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ABSTRACT This article studies the valuation of multivariate equity options by

determining the joint risk-neutral distribution of the underlying stock prices by means

of copulas. In contrast to previous work that concentrates on two underlyings this

study considers the general multivariate case. In particular, tri-variate and six-variate

elliptical and Archimedean copula families are calibrated empirically in order to find

the copula that best fits the observed dependence structure. In addition, based on price

data from single underlying options traded at the European Exchange (Eurex) the

valuation of typical multivariate options is compared between Black–Scholes-like and

alternative copula-based valuation models. Remarkable differences and thus a high

model risk become evident, accompanied by a distinct parameter sensitivity in the

copula models.
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INTRODUCTION
The importance of multivariate equity options

in the international financial markets is

increasing steadily. Well suited for portfolio

hedging purposes and active market strategies

these derivatives have experienced rapid growth
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in recent years. This holds true for both the

over the counter (OTC) and the retail markets

where these days multivariate equity options are

often found to be embedded components of

structured financial products. For instance, the

gross market values of outstanding equity-linked

options in the OTC market amounted to

US$876 billion by mid-2007, with an annual

growth rate of 67 per cent (source: Bank for

International Settlements). The trading volume of

exchange-tradable structured products in

Germany as the largest European retail market

reached nearly h200 billion in 2007, which

constitutes about a 50 per cent increase

compared to 2006 (source: Deutsches Derivate

Institut). The standard valuation models for

multi-underlying contingent claims are based on

the assumption of a multivariate geometric

Brownian motion for the price process of the

underlying securities,1,2 which implies that

the underlying prices (returns) are jointly

log-normally (normally) distributed. Empirically,

however, it is a well-known stylized fact that

stock return distributions usually depart from

the assumption of normality. Furthermore, the

risk-neutral return distribution induced by

standard option pricing models is not compatible

with the normality dogma against the background

of proven phenomena such as a volatility smile or

skew and a non-flat term structure of volatility.

This suggests that, by using the standard

(log-)normal distribution, multivariate options

can be misvalued significantly, which motivates

the search for alternatives.

In the literature, many recent models for

valuing multivariate options rely on the theory

of copulas. Copulas allow the separate modeling

of the marginal distributions and the dependence

structure of the variables. Rosenberg,3 for

example, uses a Plackett copula to couple the

risk-neutral marginal distributions extracted

from univariate options data. Cherubini and

Luciano4 also link risk-neutral marginals with

various Archimedean copula families. While

these two studies estimate the copulas statically,

Van den Goorbergh et al5 employ a dynamic

approach with the copula parameter depending

on conditional volatility, a technique that was

recently extended further by the work of Zhang

and Guegan.6 All of these papers study options

on equity indices. Rosenberg7 proposes non-

parametric modeling and applies it to bivariate

currency options. Saita et al8 compare the prices

of five-variate equity options produced under

the multivariate normal assumption with those

generated by t-copulas with arbitrary degrees of

freedom. However, a thorough calibration of the

copulas and marginal distributions to market

data is missing.

This article studies the valuation of a range of

multivariate equity options by determining the

joint risk-neutral distribution of the underlying

stock prices using copulas. By considering the

general multivariate case it extends previous

work, which concentrates mainly on two

underlying options. A range of elliptical and

Archimedean copulas is calibrated empirically to

stock returns in order to find the best fit to the

observed dependence structure, while stock

option data are used to extract marginal

distributions. Based on this setting, which largely

extends the former setup chosen by Saita et al,8

the valuation of several types of multivariate

options is assessed and compared. A parameter

sensitivity analysis is conducted in order to

shed further light on the mechanics of the

copula-based valuation approaches. The results

suggest a high degree of model risk inherent in

the option valuation as well as pronounced

parameter sensitivity in the models themselves.
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The article is organized as follows. The next

section provides a brief introduction to the theory

of copulas. The subsequent section outlines the

copula-based valuation approach for multivariate

options. The methodology and results of the

empirical application are described in the

following section. The last section summarizes

and provides an outlook for further research.

ESSENTIALS ON COPULAS

Definition and main characteristics

Starting with a brief introduction to the theory

of copulas (see, for example, Nelsen9 as a standard

reference) elementary terms and results are

outlined first. A copula is a multivariate

distribution function C defined on [0, 1]d with

uniformly distributed margins,

Cðu1; . . . ; udÞ ¼ PrðU1pu1; . . . ;UdpudÞ;

where U1,y, UdBU(0, 1).

