its stock price is worthless.
On the basis of these conditions, consider

a stock that has a current price of Sy with

a positive risk-neutral default probability of
PD before some time T. Then, the risk-neutral
probability of the asset not defaulting before

time T can be expressed as:

P(Sy>0) = 1-PD, (1)

where Stis the price of the asset at time T, and
P(S1>0) is the risk-neutral probability of S >0.
Moreover, let C(K, T) be the current price of a
European call option on the stock with strike K,
maturity 7. It can be shown (see, for example,
Orosi, 2011) that

IC(K,T)

B(K,T) = ¢ ""P(Sy>K) =
( ) ) e (1 ) oK )

where P(S7>K) is the risk-neutral probability of St
being greater than K and B(K, T) is a European-
style binary option with strike price K and maturity
T. Substituting K= 0 into the above yields

B(0, T) = ¢ " P(Sy>0)

9C(K, T)

=-=2=
oK K=0

Note that the price of the digital contract,
D(T), that pays a unit currency if default happens

before time T at time T and 0 otherwise is
given by
D(T)=¢""-PD

and that this contract can be replicated by call
options and cash as follows. From equations (1)
and (2):
D(T)=¢""-PD=¢"T~e""P(S1>0)
0C(K, T
= T + M
0K

K=0
C(AK, T)-C(0, T
GENERAL RESULTS

Improved lower bound

We start our analysis by first considering a non-
dividend-paying stock. We will, in a later section,
extend our result to dividend-paying assets and

examine the implications.

Proposition 1 The lower bound of a European

call option written on a defaultable asset is

C(K, T)2S-K-e " (1-PD)
=S-K-eoT+K-eo".PD. (4

Proof Assume otherwise and form the following

0 value portfolio at time O:
N=CK,T)-S+K-¢"—K-D(T)+B,

where K-¢ " and B represent the amounts
invested in bonds. In the case of default, the value

of the portfolio at the time of expiry is given by:
IMI=0-0-K+K+Be" = BeT>0,

because the stock and call option become

worthless and the payoff of D(T) =1. If the asset

does not default before expiry and the option
does not finish in the money (or S;<K
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equivalently), then the value of the portfolio at
the time of expiry is given by

M= -S;+K+Be >0

because the call option and D(T) become
worthless. Finally, if the asset does not default
before expiry and the option finishes in the
money (or St >K equivalently), then the
value of the portfolio at the time of expiry is

given by

II=S—K-Sr+K+BT = Be'T>0.

Therefore, if equation (4) does not hold, a
portfolio can be constructed that yields static
arbitrage violation. []

Moreover, it should be noted that equation (4)
is higher than Merton’s lower bound of
Sy—K-¢~"" as long as PD>0.

Known dividend payments

Consider a stock written on a defaultable asset
that is certain to pay a single dividend of D at the
ex-dividend date, f where 0<t<T.

Proposition 2 The lower bound of a European

call option written on a defaultable asset is
C(K,T)=Sy—De "—K-¢""(1-PD) =
So—=De™"—K-e"T+K-e7".PD.  (5)

Proof Assume otherwise and form the following

0 value portfolio at time O:

N=C(K, T)-Sy+De "+K-e "
~K-D(T)+B,

where K-¢ ™", De” " and B represent the amounts
invested in bonds. If the asset does not default
before expiry, the value of this portfolio at time T
is the same as in the case of the non-dividend-

paying stock.

If the stock defaults after dividend payment,
the value of the portfolio at the time of expiry is
given by

I[I=0-0-K-K+Be" = Be'T>0.

If the stock defaults before dividend payment,
the value of the portfolio is larger than Be'"
because dividend will not be paid.

Therefore, equation (5) must hold to prevent
static arbitrage opportunities. [ ]

Note that the results can be easily generalized
to multiple known dividends. In this case, the

following must hold:

C(K, T)2S-D-K-e""+K-e~"-PD (6)

where D is the present value of future dividends

expected to be paid before T.

