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ABSTRACT The motivation for this article is to check whether neural network models

have remained a superior method for forecasting the EUR/USD exchange rate during the

financial crisis of 2007–2009. Alternative neural network architectures (Multi-Layer

Perceptron (MLP), Recurrent Neural Network and Higher Order Neural Network

(HONN)) are benchmarked against a random walk and a traditional ARMA model, and

evaluated in terms of statistical accuracy and through a trading simulation on daily data

over the period from January 2000 to February 2009, the period from August 2007 to

February 2009, providing the out-of-sample testing period. Transaction costs and a

confirmation filter devised to reduce false signals and thus also reduce losses and

transaction costs were also taken into consideration. It is shown that the HONN structure

gives the overall best results on a simple trading simulation; however, for an advanced

trading simulation with a confirmation filter, the MLP outperforms all other models on

most performance measures. On the whole, the results show that neural networks are still

able to produce forecasts that yield a positive return and are superior to those of linear and

more traditional models, with respect to both trading performance and statistical accuracy,

even under very volatile market conditions.
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INTRODUCTION
The financial crisis experienced by economies

worldwide in 2007–2009 has repeatedly been

described as the most severe since the Great

Depression by leading economists (Reuters,

2009). Since its beginning, it has led to the

collapse of some of the most powerful banks,

as well as the bankruptcy or bailout of

numerous other companies in financial and

non-financial industries. Although the first

obvious effects on the real economy became

apparent to the broad public only in the third

quarter of 2008, the seizure in interbank

markets actually started as far back as August

2007 (The Economist, 2009). Induced by a

variety of interconnected factors, the most

important of which may be the subprime

mortgage crisis in the US and the usage of

complex financial instruments in combination

with poor risk analysis, uncertainty in

financial markets has subsequently increased

tremendously (IMF, 2007).

Extraordinary volatility levels have been

shown by risk indicators like the TED

spread,1 a measure for perceived credit risk

in interbank lending, or the CBOE Volatility

Index, reflecting implied volatility of the

S&P500, when both series depicted a

significant increase in volatility in the second

half of 2007, before peaking in record highs

during late 2008.

Turmoil was observed in all kinds of financial

markets including bond markets, equity and

commodity markets, as well as the foreign

exchange (FX) market: whereas EUR/USD

volatility had been on average 9.33 per cent

annualised over January 2000 through July 2007,

our in-sample period, it jumped to 12.96

per cent from August 2007 to February 2009,

an almost 40 per cent increase, and reached

19.20 per cent on average from September

2008 to February 2009!

The FX market is known to be one of the

largest and most liquid in the world, reaching an

average daily trading volume of US$3.2 trillion,

of which the EUR/USD currency pair accounts

for $840 billion, equivalent to a 27 per cent share

(BIS, 2007). Because of its substantial turnover,

which in turn is the reason for its importance

for market participants like fund managers or

corporate treasurers, there have been numerous

attempts to improve the forecasting performance

of the EUR/USD exchange rate in the past.

However, with the lack of an unquestionable

theoretical concept modelling the factors

determining exchange rate developments,

researchers and professionals have frequently

been struggling to exceed the out-of-sample

forecasting performance of a simple random

walk model.

In an unstable environment like this, the

task of forecasting and trading in financial

markets becomes an even more challenging

one. Yet, within the last years, several studies

on forecasting and trading the EUR/USD rate

and other currency pairs have been conducted,

employing simple and traditional, as well as

more advanced methods. Among these, Neural

Network Regression (NNR) models have

been a relatively new methodology with a

design inspired by the structure of the human

brain.

In recent years, the model class of Neural

Networks has gained popularity and importance

in many fields of theoretical research and

practical application. Lisboa and Vellido (2000)

mention several business operations where

Neural Networks have been utilised to allocate

resources more efficiently, to analyse, organise

and visualise highly complex data and therefore
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help increase planning accuracy of processes,

which simpler approaches have failed to model

effectively.

With the development towards a knowledge-

driven business environment, where

information can be gathered and stored more

easily, extracting structures and patterns to

make use of this information becomes ever so

important. Successful business application

examples can be found, for instance, in the

areas of flight scheduling, fraud detection,

demand forecasting, bankruptcy prediction

and decision making. But also in financial

engineering, the use of Neural Networks has

increased because of their extraordinary

mapping capabilities. Previous theoretical

works and the practical use of Neural Networks

in trading and investment show that they

have repeatedly delivered outstanding

results.

Therefore, the motivation for this article

is to investigate whether, in times of economic

uncertainty, Neural Networks are able to achieve

a significantly better forecasting accuracy and

trading performance in exchange rate

forecasting, using an example of the EUR/USD

rate. Accordingly, the data set underlying the

analysis consists of the exchange rate series

from 3 January 2000 to 31 July 2007 for the

in-sample period, reflecting usual volatility

levels, whereas the out-of-sample period

comprises data from 1 August 2007 to

27 February 2009, when market conditions

change and become more volatile. In addition,

the ability of different network types to adjust

to the new conditions is assessed by comparing

their performances. Therefore, three different

network architectures are employed to predict

the EUR/USD exchange rate: a classic

Multi-Layer Perceptron (MLP), as well as

a Recurrent Neural Network (RNN) and

a Higher Order Neural Network (HONN).

The empirical results suggest that NNR

models are indeed capable of modelling and

forecasting the EUR/USD exchange rate

series competently, achieving a significant

positive trading return. Overall, all three

Neural Network architectures used manage to

outperform the benchmark models in both

a simple trading strategy and even more

significantly in a trading simulation using

confirmation filters. The HONN model is

found to produce the best results with respect

to trading performance and forecasting

accuracy for the sample on hand.

The study commences with a review of

the relevant literature in the section ‘Literature

review’, followed by the section ‘Data

characteristics and transformations’ describing

the data series characteristics and the

transformations performed. The section

‘Benchmark models’ explains and discusses

the methodology for the benchmark models,

followed by the section ‘The neural networks

architectures’, which introduces the theory of

NNR models. The methodology of the

application is illustrated in detail in the section

‘Neural networks application procedure’, the

results of which are subsequently presented

in the section ‘Empirical results’. Finally, the

section ‘Conclusion’ summarises the main

results and makes some concluding remarks

about their limitations and possible directions

for future research.

LITERATURE REVIEW
Since the late 1980s, Neural Network models

have been an emerging technique for

applications in business and finance. Many
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studies examined their performance in

comparison with other model classes, and also

the dependence of their performance on, for

example, network architecture, input factors

and network parameters in the context of

different areas of designated use. In this short

review, we focus mainly on FX forecasting in

general and Neural Network applications for

this task in particular. For a comprehensive

summary of Neural Network applications

for forecasting, please refer to Zhang et al

(1998).

Finding a model that is capable of forecasting

exchange rates successfully, out of sample

remains something that has been desired by

forecasters for many years. Meese and Rogoff

(1983a, b) applied structural- and time-series

models for exchange rate determination to

the monthly dollar/pound, dollar/mark,

dollar/yen and trade-weighted dollar exchange

rates from March 1973 to June 1981, only

to conclude that their candidate models

significantly failed to outperform the random

walk model in out-of-sample forecasting

experiments.

Later investigations of statistical properties

of exchange rate time series have repeatedly

confirmed the existence of non-linearities

in the data, explaining the poor forecasting

ability using linear models (Hsieh, 1989;

Meese and Rose, 1991; Chiarella et al, 1994;

Brooks, 1996). Consequently, researchers

looked for new ways to incorporate these

non-linearities.

Among other non-linear approaches, several

studies for modelling these properties have been

performed using Artificial Neural Networks

(ANN); a non-linear, non-parametric

methodology that is solely data driven. Zhang

et al (1998) mention the works of Weigend

et al (1992), who used ANNs for exchange

rate forecasting based on daily data and

compared the results with a random walk

model, and Refenes (1993) who applied

Neural Networks to hourly data of one

exchange rate time series and benchmarked

the results against an exponential smoothing

and an ARIMA model. Both studies report

significantly better results of the ANN

models.

On the contrary, Tyree and Long (1995)

revisit the study of Weigend et al (1992) and

a piece of work by Refenes et al (1993),

who also found Neural Networks to be a

successful forecasting tool when applied to

hourly exchange rates, and criticise the

methodologies of many studies to be not

stringent enough when it comes to the

assessment of Neural Networks’ performance.

The authors replicate some of the previous

work, choosing USD/DEM daily data and

using univariate and multivariate models to

produce 1-, 5- and 20-day ahead forecasts

and comparing the results with a random

walk and an autoregressive (AR) model.

The random walk was found to outperform

Neural Networks at all forecast lead times in

terms of forecasting accuracy assessed by the

mean squared error.

Krishnaswamy et al (2000) discuss the use of

Neural Networks in FX markets, citing the

conclusions of Mehta (1995) who considers

Neural Networks to be the best tool for FX

forecasting available. However, they also point

at problems and the requirement of a thorough

understanding for setting up a network for

practical use. A second study pointed out by

the authors is Refenes and Zaidi (1995) who use

Neural Network models for predicting the

USD/DEM exchange rate, achieving superior
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results to moving average (MA) and mean

value-based forecasts.

Leung et al (2000) examine General

Regression Neural Networks (GRNN) using

the monthly exchange rates from March 1990

to July 1995 of the Canadian dollar, Japanese

yen and British pound and compare the

forecast with another more commonly used

network type, the Multi-Layered Feedforward

Neural Network (MLFN), and furthermore a

model based on multivariate transfer function

and a random walk. They find the GRNN

superior to all other models regarding

forecasting accuracy.