The fundamental result of the copula theory

is the well-known Sklar10 theorem. It states

that for any real-valued random variables

X1,y, Xd with joint distribution function F

and univariate marginal distribution functions

F1,y, Fd there exists a copula C such that

Fðx1; . . . ; xdÞ ¼ CðF1ðx1Þ; . . . ;FdðxdÞÞ: ð1Þ

Conversely, given a copula C and univariate

distribution functions F1,y, Fd, the function F

defined by (1) is a d-dimensional distribution

function with univariate margins F1,y, Fd.

Furthermore, if F1,y, Fd are all continuous C is

unique and referred to as the copula of

X1,y, Xd. It follows that, in the case of

continuous margins, the joint distribution

function can be decomposed into the margins

and the functional dependence of the random

variables represented by their unique copula. For

practical purposes, the marginal distributions can

thus be modeled separately from the dependence

structure. The combination of arbitrary margins

and copulas yields a flexible approach to the

construction of multivariate distributions. In the

other direction, knowledge of the joint

distribution function and the margins determine

the copula by

Cðu1; . . . ; udÞ ¼ FðF�1
1 ðu1Þ; . . . ; F

�1
d ðudÞÞ;

ð2Þ

where ui,y, udA[0, 1] and Fi
�1(ui)¼

inf{xiAR:Fi(xi)Xui} denotes the pseudo-inverse

of Fi. This technique for the construction of

copulas is known as the inversion method.

If a copula is absolutely continuous it has a

density, which then equals the d-th mixed partial

derivative of C with respect to u1,y, ud.

Furthermore, it follows from (1) that the copula

density can be expressed as the quotient between

the joint density f of X1,y, Xd and the product

of the marginal densities fi, i¼ 1,y, d:

c ðu1; . . . ; udÞ ¼
qdCðu1; . . . ; udÞ

qu1 . . . qud

¼
f ðx1; . . . ; xdÞ

Pd
i¼1 fiðxiÞ

: ð3Þ

A useful property of copulas for modeling

stochastic dependence is their invariance under

strictly monotone transformations of the random

variables (Embrechts et al.11 p. 337). Formally, let

X1,y, Xd be continuous random variables with

(unique) copula C. If a1,y, ad are strictly

increasing functions the transformed random

variables a1(X1),y, ad(Xd) have the same

copula C . This invariance is particularly useful

The valuation of multivariate equity options
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for financial applications in which logarithmic

transformations are used frequently.

Important copulas for financial

applications

Elliptical copulas

Elliptical copulas are commonly used in financial

applications. They describe the dependence

structure of elliptical distributions and can be

derived using (2) (for further details see

Embrechts et al,11 pp. 357 ff.). Elliptical copulas

are characterized by a range of parameters and

can be fitted flexibly to data, although all of these

copulas are radially symmetric. Their major

disadvantage is the absence of closed-form

expressions. The most prominent elliptical

copulas are the Normal and the t-copulas.

The Normal copula, also known as the Gaussian

copula, is defined as

Cðu1; . . . ; ud;SÞ ¼ FSðF�1ðu1Þ; . . . ;F�1ðudÞÞ

¼

ZF�1ðu1Þ

�1

� � �

ZF�1ðudÞ

�1

1

ð2pÞd=2jSj1=2

exp �
1

2
y0S�1y

� �
dy; ð4Þ

where FS denotes the multivariate normal

distribution function with correlation matrixP
and F�1 as the quantile function of the

univariate standard normal distribution.

Following (3) the density of the Normal copula

reads as follows:

cðu1; . . . ; ud;SÞ ¼

1

ð2pÞd=2jSj1=2
exp �

1

2
B0S�1B

� �
1

ð2pÞd=2
exp �

1

2
B0B

� �

¼
1

jSj1=2
exp �

1

2
B0ðS�1 � IÞB

� �
; ð5Þ

with B¼ (F�1(u1),y,F�1(ud))
0 and I as the

d-dimensional identity matrix. The Normal

copula is the copula of the multivariate Gaussian

distribution and is thus inherent in many

standard models in finance.

Another prominent elliptical copula is the

t-copula. Compared to the Normal copula it can

model stronger dependencies in the distribution

tails (for details on tail dependence see, for

example, Embrechts et al,11 pp. 348 ff.). The

t-copula is defined via (2) as

Cðu1; . . . ; ud; n;SÞ ¼ tn;Sðt
�1
n ðu1Þ; . . . ; t

�1
n ðudÞÞ

¼

Zt�1
n ðu1Þ

�1

� � �

Zt�1
n ðudÞ

�1

G
nþ d

2
jSj�

1
2

� �

G
n
2

� �
ðnpÞ

d
2

� 1þ
1

n
y0S�1y

� ��nþd
2

dy; ð6Þ

where tn,
P stands for the distribution function of

the multivariate t-distribution with n40 degrees

of freedom and correlation matrix
P

. tn
�1

represents the quantile function of the univariate

t-distribution with n degrees of freedom and G
refers to the gamma function. The density of the