Proposition 3 Early exercise of an American
call option is not optimal, if the following
relationship holds:

K-e "' PD>D. 7)

Proof On the basis of equation (6), an American

call option must be worth at least
Sy—-D-K-¢oT+K-e™. PD

because the value of an American option is
always greater than or equal to the value of a
corresponding European option. Hence,
assuming equation (7) holds, the value of an
American call option at some time T* must be

worth at least
Spm K- T

Since the above value is strictly greater than

the value of early exercise, St~ — K, the claim is

proven. []
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DISCUSSION AND FUTURE
RESEARCH

A robust method for constructing a continuous
call option surface from a given set of option
prices is of great interest for academicians and
practitioners. For example, Figlewski (2009) uses
risk-neutral density (RND) to obtain
information about investors’ risk preferences and
expectations. Some important examples of
financial engineering applications are the pricing
illiquid exotic derivatives with arbitrary payofts,
copula-based pricing of multi-asset products, and
reconstructing a local volatility surface. For
example, Monteiro ef al (2011) show that implied
RND can be used to accurately price European-
style binary options, Cherubini and Luciano
(2002) use implied RND to price bivariate equity
options and Fengler (2009) uses an interpolant to
recover the local volatility surface.

Figlewski (2009) points out that interpolation
is typically performed in the implied volatility
space, which involves fitting a spline or a low-
order polynomial to the available data. Although
such techniques have excellent empirical
performance (see Orosi, 2012), Benaim et al
(2008) assert that implied volatility-based models
should not be used when there is a positive
probability of default. Therefore, in certain cases,
existing interpolation methods should be
abandoned or modified to include the results
from this study. For example, Benaim et al (2008)
and Orosi (2014) both introduce techniques that
do not violate the improved bounds.

Another potential area of research may
examine whether lower bound violations occur
in empirical data. For an example of such a study,
see Dixit et al (2009).

CONCLUSION

In this article, we derive lower bounds for
European options written on defaultable assets.
We demonstrate that these bounds are tighter
than the existing lower bounds and discuss the

implications of our findings.

References

Benaim, S., Dodgson, M. and Kainth, D. (2008) An
arbitrage-free method for smile extrapolation, Working
Paper, QuaR C, Royal Bank of Scotland.

Cherubini, U. and Luciano, E. (2002) Bivariate option
pricing with copulas. Applied Mathematical Finance 9(2):
69-85.

Dixit, A., Yadav, S.S. and Jain, P.K. (2009) Violation of
lower boundary condition and market efficiency: An
investigation into the Indian options market. Journal of
Derivatives and Hedge Funds 15(1): 3—14.

Fengler, M.R.. (2009) Arbitrage-free smoothing of the
implied volatility surface. Quantitative Finance 9(4):
417-428.

Figlewski, S. (2009) Estimating the Implied Risk-Neutral
Density for the US Market Portfolio, Volatility and Time Series
Econometrics: Essays in Honor of Robert F. Engle. Oxford,
UK: Oxford University Press.

Handley, J. (2005) On the upper bound of a call option.
Review of Derivatives Research 8(2): 85-95.

Klein, P. and Yang, J. (2013) Counterparty credit
risk and American options. Journal of Derivatives 20(4):
7-21.

Merton, R.C. (1973) Theory of rational option pricing.
Bell Journal of Economics and Management Science
4(1): 141-183.

Monteiro, A.M., Tiitlincti, R.H. and Vicente, L.N. (2011)
Estimation of risk neutral density surfaces. Computational
Management Science 8(4): 387—414.

Orosi, G. (2011) A multi-parameter extension of Figlewski’s
option-pricing formula. Journal of Derivatives 19(1):
72-82.

Orosi, G. (2012) Empirical performance of a spline-based
implied volatility surface. Journal of Derivatives & Hedge
Funds 18(4): 361-376.

Orosi, G. (2014) Estimating option implied risk neutral
densities: A novel parametric approach. Working
Paper. Available at SSRN: http://ssrn.com/
abstract=2260360.

130 © 2014 Macmillan Publishers Ltd. 1753-9641 Journal of Derivatives & Hedge Funds Vol. 20, 3, 127-130



	Improved lower bounds of call options written on defaultable assets
	INTRODUCTION
	ASSUMPTIONS AND NOTATION
	GENERAL RESULTS
	Improved lower bound
	Known dividend payments

	DISCUSSION AND FUTURE RESEARCH
	CONCLUSION
	References