Hann and Steurer (1996), however, can only

confirm a superior performance of Neural

Networks for weekly data, but conclude that

for their investigation of the USD/DEM

exchange rate for data from January 1986 to

October 1994 linear models and Neural

Networks in the framework of error-correction

models give almost the same results for

monthly data.

Zhang and Hu (1998) look into the impact

of parameter settings of Neural Networks,

applying them to the daily and weekly GBP/

USD exchange rate from the beginning of

1976 to the end of 1993. The authors

experiment with model parameters such as

the training period and the number of input

and hidden nodes. They conclude that the

number of input nodes and the number of

observations of the training period have a big

impact on the forecasting performance, and

therefore have to be chosen carefully.

Furthermore, they state that Neural Networks

outperform linear models for forecasting a

short time horizon; however, for longer

forecast horizons new observations should be

used to revise the model once they become

available, in order to reflect changes of the

underlying pattern.

Although there are no other exchange

rate series examined to give more robustness to

the findings, following the findings of Diebold

and Nason (1990), who investigate ten major

nominal dollar spot rates from 1973 to 1987

and discover that there is little variation in

results for different exchange rates when

non-parametric techniques are used, it can be

assumed that the results of Zhang and Hu

(1998) could also apply to the EUR/USD

exchange rate.

Huang et al (2004) summarise numerous

papers that compare the forecasting performance

of Neural Networks with other techniques.

The review shows that of the eleven studies

reported, ten used an MLP neural architecture

for estimating and forecasting, benchmarked

against most commonly a random walk model,

but also frequently against ARMA/ARIMA or

several types of GARCH models, whereas the

most widely used statistical accuracy measures

were root mean squared error (RMSE) and

mean absolute error (MAE), in seven and three

studies, respectively. The summarised results

show that MLPs outperformed other models

significantly in five articles, in two the MLP

gave similar results as the best benchmark, but

outperformed others, or was superior to the

benchmark models only for a certain data

frequency, whereas the outcome of four

papers are mixed results. As possible reasons for

these varying conclusions, the authors state the

high data-dependency of non-parametric models

like Neural Networks. This data-dependency

can impact the learning and generalisation

abilities of the network and lead to instable

results if there are random variations, caused by,

for example, data partitioning or subtle shifts in
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the parameters of the time-series generating

process.

RNN models have been previously

investigated by Kuan and Liu (1995), who aim

at investigating their forecasting performance

compared with the MLP. They examine five

currency pairs over the time from 1980 to

1985 and observe that for certain, but not all

of them, both the MLP and RNN are capable of

producing daily forecasts superior to the random

walk benchmark in terms of significantly lower

out-of-sample mean squared error and the

prediction of the correct directional change

(CDC), with the RNN results being slightly

superior.

Tenti (1996) describes the major drawback

of RNN models to be requiring considerably

more connections, and hence more time

and memory in simulation than standard

backpropagation networks. The article is based

on opening and closing daily prices for Deutsche

mark currency futures over 4 years from 1990 to

1994. He analyses three RNN architectures,

employing a learning algorithm with either an

output, hidden or input layer feedback link and

finds that networks where information is fed

back from the hidden layer give best results.

However, these were not benchmarked against

forecasting performances achieved with other,

more traditional techniques.

The successful approximation and forecasting

properties of RNNs, even when compared with

alternative models, have been documented by

Dunis and Huang (2002). They use RNNs for

forecasting and trading the daily GBP/USD and

USD/JPY FX rate volatilities by identifying

mispriced options from December 1993 to

May 2000, the performance of which is judged

against an MLP structure, as well as a simpler

GARCH model and implied volatility. They

show that the RNN provides the best returns in

a short-term trading context, although the

forecasting accuracy can be improved further

by using model combinations.

A third structure of Neural Networks that

was given attention in research and practice of

financial time series forecasting are HONN

models. Experimenting with function

approximation and financial time series

simulations, Zhang et al (2002) prove that

neuron-adaptive HONN (NAHONN) models

can approximate any continuous function to

any desired accuracy. Moreover, the results

indicate that NAHONNs offer significant

advantages over traditional neural networks

such as faster learning because of much

reduced network size and a smaller simulation

error.

Fulcher et al (2006) state as one property

of HONNs the capability of extracting

higher-order polynomial coefficients in the

data. Applying this model class, in particular

a polynomial HONN and HONN Groups,

to the daily Australian–US dollar exchange

rate in March 2005 and other data, they find

them to give roughly twice the performance

on financial time-series prediction as

compared with MLP architectures trained

with backpropagation and claim another

10 per cent improved performance for

HONN Groups.

An improved performance was also

detected by Knowles et al (2009), who aim

at determining whether HONNs in relation

to MLP models can give greater return on

investment. Using the same data as Dunis and

Williams (2002, 2003), they extend the

research towards AR and multivariate higher-

order networks for the prediction of the

EUR/USD exchange rate and implement
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a Bayesian Confidence measure in the trading

strategy. The results show that both the

AR and the multivariate HONN models

yield significantly higher returns compared

with the MLP and the more traditional

techniques.

Also based on Dunis and Williams (2002,

2003), a more recent study by Dunis et al

(2010) investigates the forecasting and trading

performance of alternative Neural Network

structures applied to the daily EUR/USD

exchange rate time series. They find that NNR

achieves good forecasting accuracy and

outperforms technical and more traditional

regression models, that is, a naı̈ve strategy,

a Moving Average Convergence Divergence

model (MACD), an Autoregressive Moving

Average (ARMA) model and a Logit model,

significantly with regards to trading

performance.

Dunis et al (2010) continue the idea of this

article and introduce other types of Neural

Networks, by sticking to the same data series

and time period at the same time. The

authors evaluate three more advanced Neural

Network architectures, HONNs, Psi Sigma

Networks and RNNs. The article provides a

comprehensive overview of the structures and

characteristics of each network type and

compares their performance with the MLP,

as well as to the Softmax Cross Entropy and

Gaussian Mixture (GM) models evaluated by

Lindemann et al (2005). The article shows that,

for a simple trading strategy, the newly

introduced RNN and HONN networks, as

well as the most basic network structure MLP,

equally produce very good results with respect

to annualised return and information ratio.

After the application of trading filters and

leverage, however, it is shown that the GM

model outperforms all other network

architectures strikingly.

Finally, Dunis et al (2009) use the daily

ECB fixing of the EUR/USD from 1999 to

August 2008 to provide further evidence of the

benefits of alternative neural networks

architectures for modelling and trading this

exchange rate.

DATA CHARACTERISTICS AND

TRANSFORMATIONS
Keeping in mind that a model and its outcomes

will always be highly dependent on the quality

of data fed into it, taking a closer look at the

underlying database, variable characteristics

and transformations made is vital.

We use daily historical London closing

prices for all variables that have been obtained

from Thomson DataStream. Alongside the

EUR/USD exchange rate as the independent

variable, there are a number of fundamental

explanatory variables, which are taken from

Dunis and Williams (2003). Listed in Table A1 in

the appendix, with their according DataStream

mnemonic, they include important stock

indices, commodity prices, monetary policy

and macroeconomic influences, and other

frequently traded currency exchange rates,

as well as past values of the EUR/USD exchange

rate itself.

The sample period for all variable time

series used contains 2390 observations running

from 3 January 2000 to 27 February 2009.

This set is further divided into an in-sample

period, which spans the period from 3 January

2000 to 31 July 2007 comprising 1977 trading

days, and an out-of-sample period. On the

basis of the in-sample data subset, the model

parameters are estimated and then evaluated for
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the unseen subset retained in the out-of-sample

period from 1 August 2007 to 27 February

2009, a total of 413 trading days. For the

purpose of this study, the out-of-sample subset

was chosen to contain a time period of

increased market volatility in the wake of the

financial crisis.

The data series were obtained in levels.

In order to insure clean, error free and unbiased

data for the later analysis, missing data points

because of bank holidays were subsequently

linearly interpolated for the entire time period.

Furthermore, following Dunis and Williams

(2003), the bond yield and interest rate series

were combined to create interest rate yield curve

series for the respective countries, in the

manner:

YC ¼10 year benchmark bond redemption

yield� 3 month middle rate ð1Þ

Figure 1 shows the development of the

EUR/USD exchange rate, that is, the amount

of US dollars payable for 1 euro, for the

period from 3 January 2000 to 27 February

2009. It can be seen that over that period

of time, the euro overall appreciated against

the dollar.

As can be seen from the chart above, the

EUR/USD is clearly non-stationary, something

confirmed by standard statistical tests not

reproduced here in order to conserve space.

In the same vein, the distribution of observations

shows that the series is non-normal. As using

a non-stationary data set in regression analysis

will lead to spurious and invalid results, it is

advisable to convert the series in a way that

stationarity is assured. Accordingly, we transform

all series into arithmetic rates of returns

R using the prices P in time t and t�1:

Rt ¼
Pt

Pt�1

� �
� 1: ð2Þ

The resulting EUR/USD return series is

shown in Figure 2. After a visual inspection

it can be assumed that the return series is

now stationary, which is indeed confirmed

by standard statistical tests again not

reproduced here.

Further standard tests confirm the

non-normality of the EUR/USD series

and the presence of heteroskedasticity at

a 99 per cent confidence interval.

BENCHMARK MODELS
Different benchmark models have been applied

in the literature, such as a random walk

simulation (for example, Zhang and Hu, 1998),

technical MACD models and linear regression

Figure 1: EUR/USD exchange rate (3 January

2000 to 27 February 2009).

Figure 2: EUR/USD exchange rate returns

(3 January 2000 to 27 February 2009).