t-copula is given by

c ðu1; . . . ; ud; n;SÞ ¼
G

nþ d

2

� �
G

v

2

� �h id�1

jSj�
1
2

G
nþ 1

2

� �� 	d

�
ð1þ 1

nB
0S�1BÞ�

nþd
2

Qd
i¼1 1þ

B2
i
n

� ��nþ1
2

; ð7Þ

with Bi¼ tn
�1(ui), i¼ 1,y, d, and B¼

(tn
�1(u1),y, tn

�1(ud))
0. In comparison to the

Normal copula the t-copula has one additional

parameter – the degrees of freedom n, which

controls the dependence in the tails. This

Slavchev and Wilkens
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dependence increases for decreasing values of n.
The t-copula converges to the Normal copula

for n-N.

Archimedean copulas

Another important class of copulas is given by

the Archimedean copulas, which are easily

constructed by means of univariate generator

functions and possess closed forms. Archimedean

copulas can model a variety of dependence

structures. In particular, unlike elliptical copulas,

they can reflect asymmetrical dependence

patterns. Their drawback is the small number

of parameters, which reduces the flexibility.

Formally, let f:[0, 1]-[0,N] be a continuous,

strictly decreasing function with f(1)¼ 0 and

f(0)¼N and let f�1 be its inverse function

with f�1(0)¼ 1 and f�1(N)¼ 0. Then the

function C:[0, 1]d-[0, 1] defined as

Cðu1; . . . ; udÞ ¼ f�1
ðfðu1Þ þ � � � þ f ðudÞÞ

ð8Þ

is a d-dimensional copula if and only if f�1 is

d-monotone on [0,N).12 The function C is

referred to as an Archimedean copula and f as the

corresponding generator function. The density

of the Archimedean copulas is given by

c ðu1; . . . ; udÞ ¼ f�1ðdÞ
ðfðu1Þ þ � � �

þ fðudÞÞ
Yd

i¼1

f0ðuiÞ; ð9Þ

where f�1(d)
¼ qdf�1/qu1y qud is d-th mixed

partial derivative of the inverse generator.

For dimensions dX3 Archimedean copulas

(in their commonly used form with completely

monotone generators) can represent only positive

dependencies (see Embrechts et al.11, p. 374). This

constraint is of less concern for practical

applications in equity markets as negative

dependencies are usually rare in that context.

A more important property of the Archimedean

copulas is that all their k-dimensional margins,

k¼ 2,y, d�1, are identical. This property

suggests that each two variables have the same

‘degree’ of dependence, which turns out to be

very restrictive for more than two dimensions.

There are three Archimedean families that are

most commonly used in the financial context

and that have multivariate extensions for

dimensions greater than two – the Gumbel,

Clayton and Frank family. The Gumbel copula is

able to model dependencies in the right tails of

the variables. The Gumbel family given by

Cyðu1; . . . ; udÞ ¼ exp �
Xd

i¼1

ð� ln uiÞ
y

" #1
y

0
@

1
A
ð10Þ

is generated by fy(t)¼ (�lnt)y, for yX1. For

modeling dependencies in the left tails, an

appropriate family is the Clayton one, which has

the form

Cyðu1; . . . ; udÞ ¼
Xd

i¼1

u�yi

 !
� d þ 1

" #�1
y

:

ð11Þ

It is generated by fy(t)¼ 1/y(t�y�1) with

y40. The Frank copula is the only radially

symmetric Archimedean copula. Like the

Normal copula, the Frank copula cannot model

dependencies in the tails. Its generator is

fyðtÞ ¼ � ln e�yt�1
e�y�1

, with y40, and the family

has the form

Cyðu1; . . . ; udÞ ¼
1

y
ln 1þ

Qd
i¼1 ðe

�yui � 1Þ

ðe�y � 1Þd�1

 !
:

ð12Þ
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For all these Archimedean families an increase

in the parameter y implies a stronger

dependence.

VALUATION APPROACH FOR

MULTIVARIATE EQUITY

OPTIONS
Building on the property of copulas to bind the

univariate marginal distributions to the joint

distribution this section presents a valuation

model for multivariate equity derivatives.

A multivariate option is a financial instrument

whose payoff depends on the prices of several

underlying securities. Generally, in the equity

case let h(S1,y, Sd) be a function of d stock

prices Si at the option’s maturity and g(x) be

a univariate payoff function. Accordingly, a

multivariate, non-path-dependent and

European-style equity option can be represented

as g(h(S1,y, Sd)) (see also Cherubini and

Luciano,4 p. 70).

A variety of option types can be constructed

by combining different functions g and h.

It is well known that the option value can be

expressed as the discounted risk-neutral

expected value of the payoff. Thus, the first step

in valuing a multivariate option consists in

determining the joint risk-neutral distribution.

Sklar’s theorem allows a simplification of this

task by separately modeling the univariate

risk-neutral margins and the risk-neutral copula.

In the following analysis, the univariate risk-

neutral margins are extracted by means of

Shimko’s method.13 The volatility smile is

thereby assumed to be a quadratic function,

s(K)¼ a0þ a1Kþ a2K
2, where K denotes the

strike price. Using this representation a

differentiation of the seminal Black and

Scholes14 formula with respect to the strike

yields the risk-neutral distribution function F i
Q

of the stock price Si at maturity:

FQ
i ðSiÞ ¼ 1� Fðd2ðSiÞÞ þ Sifðd2ðSiÞÞ

ða1i þ 2a2iSiÞ
ffiffiffiffi
t;
p

ð13Þ

with

d2 ¼
ln

Si;0

Siert �
1
2
s2

i ðSiÞ
ffiffiffi
t
p

siðSiÞ
ffiffiffi
t
p ; i ¼ 1; . . . ; d;

where f(x) and F(x) represent the density and

the distribution function of the standard normal

distribution at the point x, respectively. Si,0

stands for the current underlying price, r the

(continuously compounded) risk-free interest

rate and t the time-to-maturity.

After extracting the risk-neutral margins the

dependence structure must be identified. As

multivariate equity options are usually traded

over the counter one cannot easily obtain option

prices in order to extract the risk-neutral copula

from market prices. Owing to this lack of data

it is assumed that the risk-neutral and the

real-world copulas are identical. Rosenberg,7 for

instance, argues that under general conditions

this is a reasonable assumption. Relying on

historical (continuous) asset returns different

copula families can then be fitted to the data

(refer to Cherubini and Luciano4 for a similar

calibration to historical returns). As the returns

are strictly monotone transformations of asset

prices both have identical copulas.

The option values can be determined by

simulation15 through repeating the following

three steps M times:

1. Simulation of one vector from the d-variate

copula,16 (u1*,y, ud*)BCy.

2. Transformation of (u1*,y, ud*) to (x1*,y, xd*)

via the univariate inverse risk-neutral

distributions x1*¼F i
Q(�1)(ui*), i¼ 1,y, d.

Slavchev and Wilkens
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3. Evaluation of the discounted payoff

Om*¼ e�rtg(h(x1*,y, xd*)).

The option value is then approximated by the

mean of the discounted payoffs:

O ¼
1

M

XM
m¼1

O�m: ð14Þ

EMPIRICAL APPLICATION

Methodology and data

The following empirical investigation aims at

assessing the valuation of multivariate equity

options based on real-world data from the

European derivatives market. The study

searches to reveal valuation implications arising

from the use of dependence structures that

differ from the Normal copula, the implicit

assumption in Black–Scholes-like option

valuation models. Henceforth, the focus lies on

European-style calls on the maximum of

several assets (call-on-maximum), puts on the

minimum of several assets (put-on-minimum)

and multivariate digital put options. The

former two types only make sense when the

underlying prices are close to each other at

inception. Therefore, the asset prices, Si,0, are

normalized to the common level S by scaling

them with the factors, ai¼ S/Si,0, i¼ 1,y, d,

so that the payoff functions read as follows:

maxðmaxða1S1; . . . ; adSdÞ � K ; 0Þ

for the call-on-maximum and

maxðK �minða1S1; . . . ; adSdÞ; 0Þ

for the put-on-minimum option, with Si as the

spot price of stock i at maturity and K as the

strike price. The digital put should pay D if all

underlying options fall below their strikes.

Hence, the payoff is formalized as D
Q

i¼ 1
d

1(SipKi).

The empirical application refers to

multivariate call-on-maximum, put-on-minimum

and digital options on three different stock

baskets. The first basket consists of six companies

from the Dow Jones Euro Stoxx 50 with liquid

single stock options, the other two each

comprise a sub-selection of three of these titles –

Allianz, Münchener Rück and AXA (‘insurance

basket’) and SAP, Nokia and Alcatel-Lucent

(‘technology basket’).

In order to extract the risk-neutral

distributions for the six underlying options,

corresponding option data from the Eurex,

provided by Deutsche Börse, Frankfurt/Main,

is used. Option settlement prices that refer to

the close of the trading day at 17:30 are

collected. All single stock options at the Eurex

are American-style (for details on Eurex

products see Eurex17). The reference date is

chosen as 16 June 2005, although additional

calculations are conducted for the period from

1 June through 15 June 2005 in order to enable

stability and sensitivity studies. All available

options with maturities in September and

December 200518 are considered, leading

to times-to maturity of approximately 3 and

6 months. Synchronized stock prices are

obtained from the electronic XETRA trading

system at the Frankfurt Stock Exchange. The

underlying options do not exhibit dividend

payments in the relevant time period. 3-month

and 6-month Euribor rates serve as proxies for

the risk-free interest rates and are obtained from

Bloomberg.