Currency trading in volatile markets
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models such as ARMA models or a logit

estimation (for example, Dunis and Williams,

2003). Some of these approaches, however, only

produce classification estimates that make it

impossible to compare their actual forecasting

accuracy in absolute terms. Accordingly, we

select a naı̈ve strategy and an ARMA model for

this study, as both give a level estimate that allows

for a comparison of both statistical forecasting

accuracy and trading performance.

Naı̈ve random walk model

As price changes in efficient markets such as

exchange rates are assumed to be a random

distribution with a mean of 0 (Pindyck and

Rubinfeld, 1991, p. 441), the central idea

of a naı̈ve random walk is to suppose that the

future price will be the same as today’s price,

and hence that today’s actual return value is the

best estimate of the next trading day’s return.

Formally, this can be expressed as:

ŷtþ1 ¼ yt; ð3Þ

where ŷtþ 1 represents the one-day-ahead

forecast of the return series and yt the rate

of return in time t. Pursuing this strategy, it is

clear that a profit in tþ 1 will be made when

the exchange rate moves in the same direction

as in the previous period t, and a loss if there

is a change of direction – and thus a change of

sign of the rate of return – from one period to

the next. Hence, this strategy is most profitable

when the exchange rate moves following distinct

trends with only few fluctuations.

The naı̈ve strategy requires no in-sample

regression or optimisation of any other

kind. However, for the sake of completeness

and comparability, the in-sample performance

of the strategy was calculated nevertheless.

Furthermore, trading results for the

out-of-sample period were determined in

order to serve as a benchmark for the more

complex models and their performance on

unseen data.

ARMA models

Linear regression models have been widely

employed for forecasting. Among these,

ARMA models are a popular method, as they

are comparatively fast and easy to apply. AR

MA models are based solely on past observations

of the variable to be forecast. Box et al

(1994) denote the relationship between the

independent variable yt and the explanatory

variables, that is, the AR and MA terms,

formally as:

ŷt ¼ f0 þ f1yt�1 þ � � � þ fpyt�p

þ et � y1et�1 � � � � � yqet�q ð4Þ

for an ARMA( p, q) model consisting of

an AR process of order p and an MA process

of order q, where f0 stands for the intercept

and et for the white noise error. The parameters

of the model, the coefficients of the AR and

MA variables f0,f1,y,fp, y1,y, yq are

determined using a least squares regression.

Hence, the model does not assume a particular

theory or predetermined pattern in the

data, but iteratively fits the data around

the general model framework to identify

a specific model.

In order to find relevant ARMA models,

various specifications were tested for their

statistical significance. This was done by the

setting up unrestricted ARMA( p, q) models

for the EUR/USD return series, with

p¼ q¼ 1, 2,,y, 10 based on the in-sample

data subset. In accordance with the

Dunis et al
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detection of heteroskedasticity mentioned

previously, all ARMA models were adjusted

for heteroskedasticity using the White

heteroskedasticity-consistent standard error and

covariance. As the models established contained

several parameter coefficients that failed to

be significant at level a¼ 5 per cent or even

a¼ 10 per cent, the models had to be further

modified by gradually removing insignificant

AR and MA terms. This was done by repeatedly

eliminating the term with the highest P-value

in the series and re-estimating the model until all

variable coefficients were significantly different

from 0 at the 99 per cent confidence interval.

As a result, six ARMA specifications were

found to be able to map the EUR/USD return

series. These models were then used to produce

an in-sample forecast that was implemented

in a trading strategy for the evaluation of their

trading performance. Overall, the restricted

ARMA(6, 6) outperformed all other model

specifications in most of the important trading

performance measures, particularly annualised

return and annualised volatility, where it gave

results of 15.22 per cent and 9.27 per cent,

respectively. The model was furthermore

examined regarding its overall significance.

Table A3 shows the model specifications, and

shows that all terms included are significant

at a 99 per cent confidence interval.

The F-test statistic in Table A4 also tests

for the joint significance of all coefficients:

the null hypothesis that all coefficients jointly are

not significantly different from 0 can be rejected

at a 98 per cent confidence level, thanks to

a F-test statistic of 2.32. Ramsey’s RESET test

for the detection of general misspecification

was performed and its results in Table A4 in the

appendix show that the null hypothesis that

the model is specified correctly cannot be

rejected at a 1 per cent significance level.

Furthermore, the correlogram of the residuals

reflecting the autocorrelation function of the

restricted ARMA(6, 6) equation reveals that the

residuals are random at a 99 per cent confidence

interval (cf. Table A5 in the appendix).

Therefore, the restricted ARMA(6, 6) model,

formally described by Equation (5), is retained

as best of its class for the out-of-sample

estimation.

ŷt ¼ 0:0003þ 0:3850yt�3 þ 0:3077yt�4

þ 0:6522yt�5 � 0:3728yt�6 þ 0:3868et�3

þ 0:2915et�4 þ 0:6524et�5 � 0:3457et�6: ð5Þ

THE NEURAL NETWORKS

ARCHITECTURES
It has been shown that, under certain conditions,

neural networks can be universal approximators

for any continuous function (Hornik et al,

1989). As they are intrinsically non-linear,

they have the ability to detect non-linearities

in the data, a characteristic that is inherent in

financial time series data, and can produce much

better forecasting results than linear models.

The idea for this class of models was inspired

by the structure of the brain and has very

powerful information processing properties.

As opposed to many more traditional models,

neural networks are non-parametric models and

therefore do not have a predefined functional

form. This is advantageous particularly for

modelling complex financial time series like

exchange rates. As there is no indisputable

theory explaining the relationship between

the movement of FX rates and other potential

explanatory factors, the use of neural networks

has become popular in recent years in both

theory and practice, because they require

Currency trading in volatile markets
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no a priori assumptions about, for example, the

distribution of the data, but instead are solely

data driven. In the section ‘Literature review’,

we already mentioned how various studies

have testified a better relative performance

of neural networks when compared with

technical analysis or classic linear and non-linear

econometric models.

Besides their capability of modelling

a function to any desired accuracy, the particular

usefulness of neural networks for forecasting

purposes is their generalisation ability. After

being appropriately trained with an in-sample

data set, the model can generalise from

the analysed patterns to unseen data.

However, neural networks are also subject to

certain drawbacks and pitfalls. If the network is

trained too much, the crucial generalisation

ability just mentioned fades, as the neural

network may learn not only the meaningful

patterns in the data, but also the noise inherent

in it. This problem is known as overfitting.

Other problems are the enormous number of

‘parameters’ to be adjusted to fix the data and

the resulting excessive training time for the

model optimisation. Furthermore, because of

the lack of a systematic approach for setting

up the neural network structure, learning

algorithm and parameters, the task of training

such a network is still mostly based on trial

and error (Vellido et al, 1999).

Another common critique made about

neural networks is their black-box character.

The absence of a functional form, on the one

hand a beneficial quality, leads to the weakness

that even if a NNR is based on causally related

data, the resulting model, that is, the values of

the weights and biases, may not give a much

insight into the nature or the strength of the

functional relationships within it (Tenti, 1996).

Within the class of neural networks, there

are several different architectures, which all

have specific strengths and weaknesses. The

models used in this research are the MLP, the

RNN and the HONN. Some properties,

however, all architectures have in common.

They consist of interconnected processing

units, called neurons or nodes. The connections

between these nodes are called weights and

represent the sign and strength of the

relationship of one node with respect to another.

These weights are comparable with coefficients

in a linear regression, hence they, along with

the network architecture, determine and

store the ‘knowledge’ of a trained network

(Kaastra and Boyd, 1996).

The nodes are arranged into layers; an input

layer, possibly one or more hidden layers, and

an output layer, where the number of nodes

per layer depends on the modelling task and

the characteristics and size of the data fed into

the network. The processing nodes in the

hidden and the output layer contain the actual

processing capacities, the so-called transfer

function. This can, depending on the problem,

be either linear or non-linear, for example,

a sigmoid or hyperbolic tangent function. For

each of the hidden and output nodes, there is

also a bias parameter that serves an analogous

purpose as the intercept in linear regression

models. It has always the value of 1.

Once the network architecture and all the

parameters are set up, the data from the input

nodes are fed through the network. The training

process changes the weights, which at the

beginning are set to be randomly drawn from

a normal distribution, so that the error of the

estimated output value and the actual output

value is minimised; this mechanism is called

backpropagation. Because the data are processed
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only in one direction, from the input layer

through the hidden layer(s) to the output layer,

this type of model is known as a feedforward

network.

Neural networks are in fact in many ways

similar to linear and non-linear parametric least

squares regression models. Both neural networks

and conventional regression analysis aim at

minimising the sum of squared error.

Furthermore, the input nodes and the output

node(s) are equivalent to the exogenous variables

and the endogenous variable, respectively, and

the weights can be pictured to resemble the

coefficients in a linear regression. Hence, a linear

regression model could be expressed as a

feedforward neural network with no hidden

layers and one output neuron with a linear

transfer function.

In order to point out some architecture-

specific properties of the different neural network

types, the following subsections discuss the MLP,

RNN and HONN architectures more in detail.

MLP

Among the different neural network structures,

one of the most widely used for practical

business and financial applications is the MLP

(Vellido et al, 1999). At the same time, it is

usually described as the most classic network

architecture while, however, having still proven

to be a very good forecasting method compared

with other more complex neural networks.

The MLP architecture is shown in Figure 3,

with the explanations of the notations used given

below (Dunis et al, 2010). The model here

consists of three layers, an input layer with

three input nodes and the bias node, one

hidden layer containing three hidden nodes

with a sigmoid transfer function and an output

layer with one output node that combines the

hidden outputs using a linear transfer function

in order to estimate the output, for example,

the EUR/USD exchange rate return in

time t, denoted with ŷt.