The first step to deriving univariate risk-neutral

distributions consists in extracting the volatility

smile from the option prices. As common

The valuation of multivariate equity options
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practice the analysis refers to generally more

liquid out-of-the-money calls and puts, that is,

implied volatilities for strikes below (above) the

current stock price are calculated from puts

(calls).19 The option data are cleaned as follows.

Options with no open interest are removed from

the database because missing open positions

render settlement prices, set by the exchange,

artificial and usually non-tradeable. Furthermore,

options with prices below 10 times the

minimum tick size, that is, 10 euro cents, are

excluded in order to avoid bias associated with

very small option (time) values. Both criteria

mainly affect deep out-of-the-money options.

The remaining options are checked for potential

violations of distribution-free arbitrage

boundaries and the fulfillment of the put-call

inequality for otherwise identical American-style

options (Hull20, p. 211). Except from rounding

differences the latter conditions are fulfilled

throughout the option data set.

Implied volatilities are calculated via binomial

trees and then used to estimate the coefficients in

Shimko’s quadratic regression.13 Figure 1

displays the regression results for options on

Allianz with maturity in September (left) and

December (right) on 1, 8 and 15 June. The

typical volatility skew is modeled perfectly by

the quadratic function, the adjusted R2 amount

to more than 0.99. Similar results are obtained

for all 144 regressions over the six underlying

options, 12 valuation days and two maturities.

As depicted the volatility skews in the Allianz

example are quite stable over time in both

maturity buckets.

With the help of the estimated regression

coefficients formula (13) provides the

corresponding implied univariate risk-neutral

distribution functions.21 A volatility skew, for

instance, is thus translated into a density that is

more left-skewed and exhibits fatter left tails

compared to a log-normal distribution.

Risk-neutral copulas

As discussed there are no direct means of

estimating risk-neutral copulas in the absence of

liquid tradeable prices for multivariate options.

In the following analysis, the copulas under the

real measure are referred to as adequate proxies.
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Figure 1: Volatility skews of Allianz options on several trading days, fitted to quadratic

functions; (a) Maturity: September 2005; (b) Maturity: December 2005.
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In theory, copulas for the 3- and 6-month

returns are required. Following the simplified

assumption that copulas for different time

horizons are identical, that is, the copulas for

returns and their respective sums must be equal,

the copula inference is based on the weekly

(continuously compounded) stock returns for

the 3 years preceding the reference date.22

Descriptive statistics of the return series as well as

the standard (Pearson) correlations of the six

companies are shown in Table 1. All series

exhibit rather high volatility, caused mainly by

the hectic price movements in the first 1.5 years

of the period July 2002 through June 2005. The

correlation between all stocks is found to be

positive, although correlations within the

insurance basket are much higher than those

within the technology basket.

The two elliptical copulas – Normal and t – as

well as the three Archimedean copulas – Gumbel,

Clayton, and Frank – are fitted to the historical

time series. As the univariate distributions are

given exogenously, the appropriate estimation

technique is the canonical maximum likelihood

(CML) method, which estimates only the

copula.23,24 The results of the estimation

including values for the log-likelihood and

Akaike’s criterion (AIC) are shown in Table 2.

Table 1: Return statistics and correlations of the basket constitutents

Min (%) Max (%) Mean (%) SD (%)

Technology SAP SAP �23.22 30.11 0.19 (9.70) 6.40 (46.15)

Nokia NOK �21.38 16.11 0.03 (1.57) 5.96 (43.01)

Alcatel-Lucent ALC �33.12 27.86 �0.05 (�2.39) 8.06 (58.13)

Insurance Allianz ALV �19.31 19.01 �0.42 (�21.72) 6.10 (44.02)

Muenchener Rueck MUV �32.71 20.56 �0.52 (�27.22) 6.55 (47.25)

AXA AXA �21.17 18.43 0.06 (3.30) 5.60 (40.35)

SAP NOK ALC ALV MUV AXA

SAP 1.0000 0.4951 0.6078 0.6502 0.6359 0.7130

NOK — 1.0000 0.3965 0.4019 0.4215 0.6421

ALC — — 1.0000 0.4659 0.4219 0.6132

ALV — — — 1.0000 0.8099 0.6811

MUV — — — — 1.0000 0.6739

AXA — — — — — 1.0000

The upper part of the table provides the weekly return statistics (N=156) of the basket constituents for the

period July 2002 through June 2005 (3 years). The six stocks are divided further into two sub-baskets,

‘Technology’ and ‘Insurance’. For means and standard deviations annualized figures are additionally shown in

parentheses. The lower part of the table provides the standard (Pearson) correlations between the basket titles

during the given time period.
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On the basis of the AIC values the t-copula

exhibits clearly the best fit for all baskets. For the

three-dimensional cases the second-best fit is

observed for the Frank copula, whereas for the

six-assets basket the Normal copula has the

second-lowest AIC value.