As a kind of MLFN, the MLP can be designed

with more than one hidden layer. However,

for this study only MLPs with one hidden

layer were considered, as Hornik et al (1989)

proved that a single hidden layer is sufficient for

neural network models to map any continuous

function, as long as there are an adequate

number of hidden nodes in this layer to meet

the requirements of the complexity of the data.

Where: xt
[i] (i¼ 1, 2,y, n) are the model

inputs (including the input bias node bt) at

time t; ht
[j] (j¼ 1, 2,y, k) are the hidden nodes

outputs (including the hidden bias node);

ŷt is the MLP model output (estimated rate of

return) at time t; uij and wj are the network

weights; is the transfer sigmoid function:

SðxÞ ¼ 1
1þe�x ; is a linear function: F(x)¼

P
ixi.

The error function to be minimised during

the training is:

E uij;wj

� �
¼

1

T

X
ðyt � ŷtðuij;wjÞÞ

2; ð6Þ

where yt is the known target value, that is, the

actual rate of return at time t.

tb uij

[i ]
tx

[ j ]
th

[1]
tx

[2]
tx

[3]
tx

ytˆ

wj

Figure 3: The MLP architecture.
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RNN

Another model class that has been shown to

be a successful approach for estimating and

forecasting financial time series are RNN.

The structure and function of an RNN are

presented briefly in Figure 4, with the

explanation of terms and symbols used given

below. For a detailed discussion of the RNN

theory and mechanics, see Elman (1990).

RNN models are more complex than

MLPs, as they loop back hidden node output

information from the previous period t-1 to

use it as a new input for the estimation of

the current period t. This gives the model

a short-term memory and the ability to

recognise very complex patterns in time series,

making it intuitively suitable for the EUR/USD

exchange rate.

Where: xt
[i] (i¼ 1, 2,y, n) are the model inputs

(including the input bias node bt) at time t;

ht�1
[j] (j¼ 1, 2,y, k) are the hidden nodes

outputs of the previous period looped back to

the input layer; ht
[ j ] ( j¼ 1, 2,y, k) are the

hidden nodes outputs (including the hidden bias

node); ŷt is the RNN model output (estimated

rate of return) at time t; uij and wj are the

network weights; is the transfer sigmoid

function: SðxÞ ¼ 1
1þe�x ; is a linear function:

F(x)¼
P

ixi.

Like for the MLP, the error function

to be minimised by adjusting the network

weights is:

E uij;wj

� �
¼

1

T

X
ðyt � ŷtðuij;wjÞÞ

2; ð7Þ

where yt is the target value, that is, the actual

rate of return at time t.

The increased complexity of RNNs is

obvious when comparing Figure 4 with Figure 3

as both MLP and RNN have the same number

of input and hidden nodes. However, this does

not affect the model’s forecasting performance,

but as a negative side effect computation capacity

needs increases, which leads to the training

procedure for RNN models being exceedingly

time consuming.

HONN

A less complex approach relative to both

RNNs and MLPs are HONN models, which

need fewer connections between nodes and

therefore fewer weights to be adjusted

during their training that results in shorter

computational times. This is an important

advantage for practical trading and investment

applications.

The HONN architecture is presented in

Figure 5. It depicts a second order HONN

with three inputs and a sigmoid transfer

function in the output node, where: xt
[i]

(i¼ 1, 2,y, n) are the ordinary model inputs,

the combined inputs and the input bias node bt

at time t; ŷt is the HONN model output

uij wj

ytˆ

[3]ht−1

[3]Xt

[2]Xt

[1]Xt

[i ]Xt
[ j ]ht

[2]ht−1

[1]ht−1

bt

Figure 4: The RNN architecture.
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(estimated rate of return) at time t; ui are the

network weights; is the transfer sigmoid

function: SðxÞ ¼ 1
1þe�x : The error function to be

minimised during the training is again the mean

squared error:

EðuiÞ ¼
1

T

X
ðyt � ŷtðuijÞÞ

2
ð8Þ

with yt being the known target value, that is,

the actual rate of return at time t.

It can be seen that for the same number

of inputs, the HONN needs significantly fewer

weights to be adjusted during the network

training, less than half of the number of weights

of the MLP and less than a third when compared

with the RNN. The smaller number of weights

is compensated, however, by the use of joint

activation functions, that is, the inputs are

combined before being fed into the network.

Using this technique, the network does not

have to establish the relationships between the

inputs; rather, it enables the network to extract

higher-order polynomial coefficients in the

data (Knowles et al, 2009). Another advantage

of HONN models is the direct correspondence

between network weights and polynomial

coefficients. Therefore, this architecture can

give valuable information about the functional

relationship between inputs and outputs, and

hence can be considered an open-box model,

as opposed to other neural network types

(Fulcher et al, 2006).

On the other hand, it has to be mentioned

that the number of input nodes for HONNs,

because of the combination of inputs, increases

over proportionally for additional added

explanatory variables, and so the number of

inputs, as well as the order of the network,

which is usually not chosen to be four or

more, has to be limited to avoid the network

being outsized (Knowles et al, 2009)

NEURAL NETWORKS

APPLICATION PROCEDURE
After giving some theoretical illustration of

neural networks, we present our application

of the methodology to the EUR/USD exchange

rate.2

Input selection and preparation

The first important step was choosing the

explanatory variables for the models. The

financial and economic time series to be used

as potential input factors, as well as the

transformations made, were already mentioned

in the section ‘Data characteristics and

transformations’. These included the

interpolation of missing data, the calculation

of yield curves and the transformation of the

[ i ]
xt

[1]
xt

[2]
xt

[3]
xt

[1]
xt

[2]
xt

[2]
xt

[3]
xt

[1]
xt

[3]
xt

bt

ui

ytˆ

Figure 5: Second order HONN with three

inputs.
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series in levels into return series. However, the

variables given cannot be used just in their

original form, but have to be lagged. For

estimation of the EUR/USD rate of return in

time t, the model can only use explanatory

variables from the previous trading day t�1.

For certain variables, namely the S&P500

Composite Index and the US yield curve,

denoted with S&PCOMP and US_YC,

respectively, because of the time difference

to US American markets, only the second lag

can be used for prediction.

Hence, from all explanatory variable time

series and the EUR/USD return series itself,

lagged series were produced up to lag 20 for

the in-sample data set from 3 January 2000

to 31 July 2007. The out-of-sample subset

was not included, as the data are retained for

validation purposes. Therefore, it remains

‘unseen’ for the model and not used for the

model optimisation procedure.

After the creation of the lagged series, their

cross-correlations with the EUR/USD return

rate were calculated. These were then converted

into absolute values, as contrary to their strength

the sign of the relationships is of minor

importance, as it will be detected by the model.

Subsequently, three lagged variable pools were

selected and pooled. The first pool, consisting of

19 series, includes the best lag of each variable,

the second pool includes the 18 lagged series

with an absolute cross correlation with the

EUR/UDS return series higher than 0.05 and

the third pool comprises the 14 lagged variable

series with a cross-correlation higher than

0.055.3 The second and third selections were

chosen regardless of whether all potential

variables were represented in the pool. An

overview of the variables and related lags selected

is given in Table A6.

True, the use of fundamental analysis

is a subjective issue, as we might not have

included all factors influencing exchange rate

movements. Furthermore, the choice of

variables based on the cross-correlations,

which is a linear concept, is not necessarily

a good criterion for choosing input factors

for a non-linear model, as the cross-correlation

analysis cannot detect non-linearities inherent

in the data. Neural networks do not provide

significance measures for their ‘coefficients’,

that is, weights, like is the case for linear

regression with the t-test. Another possibility

is to solely rely on technical factors like AR

terms of the series. However, these are also

included in the model, so that it is more

likely for the model containing fundamental

variables as well to have a broader range

of information to extract indications for the

model estimate. Therefore, though it might not

be the optimal approach, it was considered

a most sensible one.

Before being fed into the networks as input

factors, some studies argue that the variables

should be normalised in order to avoid the

functions saturation zones. Yet, there is no

consensus in the literature about whether this

brings significant benefit for estimation and

forecasting. Zhang et al (1998) state that the

investigation of this issue has led to the

conclusion that data normalisation can have

positive effects on the classification rate and

mean squared error, but that this benefit

decreases with a larger sample size and as well

usually slows down the training process.

Furthermore, the scaling can be undone by

the network weights during training. Zhang and

Hu (1998) use raw data for their investigation

after finding no significant difference between

using normalised and original data. Therefore,
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bearing also in mind that this is much less of an

issue here, as all our data are in percentage

form, we decided to refrain from normalising

the inputs.

Subsample periods

All the selected time series are subsequently

divided into subsamples. For the benchmark

models, these were the in-sample and

out-of-sample period. Neural networks, on

the contrary, are trained with three subsample

periods, training, test and validation, where

training and test combined are equivalent

to the benchmark in-sample period, as illustrated

in Table 1. The number of observations ratio

‘training: test: validation’ varies throughout

the literature and can depend on the sample

size or the particular problem (Zhang et al,

1998); in accordance with Dunis and Williams

(2002, 2003), for this study it was chosen to be

approximately 2/3: 1/6: 1/6, which is equivalent

to 1565 observations in the training set, and

412/413 observations in the test and validation

set, respectively.

The reason to categorize the in-sample

period further is in order to avoid the common

problem of overfitting during neural network

training. When the network is trained, the

forecast error of the training subset decreases.

However, once the network starts being trained

too much, it does not only learn the patterns and

similarities inherent in the data, but also the

noise. As a result, it loses its generalisation ability

and will not produce good forecasts anymore.

To avoid this drawback, the network error is

monitored on the test set, it initially decreases,

but starts to increase once the network starts

overfitting the data: the training procedure is

then stopped when the test error is at its

minimum.

After the training and the adjustment

of the weights to minimise the test error

function, the performance of the network is

tested on unseen data, that is, data that were

not part of the training process. This is to

simulate the conditions of the real world

and show if the network has indeed managed

to map the underlying patterns in the data

and generalised to extrapolate them into the

future.

Network characteristics

The critical part of the application of neural

networks is setting up the optimisation

characteristics. These crucially influence the

network performance. Kaastra and Boyd

(1996) list as some aspects to be considered:

the learning rate and momentum, the number

of training cycles and block, that is, how

often the training cycle is repeated, as well as

Table 1: Sample period subsets

Benchmark models Neural networks Observations

In-sample 2000:01–2007:07 2000:01–2005:12 (training) 1565 (2/3)

2006:01–2007:07 (test) 412 (1/6)

Out-of-sample 2007:08–2009:02 2007:08–2009:02 (validation) 413 (1/6)
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important typology characteristics of the

network. These include the parameters that have

the largest impact on the forecasting accuracy,

the number of input nodes and hidden nodes

(Zhang et al, 1998).

One method to determine the optimal

number of hidden nodes was introduced by

Le Cun et al (1990) and is known as Optimal

Brain Damage: the idea is to start with an

oversized model and to gradually prune

redundant weights during the training

procedure. Other methods are, for instance,

the weight decay or weight elimination, using

a penalty term for an increased network size

that is added to the error function, a neural

network information criterion assessing

the trade-off between the accuracy of the

approximation and the size of the network

or a Principal Component Analysis (Hann

and Steurer, 1996).

For the number of input nodes, one possible

approach as used by Dunis and Williams

(2003) is to start the network with very few

inputs and then step by step add more inputs.

The added input is retained when the Explained

Variance (EV) increases, that is, when the

variable adds useful information to the model,

but generally a smaller network structure is

preferred to a larger one.

For this study, a different approach was

used, the idea of which is to make use of the

data-driven nature of neural networks. It

was mentioned that three different pools

with 19, 18 and 14 potential variables were

selected. Now, instead of restricting the training

process to certain inputs or a certain number

of hidden nodes, all possible combinations

of input variables from the pool and a

given number or range of hidden nodes

were calculated. A dedicated combination

programme was created to this effect.

Formally, this is:

z ¼
Xx½i�max

k¼x
½i�

min

n

k

� �
h½ j �max

� �
þ h

½ j �
min

� �
þ 1

h i
; ð9Þ

where z is the number of combinations,

n is the pool size, that is, 19, 18 or 14, k is the

number of variables to be chosen from the

pool and lies in the range of the set minimum

number of inputs xmin
[i] and the maximum

number of inputs xmax
[i] ; hmin

[i] and hmax
[i] represent

the minimum and maximum number of hidden

nodes, respectively.

Starting with the MLP, the pool containing

the 19 series that are the respective best lag

for the variables, the combination programme

is run and z networks are trained. Several

programme runs like this with different random

initial weights are performed and saved for

later evaluation. The initially very large

number of trained networks is reduced by

filtering the results, that is, properties and

outputs of the networks, to find successful

models for the forecasting task. The filtering

process details are further explained in the

next subsection.

The same was done when taking the inputs

from the second pool containing the 18 lagged

series with a correlation larger than 0.05, in

order to evaluate if these gave better results.

For both the RNN and HONN, the third pool

of 14 variables with a cross-correlation larger

than 0.055 was chosen in order to reduce the

number of combinations and therefore the

computing time. This is known to be higher

for RNN models because of the increased

complexity of the looped back outputs from

the hidden layer; for the HONN, the

combination of inputs before being fed into
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the network also leads to longer training

times for a larger choice of variables. For this

reason and for the sake of comparability, the

14-variable pool was also used for the MLP.

Further features of the training process,

that is, the number of training cycles and

blocks, the iterations and momentum rate,

can be taken from Table A7 and are applicable to

all network architectures used. When looking

at other studies that state the number of

iterations used (that is, the number of cycles

times the number of blocks), the iterations

in this work might seem comparatively small,

which is because of the large amount of

networks trained and the time needed associated

with this. As in tests, the error rate did not

decrease extensively further when more

iterations were used, the trade-off of iterations

versus training time was made in favour of

the latter.

Weight matrix approach

Acknowledging the lack of a standard statistical

test for neural networks, Dunis and Williams

(2003, p. 28) state that ‘once a tentative model

is selected, post-training weights analysis helps

to establish the importance of explanatory

variables’. This is to be achieved by finding

‘a measure of contribution a given weight has

to the overall output of the network, in essence

allowing detection of insignificant variables’.

For this task, they use the Hinton graph, which

is a graphical representation of the inputs to

hidden nodes weight matrix. The idea is that

a variable, for which the weights of its input

node to all hidden nodes are small, has only little

impact on the model estimation and can be

considered insignificant. On the contrary, if an

input node exhibits large weights, all of which

are of the same sign for all the hidden nodes

it is connected to, it appears logical that the

variable has a clear impact and influences the

output in either a significantly positive or

negative way. Furthermore, small bias node

weights are preferred.

On the basis of this analysis, the optimisation

approach looks for models with a consistent

weight matrix, as assessed by the Hinton graph,

which would be somewhat meaningful as

opposed to a model where the weights of one

input change sign and size for different hidden

nodes. This idea was implemented into the

network selection process.

In the first step, during training only networks

survive for which at least 80 per cent of the

weights of each input node are of the same sign.

Allowing for 20 per cent, deviations increased

the likelihood of finding suitable models,

particularly for a large number of hidden nodes.

The models that are found to meet the criteria

are kept and saved for further screening.

In the second step, the weight size is checked

to avoid networks with both very small input

node weights and very large bias weights.

The filter examines the models formerly retained

and separates out those for which input weights

are smaller than a set threshold value, as well

as those with a bias weight that exceeds a set

bias threshold. In addition to the weight size,

another filter is implemented to measure the

CDC of the model forecast for the training and

test periods, that is, the rate at which the sign

of the actual exchange rate returns was estimated

accurately. Although the annualised return not

only depends on this rate, but also on the size

of the movements predicted correctly, it provides

a rough indication of the return that might be

achieved when the model estimation is used as

the basis of a trading strategy. The CDC is
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considered in order to not only retain models

with a significant weight matrix, but models

that also manage to produce profitable forecasts

when employed for trading.

However, after several test runs, most of

which included more than 100 000 models

tested, none of the models managed to

outperform the simpler ARMA benchmark

with respect to the in-sample annualised return.

Table A8 in the appendix shows the weight

matrix of the overall best model, which is

visualised using the Hinton graph, given in

Figure A1. Although the model produces a

reasonable in-sample estimation regarding its

forecasting accuracy, the out-of-sample results

of the trading performance, generating an

annualised return of �13.22 per cent, cannot

be considered satisfying (cf. Table A9 in the

appendix). The result indicates that the

consistency of the weight matrix does not

affect a model’s forecasting or trading

performance whatsoever.

Another problem of the approach was the

lack of robustness. If a network that met all

the criteria was trained again with the same

parameters, but different random starting

weights, the weight matrix was found to be

inconsistent again. Therefore, the approach,

though it might be useful for post-training

weight adjustments, appears to be ineffective

as a basis for the network choice.

EV approach

The second approach that is implemented is

based on the EV. This is a measure of the

proportion in which the model accounts for

the variations in the data set, and can be

approximated by the correlation between the

actual series and the model forecast estimate.

The filtering process happened again in two

steps. First, during the training process only

models with an in-sample EV greater than

5 per cent are retained for further filtering.

In the next step, another filter is applied to the

surviving models, which assesses, as in the

previous approach, the CDC of the model

forecasts with respect to the actual exchange

rate returns.

This approach worked better than the

weight matrix approach and was therefore used

for all network architectures: MLP, RNN and

HONN. Several runs with different input and

hidden node ranges, as well as parameter settings

were tried. The best model was then chosen

as the model that concurrently performed

well regarding the forecasting error measure

mean absolute percentage error (MAPE),

balance of the relative correct prediction of rise

or fall periods and CDC. These have shown

repeatedly to be a good indicator for models that

generalise well. The in-sample return was looked

at as a minor guide for choosing a model, as

coincidental good returns can be achieved

because of the nature of the data, for example,

in a rising period a model tends to do better on

upward market movements, but will fail to

produce a good forecast when the market goes

down and vice versa. A further criterion is

the number of input and hidden nodes,

where more parsimonious models with

similar performance were preferred to more

complex ones.

Moreover, the correlation of the forecast

and actual returns with respect to the different

subsamples served as a guiding principle.

The scenario of the correlation being very high

in the training period but significantly lower

in the test period indicates that the model has

poor generalisation ability. Thus, the correlation
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of the validation period is likely to be low too.

Table 2 below presents the correlation for the

three subsets of the chosen MLP model, which

confirms a balance throughout the entire sample

period.

For the three architectures MLP, RNN

and HONN, the best in-sample model was

chosen, the performance of which is illustrated

in Table A10. Furthermore the specifications

of the respective best model are given in

Table A11–A13 in the appendix. These models

are subsequently assessed in terms of their

out-of-sample forecasting accuracy and trading

performance.

EMPIRICAL RESULTS
In order to assess the actual performance of the

models used, their estimates are implemented

into a trading simulation. The models are first

compared with their own model class according

to their in-sample performance and the best

model is retained for out-of-sample forecasting.

Then model performances are evaluated with

respect to unseen data from the out-of-sample

period.