Simulation of option values

On the basis of the univariate risk-neutral

distributions and the calibrated copulas,

theoretical values of non-path-dependent

multivariate options are derived by simulating

the joint risk-neutral distribution, with 100 000

simulation runs. The value of a multivariate

digital option equals the discounted value of the

copula at the strikes and can thus be calculated

directly. The values of the underlying options for

the call-on-maximum and put-on-minimum

option are normalized to a level of S¼ 100 for

all baskets. Values of at-the-money options with

a strike of K¼ 100, out-of-the-money options

with a strike at K¼ 110 for calls (K¼ 90 for

puts) as well as in-the-money options with a

strike at K¼ 90 for calls (K¼ 110 for puts) are

calculated. The payout of the digital options is

set to D¼ 100. The out-of-the-money and

in-the-money strikes for the digitals are selected

at 10 per cent above and 10 per cent below

the current stock price.

In standard models for valuing multivariate

derivatives a multivariate normal distribution for

the return distribution is assumed, thus implying

a Gaussian copula as the ‘link’ between the

marginal distributions. Below, the option values

based on the two elliptical and the three

Archimedean copulas are compared. Tables 3

and 4 display all option values with maturity in

3 and 6 months, respectively.

Some elementary plausibility checks are

fulfilled. For instance, the value of the call-on-

maximum and the put-on-minimum options for

the single sectors must be lower than or equal to

those on the entire basket. The opposite holds in

Table 2: Estimated parameters and goodness-of-fit for all copulas

Technology Insurance All stocks

y c(y) AIC y c(y) AIC y c(y) AIC

Gumbel 1.58 66.04 �130.08 2.20 147.79 �293.58 1.59 221.63 �441.26

Clayton 0.82 49.89 �97.78 1.77 130.91 �259.82 0.85 195.24 �388.48

Frank 4.04 67.38 �132.76 7.40 152.55 �303.10 4.07 222.97 �443.94

Normal — 67.02 �128.04 — 149.20 �292.40 — 303.94 �577.88

t 3.64 81.58 �155.16 2.44 183.57 �359.14 3.86 354.39 �676.78

The table displays the results of the maximum-likelihood estimation of the copulas when fitted to the historical

return data of the basket constituents. y is the copula’s characteristic parameter (the degrees-of-freedom in case

of the t-copula), while c(y) stands for the corresponding log-likelihood value and AIC=�2c(y)þ 2q with q as

the number of estimated parameters. Note that the two elliptical copulas require an estimation of the correlation

matrices
P

(see definitions (4) and (6)), although the resulting figures are not shown here.
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the case of the multivariate digital puts. The

options on the basket of six underlying options

must be worth less than those on the compilation

of three titles. In general, the values of the

call-on-maximum and put-on-minimum

derivatives should be the higher the weaker the

dependence between the underlying options.

Likewise, for multivariate digital options,

the opposite should hold. For instance, the

correlations of the elliptical copulas and the ŷs

of the Archimedean copulas are higher for the

insurance basket compared to the technology

basket. Hence, call-on maximum and put-on-

minimum derivatives on the technology basket

are more valuable than those on the insurance

basket for all copulas. The opposite is true for

the digital options.