The trading simulation is that a long EUR/

USD position is taken when a positive return

is forecast by the model and a short position

otherwise. At the end of the data set, the trading

performance is assessed following Dunis and

Williams (2003) by calculating common

performance measures like the annualised return,

the annualised volatility and the resulting

information ratio, the maximum drawdown, the

average gain/loss ratio and the number of

transactions.

Furthermore, the MAE, the MAPE, the

RMSE, Theil’s U and the CDC are chosen as

measures for the statistical forecasting accuracy.

The formulae used for calculating these

performance measures are given in Table A14

and Table A15 in the appendix.

On the basis of the in-sample results, for the

annualised return the ARMA model is to be

favoured for trading on unseen data. However,

regarding the statistical performance, it is

outperformed by all neural network structures

(cf. Table A2 and Table A10). The RMSE of the

ARMA model is significantly higher than the

one of the HONN. It is also outperformed by

the MLP with respect to Theil’s Inequality

Coefficient.

Yet, the performance results can vary for the

out-of-sample data, as the models are optimised

to fit in-sample.

The results of the out-of-sample forecast are

shown below in Table 3. It can be seen that the

HONN model dominates top results of both the

trading performance and the forecasting

accuracy. The MLP model performs as joint best

model thrice and is second best for various

measures; it outperforms all other models on the

maximum drawdown, a much desirable feature

in real life trading. The RNN is one of the best

models regarding the CDC, as well as the

number of trades and the percentage of winning

trades.

The ARMA model has an advantage over all

other models only regarding the number of

transactions. Moreover, it is the model with the

Table 2: Explained variance of the best

MLP model for training, test and validation

periods

Training Test Validation

Explained variance (%) 7.44 6.02 6.79
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Table 3: Models out-of-sample performances compared

Random walk ARMA MLP RNN HONN

Trading performance

Cumulative return (%) 16.65 3.59 28.16 25.45 30.10

Annualised return (%) 10.21 2.20 17.22 15.57 18.41

Annualised volatility (%) 12.96 12.96 12.91 12.92 12.91

Information ratio 0.79 0.17 1.33 1.20 1.43

Maximum drawdown (%) �9.16 �17.74 �8.14 �15.94 �16.25

Profits T-statistics 15.97 3.44 27.07 24.45 28.96

Total trading days 412 412 412 412 412

# Winning periods 216 214 218 218 209

# Losing periods 196 198 194 194 203

Winning periods (%) (=CDC) 52.31 51.94 52.91 52.91 50.73

Maximum gain in winning periods (%) 4.11 4.11 4.11 4.11 4.11

Maximum loss in losing periods (%) �3.77 �3.77 �2.69 �3.77 �3.01

Average gain in winning periods (%) 0.58 0.56 0.60 0.60 0.63

Average loss in losing periods (%) �0.56 �0.58 �0.53 �0.54 �0.50

Average gain/loss ratio 1.05 0.95 1.13 1.11 1.26

# Periods market returns rise 212 212 212 212 212

# Winning rise periods 114 175 129 102 103

Winning rise periods (%) 53.77 82.55 60.85 48.11 48.58

# Periods market returns fall 200 200 200 200 200

# Winning fall periods 101 39 89 116 106

Winning fall periods (%) 50.75 19.50 44.50 58.00 53.00

# Transactions (trades) 195 122 203 157 213

Winning trades (%) 47.18 45.08 51.72 53.50 53.52

Losing trades (%) 52.82 54.92 48.28 46.50 46.48

Statistical performance

Mean absolute error 0.0082 0.0057 0.0057 0.0058 0.0057

Mean absolute percentage error (%) 610.35 120.34 130.09 115.43 99.64

Root mean squared error 0.0110 0.0081 0.0082 0.0083 0.0081

Theil’s inequality coefficient 0.6757 0.9289 0.8369 0.8547 0.9585
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lowest return and it even underperforms the

random walk strategy. The cumulative profit

evolution of all strategies over the course of the

out-of-sample period is portrayed in Figure 6.

On the whole, all models yield a positive

return in the trading simulation. Yet, in contrast

to real world trading, these simulation results do

not account for transaction costs, which can

obviously affect profititability quite significantly.4

Table 4 gives the adjusted returns and

information ratios for all strategies. The cost

per trade is calculated according to Dunis and

Williams (2003), who state that for an amount

of $5–10 million to be traded, the cost per

trade usually accounts for 3 pips, that is,

0.0003 EUR/USD. Expressed in returns relative

to the average EUR/USD bid rate during

the out-of-sample period, the cost of one

transaction equals:

0:0003

1:44033
¼ 0:02083%:

It can be seen that, although the HONN

produces the highest number of transactions,

it still offers the highest return and

information ratio adjusted for transaction

costs of 4.44 per cent.

Figure 6: Out-of-sample cumulated profit of

all models compared.

Table 4: Trading simulation results corrected for transaction costs

Random walk ARMA MLP RNN HONN

Trading performance

Cumulative return (%) 16.65 3.59 28.16 25.45 30.10

Annualised return (%) 10.21 2.20 17.22 15.57 18.41

Annualised volatility (%) 12.96 12.96 12.91 12.92 12.91

Information ratio 0.79 0.17 1.33 1.2 1.43

# Transactions (trades) 195 122 203 157 213

Total trading days 412

Costs per trade (%) 0.02083

Transaction costs (%) 4.06 2.54 4.23 3.27 4.44

With transaction costs

Cumulative return (%) 12.59 1.05 23.93 22.18 25.66

Annualised return (%) 7.70 0.64 14.64 13.57 15.70

Annualised volatility (%) 12.96 12.96 12.91 12.92 12.91

Information ratio 0.59 0.05 1.13 1.05 1.22
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Another approach to deal with transaction costs

is using confirmation filters. Lindemann

et al (2005) and Dunis et al (2010) have used

this filter, the idea of which is that, looking

at the forecast, only those trades are performed

for which

ŷt

�� ��4d ð10Þ

Table 5: Trading simulation results with confirmation filter

Random walk ARMA MLP RNN HONN

Trading performance

Cumulative return (%) 15.38 0.16 31.49 30.81 30.60

Annualised return (%) 9.41 0.10 19.26 18.84 18.71

Annualised volatility (%) 12.94 12.96 12.90 12.90 12.90

Information ratio 0.73 0.01 1.49 1.46 1.45

Maximum drawdown (%) �9.67 �22.26 �9.47 �13.76 �16.25

Profits T-statistics 14.75 0.15 30.30 29.64 29.44

Total trading days 412 412 412 412 412

# Winning periods 218 211 227 221 209

# Losing periods 194 201 185 191 203

Winning periods (%) (=CDC) 52.91 51.21 55.10 53.64 50.73

Maximum gain in winning periods (%) 4.11 4.11 4.11 4.11 4.11

Maximum loss in losing periods (%) �3.77 �3.77 �2.69 �3.77 �3.01

Average gain in winning periods (%) 0.57 0.56 0.59 0.60 0.63

Average loss in losing periods (%) �0.56 �0.58 �0.55 �0.53 �0.50

Average gain/loss ratio 1.01 0.95 1.07 1.13 1.26

# Periods market returns rise 212 212 212 212 212

# Winning rise periods 117 190 136 102 103

Winning rise periods (%) 55.19 89.62 64.15 48.11 48.58

# Periods market returns fall 200 200 200 200 200

# Winning fall periods 101 21 91 119 106

Winning fall periods (%) 50.50 10.50 45.50 59.50 53.00

# Transactions (trades) 184 57 128 148 204

Winning trades (%) 46.20 52.63 52.34 52.03 53.92

Losing trades (%) 53.80 47.37 47.66 47.97 46.08
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where, in this study, the threshold d is set at the

amount of transaction costs per trade or 0.02083

per cent. Following this strategy, trades for

which the forecast return is smaller than the

threshold are not initiated, with potentially two

beneficial consequences: forecasts of a very small

change that would, however, trigger a temporary

signal reversal are discarded, hopefully cutting

the number of false signals and thus losses.

Second, the reduction in the number of trades

directly cuts transaction costs.

The results of the trading simulation with the

continuation filter are shown below in Table 5

and with the subtraction of the transaction costs

in Table 6.

It can be seen that the use of the confirmation

filter has changed trading performances.

Annualised returns of both the random walk and

the ARMA forecast have decreased, whereas the

performace of all neural network models has

improved. The MLP outperforms all other

models on annualised return, annualised

volatility, information ratio and maximum

drawdown, as well as CDC. The HONN model

is outperformed by both the MLP and RNN

this time, although marginally in terms of

information ratio.

When transaction costs are taken into

account, all models but the ARMA yield a

positive outcome.

CONCLUSION
The motivation for this article was to check

whether neural network models have remained a

superior method for forecasting the EUR/USD

exchange rate during the financial crisis of

2007–2009 and the increased market volatility

levels associated with it. Alternative neural

network architectures (MLP, RNN and

Table 6: Trading results with confirmation filter corrected for transaction costs

Random walk ARMA MLP RNN HONN

Trading performance

Cumulative return (%) 15.38 0.16 31.49 30.81 30.60

Annualised return (%) 9.41 0.10 19.26 18.84 18.71

Annualised volatility (%) 12.94 12.96 12.90 12.90 12.90

Information ratio 0.73 0.01 1.49 1.46 1.45

# Transactions (trades) 184 57 128 148 204

Total trading days 412

Costs per trade (%) 0.02083

Transaction costs (%) 3.83 1.19 2.67 3.08 4.25

With transaction costs

Cumulative return (%) 11.55 �1.03 28.82 27.73 26.35

Annualised return (%) 7.06 �0.63 17.63 16.96 16.12

Annualised volatility (%) 12.94 12.96 12.90 12.90 12.90

Information ratio 0.55 �0.05 1.37 1.31 1.25
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HONN) are benchmarked against a random

walk and a traditional ARMA model and

evaluated in terms of statistical accuracy and

through a trading simulation on daily data over

the period from January 2000 to February 2009,

the period from August 2007 to February 2009

providing the out-of-sample testing period.

Transaction costs and a continuation filter

devised to reduce false signals and thus also

reduce losses and transaction costs were also

taken into consideration.

As a starting point, an automated combination

of inputs and hidden nodes from a set range was

conducted, producing a very large number of

networks, which were filtered in two steps: the

EV beween the actual EUR/USD rate and the

forecast was used as a measure to find promising

networks, which were then further filtered out

using different statistical performance measures

in order to find a network that was likely to

produce satisfying out-of-sample results.

Despite the time and effort put in developing

these different networks, and the good results

achieved for the EUR/USD out-of-sample,

there is no proof that the models presented are

the ‘best’ possible solution for the period under

review. A possible field where extending this

research is likely to give beneficial results is

model combination, as admittedly many

researchers in finance have come to the

conclusion that individual forecasting models are

misspecified in some dimensions and that the

identity of the ‘best’ model changes over time. In

this situation, it is likely that a combination of

forecasts will perform better over time than

forecasts generated by any individual model that

is kept constant.

Over the volatile period under review, all

models employed were capable of producing

positive returns, but the results of the trading

simulation show that neural networks clearly

outperform the benchmark naı̈ve and ARMA

strategies, both with the implementation

of a confirmation filter and without. More

particularly, the HONN architecture gives the

overall best results in a simple trading simulation;

however, with a more refined trading simulation

with a confirmation filter, the MLP outperforms

all other models, showing a good trading

performance in a much increased volatility

environment.

To conclude, our findings support the view

that neural network architectures seem to have

a better ability to model exchange rate returns

when compared with linear models, indicating

at least that there were non-linearities inherent

in the EUR/USD exchange rate for the

period under review. Furthermore, our results

show that neural networks are still able to

produce superior forecasts, with respect to both

trading performance and statistical accuracy,

even under very volatile market conditions like

those experienced during the financial crisis of

2007–2009.

NOTES
1. The TED spread is the difference between

the 3-month Eurodollar futures contract as

represented by the London Interbank Offered

Rate and the interest rate for 3-month US

Treasury bills.

2. MATLAB programmes developed at CIBEF

were used for the network training of the

different networks.

3. The values 0.05 and 0.055 were chosen

arbitrarily to include a reasonable number of

variables.

4. For the sake of simplicity, the impact of

interest earned or payed on open EUR/USD

Dunis et al
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positions is also not taken into account in this

study. This impact is negilgible because of the

very low EUR and USD interest rates during

the review period.
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APPENDIX

Table A1: Explanatory variables

Number Variable Mnemonics

1 FTSE 100 – PRICE INDEX FTSE100

2 DAX 30 PERFORMANCE – PRICE INDEX DAXINDX

3 S&P 500 COMPOSITE – PRICE INDEX S&PCOMP

4 NIKKEI 225 STOCK AVERAGE – PRICEINDEX JAPDOWA

5 FRANCE CAC 40 – PRICE INDEX FRCAC40

6 MILAN MIB 30 – PRICE INDEX ITMIB30

7 DJ EURO STOXX 50 – PRICEINDEX DJES50I

8 US EURO-$ 3 MTH (FT/ICAP/TR) – MIDDLE RATE ECUS$3M

9 JAPAN EURO-YEN 3 MTH (FT/ICAP/TR) – MIDDLE RATE ECJAP3M

10 GERMANYEU-MARK 3M (FT/ICAP/TR) – MIDDLE RATE ECWGM3M

11 FRANCE EU-FRANC 3M (FT/ICAP/TR) – MIDDLE RATE ECFFR3M

12 UK EURO-3M (FT/ICAP/TR) – MIDDLE RATE ECUK£3M

13 ITALY EURO-LIRE 3M (FT/ICAP/TR) – MIDDLE RATE ECITL3M

14 JAPAN BENCHMARK BOND –RYLD.10 YR (DS) – RED. YIELD JPBRYLD

15 GERMANY BENCHMARK BOND 10 YR (DS) – RED. YIELD BDBRYLD

16 FRANCE BENCHMARK BOND 10 YR (DS) – RED. YIELD FRBRYLD

17 UK BENCHMARK BOND 10 YR (DS) – RED. YIELD UKMBRYD

18 US TREAS.BENCHMARK BOND 10 YR (DS) – RED. YIELD USBD10Y

19 ITALY BENCHMARK BOND 10 YR (DS) – RED. YIELD ITBRYLD

20 JAPANESE YEN TO US $ (WMR) – EXCHANGE RATE JAPAYE$

21 US $ TO UK £ (WMR) – EXCHANGE RATE USDOLLR

22 US $ TO EURO (WMR&DS) – EXCHANGE RATE USEURSP

23 Crude Oil-Brent Cur. Month FOB U$/BBL OILBREN

24 Gold Bullion LBM U$/Troy Ounce GOLDBLN

25 CRB Continuous Commodity Index – PRICE INDEX NYFECRB

Source: Dunis and Williams, 2003.
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Table A3: Restricted ARMA(6, 6) model

Dependent variable: USEURSP

Sample (adjusted): 1/11/2000 7/31/2007

White Heteroskedasticity-consistent standard errors and covariance

Coefficient Standard Error t-statistic Probability

C 0.000289 7.98E-05 3.618189 0.0003

AR(3) 0.384951 0.097475 3.949213 0.0001

AR(4) 0.307724 0.085192 3.612123 0.0003

AR(5) 0.652163 0.084023 7.761678 0.0000

AR(6) �0.372798 0.101367 �3.677714 0.0002

MA(3) �0.386778 0.102149 �3.786406 0.0002

MA(4) �0.291541 0.088721 �3.286026 0.0010

MA(5) �0.652437 0.087727 �7.437166 0.0000

MA(6) 0.345683 0.107152 3.226101 0.0013

R2 0.009394 Mean dependent variable 0.000163

Adjusted R2 0.005355 SD dependent variable 0.005871

SE of regression 0.005855 Akaike information criterion �7.438445

Sum squared residual 0.067262 Schwarz criterion �7.412937

Log likelihood 7339.587 Hannan-Quinn criterion �7.429072

F-statistic 2.325759 Durbin-Watson statistics 1.989575

Probability (F-statistic) 0.017481

Table A4: Ramsey RESET test for restricted ARMA(6, 6) model

Ramsey RESET test:

F-statistic 0.836649 Prob F(2 1960) 0.4333
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Table A5: ARMA(6, 6) correlogram of residual

Sample: 1/11/2000 7/31/2007

Autocorrelation Partial correlation AC PAC Q-statistics Probability

| | | | 8 0.011 0.011 1.0769

| | | | 9 �0.018 �0.018 1.6938 0.193

| | | | 10 �0.011 �0.011 1.9540 0.376

| | | | 11 �0.013 �0.013 2.2914 0.514

| | | | 12 0.013 0.012 2.6200 0.623

| | | | 13 0.005 0.004 2.6652 0.751

| | | | 14 0.011 0.011 2.9213 0.819

| | | | 15 �0.012 �0.012 3.2155 0.864

| | | | 16 0.025 0.025 4.4190 0.817

| | | | 17 0.004 0.004 4.4459 0.880

| | | | 18 0.011 0.010 4.6752 0.912

| | | | 19 0.031 0.032 6.6494 0.827

| | | | 20 0.005 0.004 6.6975 0.877

Table A6: Variable selections

Pool 1 Pool 2 Pool 3

Best lags (19) Highest cross-correlation (18) Highest cross-correlation (14)

USEURSP(�12) FSTE100(�4) FSTE100(�4)

FSTE100(�4) SPCOMP(�17) SPCOMP(�17)

DAXINDX(�10) SPCOMP(�12) SPCOMP(�12)

SPCOMP(�17) SPCOMP(�11) SPCOMP(�11)

JAPDOWA(�1) SPCOMP(�2) SPCOMP(�2)

FRCAC40(�17) SPCOMP(�10) JAPDOWA(�1)

ITMIB(�17) JAPDOWA(�1) FRCAC40(�17)

DJES50I(�17) FRCAC40(�17) US_YC(�15)

US_YC(�15) DJES50I(�17) GER_YC(�1)

JAP_YC(�8) US_YC(�15) FR_YC(�7)

GER_YC(�1) GER_YC(�1) JAPAYE$(�16)

FR_YC(�7) GER_YC(�3) JAPAYE$(�5)

UK_YC(�6) GER_YC(�12) JAPAYE$(�7)

IT_YC(�10) FR_YC(�7) NYFECRB(�9)

JAPAYE$(�16) JAPAYE$(�16)

USDOLLR(�10) JAPAYE$(�5)

OILBREN(�5) JAPAYE$(�7)

GOLDBLN(�14) NYFECRB(�9)

NYFECRB(�9)
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Table A7: Network training parameters

Parameter MLP RNN HONN

Number of cycles/epochs 5 5 5

Number of training blocks 10 15 10

Learning rate 0.001 0.001 0.001

Momentum rate 0.001 0.001 0.001

Table A8: Weight matrix

SPCOMP

(�12)

SPCOMP

(�10)

FRCAC40

(�17)

FR_YC

(�7)

JAPAYE$

(�16)

JAPAYE$

(�5)

JAPAYE$

(�7)

Bias

hT
[1]

�0.7085 �0.2968 �0.1763 �0.2895 �0.2532 �0.2246 0.2328 �0.0076

hT
[2]