From Tables 3 and 4 one can indeed see that

large valuation discrepancies are evident. The

relative differences range from approximately

1.2 per cent to a remarkable 75.2 per cent for the

digital derivatives. For the other option types,

Table 3: Values of the multivariate equity options with 3 months to maturity

Technology Insurance All stocks

OTM ATM ITM OTM ATM ITM OTM ATM ITM

Call-on-maximum

Gumbel 2.7045 8.2517 17.2387 1.0584 5.8135 14.6031 3.0912 10.0107 19.6900

Clayton 3.4125 9.4946 18.3219 1.6570 6.9721 15.4519 4.4029 11.8753 21.2995

Frank 3.1244 8.5938 17.3932 1.4567 6.0994 14.6659 3.8712 10.6089 20.1905

Normal 3.0510 8.6866 17.4999 1.2755 6.1127 14.7315 3.4666 9.9737 19.2979

t 2.8356 8.3059 17.0100 1.0990 5.7590 14.2093 3.0894 9.3616 18.5683

Put-on-minimum

Gumbel 2.9331 8.1638 16.4637 1.9101 5.9382 13.7419 4.0174 9.9964 18.7272

Clayton 2.4029 7.5369 16.4049 1.3401 5.1345 13.5804 2.8584 8.7858 18.2661

Frank 2.9534 7.9113 16.2362 1.9758 5.7555 13.5682 3.9998 9.5198 18.3813

Normal 2.8169 8.0020 16.5203 1.7324 5.7006 13.7459 3.5988 9.5609 18.6370

t 2.5110 7.5238 15.9093 1.4673 5.2250 13.0968 3.0922 8.8318 17.7810

Digital put

Gumbel 2.3979 22.0706 65.4590 3.1049 26.3457 76.9501 0.2195 9.0048 56.4983

Clayton 4.7655 21.1691 58.2542 6.5708 26.3379 68.1577 1.9917 10.7538 44.0924

Frank 2.7192 25.0248 63.3067 3.1600 30.2473 73.8549 0.1629 12.3474 53.3128

Normal 3.6157 23.3842 63.1312 4.5320 27.5672 74.6818 1.4886 15.0651 56.2802

t 5.0433 24.7949 64.2854 6.7279 29.3601 75.5594 2.6078 16.4930 58.3205

The values of multivariate equity options with different payoff profiles are calculated from a selection of

dependence structures given by Archimedean and elliptical copulas. The static parameters are varied such that

out-of-the-money (OTM), at-the-money (ATM) and in-the-money (ITM) options can be compared.
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valuation differences amount to 2.7 per cent

through 15.3 per cent. The percentage

differences vary with the moneyness. Not

surprisingly, relative discrepancies are highest

(lowest) for out-of-the-money (in-the-money)

options owing to their low (high) values.

Sensitivity analysis

In order to gain further insight into the

copula-based valuation of multivariate options,

a sensitivity analysis based on at-the-money

options is conducted. Two aspects are analyzed –

the effect of changes (i) in the ‘degree’ of

dependence and (ii) in the risk-neutral marginal

distributions. Accordingly, the t-copula with the

best fitting dependence structure is chosen as a

basis.

First, the correlation coefficients (S in (6)) are

varied simultaneously by 70.1, while the

degrees of freedom n and the marginal

distributions are held constant.25 Second, the

Table 4: Values of the multivariate equity options with 6 months to maturity

Technology Insurance All stocks

OTM ATM ITM OTM ATM ITM OTM ATM ITM

Call-on-maximum

Gumbel 5.5573 11.9141 20.6205 3.1251 8.8193 17.2604 5.8142 14.6207 24.1703

Clayton 6.8818 13.6310 22.1983 4.4247 10.5449 18.7236 9.2177 17.2824 26.5508

Frank 6.2671 12.4354 20.9257 3.7648 9.2201 17.3988 7.9736 15.3842 24.9113

Normal 6.1026 12.4561 20.9950 3.5404 9.2613 17.5280 7.2035 14.4771 23.5977

t 5.6786 11.8810 20.3005 3.1537 8.6565 16.7389 6.5203 13.5967 22.6050

Put-on-minimum

Gumbel 5.8595 11.4794 19.3064 4.0765 8.6836 15.9076 7.8681 14.2882 22.6209

Clayton 5.0411 10.6726 19.0547 3.0349 7.4119 15.1589 5.9620 12.5160 21.6924

Frank 5.7846 11.1190 18.8804 4.0825 8.3313 15.4062 7.6849 13.6158 21.9710

Normal 5.7260 11.3628 19.1073 3.7689 8.3082 15.7156 7.1618 13.6111 22.2819

t 5.2186 10.6676 18.5886 3.2972 7.6746 14.9410 6.2790 12.5245 21.0834

Digital put

Gumbel 5.1981 21.0323 50.8615 6.6524 25.2711 59.7396 0.8172 8.3773 36.9682

Clayton 7.7566 20.3684 44.1469 10.5453 25.5214 51.6539 3.3993 10.3006 28.6492

Frank 6.3220 23.9888 50.6899 7.8236 29.1487 59.5100 0.9787 11.5884 38.0383

Normal 6.8486 22.3864 49.5224 8.4864 26.5390 58.1763 3.2721 14.3069 40.3307

t 8.4386 23.8136 50.9929 10.7974 28.3429 59.6397 4.6064 15.7296 42.4628

The values of multivariate equity options with different payoff profiles are calculated from a selection of

dependence structures given by Archimedean and elliptical copulas. The static parameters are varied such that

out-of-the-money (OTM), at-the-money (ATM) and in-the-money (ITM) options can be compared.
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margins are replaced consecutively by those from