�0.0872 �0.3562 �0.5407 �0.2520 �0.5351 �0.5678 0.1006 �0.0020

hT
[3]

�0.1115 �0.2557 �0.0670 �0.4819 �0.1592 �0.1330 0.1941 0.0208

Table A9: MLP weight matrix optimisation in-sample and out-of-sample performance

MLP weight matrix

optimisation (in-sample)

MLP weight matrix

optimisation (out-of-sample)

Trading performance

Cumulative return (%) 49.33 �21.61

Annualised return (%) 6.35 �13.22

Annualised volatility (%) 9.31 12.93

Information ratio 0.68 �1.02

Maximum drawdown (%) �15.23 �31.45

Profits T-statistics 30.19 �20.74

Total trading days 1957 412

# Winning periods 1003 201

# Losing periods 954 211

Winning periods (%) (=CDC) 51.25 48.79

Statistical performance

Mean absolute error 0.0045 0.0057

Mean absolute percentage error (%) 101.44 105.79

Root mean squared error 0.0059 0.0082

Theil’s inequality coefficient 0.9696 0.9479
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Table A10: MLP, RNN and HONN in-sample performance

MLP RNN HONN

Trading performance

Cumulative return (%) 77.33 49.80 99.93

Annualised return (%) 9.96 6.41 12.87

Annualised Volatility (%) 9.30 9.31 9.28

Information ratio 1.07 0.69 1.39

Maximum drawdown (%) �21.79 �14.15 �17.71

Profits T-statistics 47.38 30.47 61.32

Total trading days 1957 1957 1957

# Winning periods 1038 1034 1053

# Losing periods 919 923 904

Winning periods (%) (=CDC) 53.04 52.84 53.81

Maximum gain in winning periods (%) 2.33 2.33 3.38

Maximum loss in losing periods (%) �3.38 �3.38 �2.07

Average gain in winning periods (%) 0.46 0.45 0.46

Average loss in losing periods (%) �0.43 �0.45 �0.43

Average gain/loss ratio 1.06 1.00 1.08

# Periods market returns rise 991 991 991

# Winning rise periods 679 530 533

Winning rise periods (%) 68.52 53.48 53.78

# Periods market returns fall 966 966 966

# Winning fall periods 359 504 520

Winning fall periods (%) 37.16 52.17 53.83

# Transactions (trades) 815 760 994

Winning trades (%) 46.13 51.05 47.08

Losing trades (%) 53.87 48.95 52.92

Statistical performance

Mean absolute error 0.0045 0.0045 0.0045

Mean absolute percentage error (%) 106.83 101.08 99.76

Root mean squared error 0.0059 0.0059 0.0059

Theil’s inequality coefficient 0.8637 0.9191 0.9827

Training correlation 0.0744 0.0881 0.1459

Test correlation 0.0602 0.0426 0.0459
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Table A11: MLP model specifications

———–Configuration 2 of 11———–

Configuration=

FSTE100(�4)

SPCOMP(�12)

SPCOMP(�11)

SPCOMP(�2)

JAPDOWA(�1)

FRCAC40(�17)

GER_YC(�1)

JAPAYE$(�16)

JAPAYE$(�5)

Hidden nodes: 6 Net weights:

Weights=

0.1108 0.1049 0.4755 �0.0202 0.3702 �0.1624

�0.2613 �0.2528 0.0896 0.0326 �0.2048 �0.0607

�0.8166 0.2895 0.0525 0.1718 �0.5283 0.3005

0.0837 �0.2248 0.4371 0.0498 0.1116 �0.3766

0.0345 0.0017 0.5119 0.0849 0.3047 �0.6327

�0.4068 �0.7158 0.1906 �0.4699 0.4827 0.3879

�0.1293 �0.1151 �0.0844 �0.0642 �0.1308 0.8208

0.2453 �0.0419 0.5115 0.0167 0.3865 0.2347

0.0438 �0.2680 �0.3157 �0.1867 0.4189 �0.0118

Net bias: bias =

0.0070 �0.0044 �0.0216 �0.0112 0.0272 0.0016

CDC: 53.04%

Average correlation in test and training period: 0.067283
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Table A12: RNN model specifications

———–Configuration 2 of 13———–

Configuration=

FSTE100(�4)

SPCOMP(�17)

SPCOMP(�12)

SPCOMP(�11)

SPCOMP(�2)

FRCAC40(�17)

US_YC(�15)

FR_YC(�7)

JAPAYE$(�16)

JAPAYE$(�5)

JAPAYE$(�7)

Input nodes: 11

Net weights:

Weights=

Columns 1 through 9

0.1493 �0.0644 0.3203 0.0257 0.0239 0.0666 0.4116 0.3549 0.0207

�0.1825 0.3946 �0.1520 0.2552 0.3250 0.0326 0.2085 �0.0538 �0.3645

0.0871 �0.3069 �0.0746 0.0876 �0.4119 �0.3677 �0.2609 �0.2713 �0.0236

�0.0703 0.1514 0.0973 0.4380 �0.0718 0.0165 �0.3047 �0.2505 0.0198

�0.2479 0.3953 �0.3414 0.1122 0.4585 �0.0262 0.0693 �0.2021 0.2217

Columns 10 through 11

0.4029 �0.3510

0.2503 �0.3914

�0.3465 0.3398

0.1989 0.2485

�0.1741 0.1513

Net bias:

Bias=

1.5419

0.7702

�0.0245

�0.7859

�1.5484

Average correlation in test and training period: 0.065348

CDC: 52.84%
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Table A13: HONN model specifications

———–Configuration 26 of 52———–

Configuration=

SPCOMP(�11)

JAPDOWA(�1)

GER_YC(�1)

JAPAYE$(�16)

JAPAYE$(�7)

Input nodes: 15

Net weights:

Weights=

Columns 1 through 10

0.2120 0.0666 �0.0185 �0.4401 �0.2442 0.0643 �0.3460 0.0421 0.1586

0.1063

Columns 11 through 15

0.4908 �0.1702 0.1294 0.2497 0.2387

Net bias:

Bias=

0

Average correlation in test and training period: 0.095918

CDC: 53.81%
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Table A14: Statistical forecasting accuracy measures

Performance measure Description

Mean absolute error (MAE)
MAE ¼ 1

T

PT
t¼1

ŷt � yt

�� �� (11)

Mean absolute percentage error (MAPE) MAPE ¼ 100
T

PT
t¼1

ŷt�yt

yt

��� ��� (12)

Root mean squared error (RMSE) RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

PT
t¼1

ŷt � ytð Þ
2

s
(13)

Theil’s inequality coefficient (Theil’s U) U ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

PT

t¼1
ŷt�ytð Þ

2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

PT

t¼1
ŷtð Þ

2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

PT

t¼1
ytð Þ

2

q (14)

Correct directional change (CDC) CDC ¼ 100
N

PN
t¼1

Dt where Dt=1 if ŷt� yt40, else Dt=0 (15)

Source: (Dunis and Williams, 2003).
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Table A15: Trading performance measures

Performance measure Description

Cumulative return RC ¼
PN
t¼1

Rt (16)

Annualised return RA ¼ 252� 1
N

PN
t¼1

Rt (17)

Annualised volatility sA ¼
ffiffiffiffiffiffiffiffi
252
p

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N�1

PT
t¼1

Rt � �R
� �2

s
(18)

Information ratio SR ¼ RA

sA (19)

Maximum drawdown Maximum negative value of
P

RT

MD ¼ min
t¼1; ...;N

RC
t � max

t¼1; ...; t
RC

i

� �� � (20)

Profits t-statistics t � statistics ¼
ffiffiffiffiffi
N
p
� RA

sA (21)

Total trading days TTD ¼ Number of all Rts (22)

# Winning periods WP ¼
PN
t¼1

Ft where Ft=1 if Rt40, else Ft=0 (23)

# Losing periods LP ¼
PN
t¼1

Gt where Gt=1 if Rtp0 else Gt=0 (24)

Percentage of winning periods

(=CDC)

PWP ¼ WP
TTD

(25)

Maximum gain in winning periods MaxGain ¼ max
t¼1; ...;T

Rt (26)

Maximum loss in losing periods MinGain ¼ min
t¼1; ...;T

Rt (27)

Average gain in winning periods AG ¼ Sum of all Rt40
WP

(28)

Average loss in losing periods AL ¼ Sum of all Rto0
LP

(29)

Average gain/loss ratio AGLR ¼ AG
AL

(30)

# Periods market returns rise MRR ¼
PN
t¼1

Ht where Ht=1 if yt40, else Ht=0 (31)

# Winning rise periods WRP ¼
PN
t¼1

Kt where Kt=1 if Rt40 and yt40, else Kt=0 (32)

Percentage of winning rise periods PWRP ¼ 100�WRP
MRR

(33)

# Periods market returns fall MRF ¼
PN
t¼1

Lt where Lt=1 if Yto0, else Lt=0 (34)
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# Winning fall periods WFP ¼
PN
t¼1

Pt where Pt=1 if Rt40 and yto0, else Pt=0 (35)

Percentage of winning fall periods PWFP ¼ 100�WRP
MRF

(36)

# transactions (trades) NT ¼
PN
t¼1

Qt where Qt=1 if trading signaltatrading signalt�1,

else Qt=0

(37)

Percentage of winning trades WT ¼ 100�

PN
t¼1

St

NT
where St=1 if transaction profitt40, else St=0 (38)

Percentage of losing trades LT ¼ 100�

PN
t¼1

Ut

NT
where Lt=1 if transaction profittp0, else Lt=0 (39)

Source: (Dunis and Williams, 2003).

Table A15 continued

Performance measure Description

Figure A1: Hinton graph.
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