the previous two trading weeks while leaving

the dependence structure of 16 June 2005

unchanged.26 The results are provided in

Tables 5 and 6. It becomes evident that changes

in the correlations imply substantial valuation

differences. In particular, the relative differences

range from approximately 2.5 per cent to 16.0

per cent for options with 3 months to maturity

and from 2.4 per cent to 16.7 per cent for those

expiring in 6 months. As found in the previous

valuation analysis, the digital options again

exhibit the largest ‘gaps’. The change in the

margins causes day-to-day valuation differences

in absolute terms between approximately 0.3 per

cent and 14.0 per cent for the 3-month options

and between 0.2 per cent and 10.7 per cent for

the 6-month options. This is, of course, driven

by changes in the volatility skew structures of the

basket constituents. For example, all stocks in the

technology basket exhibit shifts in their 3-month

volatility skews on 10 June, which lead to a

14.0 per cent difference in the value of the

put-on-minimum option.

Table 5: Results of the sensitivity analysis for the 3-month options

Call-on-maximum Put-on-minimum Digital put

Technology Insurance All stocks Technology Insurance All stocks Technology Insurance All stocks

Change in correlations, in absolute terms

�10% 8.5161 6.0360 9.8575 7.7669 5.6035 9.1755 22.9155 26.3836 13.9212

70% 8.3059 5.7590 9.3616 7.5238 5.2250 8.8318 24.7949 29.3601 16.4930

þ 10% 8.0626 5.3160 8.9399 7.3217 4.8278 8.3833 26.3145 32.5475 19.1285

Change in marginal distributions

16 June 2005 8.3059 5.7590 9.3616 7.5238 5.2250 8.8318 24.7949 29.3601 16.4930

15 June 2005 7.9313 5.4184 9.0162 7.4523 5.5336 8.8432 24.4584 29.7209 16.4202

14 June 2005 7.8953 5.7534 9.0711 7.5035 5.2070 8.7359 24.8610 29.6995 16.5993

13 June 2005 8.0588 5.7838 9.2810 7.9155 5.2870 9.1491 24.8601 29.1793 16.4737

10 June 2005 8.4332 6.2064 9.8046 8.5410 5.5832 9.7518 24.6314 29.6259 16.4844

9 June 2005 8.2272 5.7094 9.3287 7.4906 5.1844 8.7253 24.3537 29.4048 16.2492

8 June 2005 8.1632 5.6923 9.2097 7.5169 5.1635 8.7143 24.2858 29.4622 16.2347

7 June 2005 7.9636 5.6791 9.1011 7.3720 5.1727 8.6248 24.7858 29.6341 16.5626

6 June 2005 8.3149 5.7339 9.4474 7.5914 5.1989 8.8042 24.9875 30.0794 16.7975

3 June 2005 8.3416 5.7631 9.4904 7.6108 5.2213 8.8278 24.9063 29.5220 16.5675

2 June 2005 8.1694 5.7666 9.3316 7.6001 5.2346 8.8407 24.8480 29.5567 16.5486

1 June 2005 7.9596 5.7998 9.1476 7.4403 5.2698 8.7102 24.8984 29.4942 16.5598

For the case of the t-copula the table illustrates the sensitivity of the multivariate option values with respect to

(i) a variation in the correlation matrix and (ii) a change in the marginal distributions of the basket constituents.

For the latter analysis, the marginal distributions are replaced by those from the previous two trading weeks,

while holding the dependence structure of 16 June 2005 constant.
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In summary, the analysis has shown that –

based on typical historical return data and

empirical volatility skew structures – the choice

of the copula has a substantial effect on the

valuation of multivariate equity options. In

particular, option values derived from the

standard assumptions on correlation structures

differ substantially from those considering

a ‘true’ reflection of dependencies. The

implications of such model risk for real-world

applications as trading and risk management are

evident. Furthermore, a brief sensitivity study

showed that even moderate variations in the

model parameters such as the ‘degree’ of

dependence and the empirical marginal

distributions of the baskets’ constituents may also

cause significant valuation differences.

SUMMARY AND OUTLOOK
This article analyzes the valuation of multivariate

equity options. Accordingly, the multivariate

normality assumption for the underlying

options’ returns is dropped and copula functions

are applied instead, so as to bundle the univariate

risk-neutral marginal distributions to the joint

Table 6: Results of the sensitivity analysis for the 6-month options

Call-on-maximum Put-on-minimum Digital put

Technology Insurance All stocks Technology Insurance All stocks Technology Insurance All stocks

Change in correlations, in absolute terms

�10% 12.1889 9.1781 14.1765 11.0507 8.0732 13.1648 22.0502 25.5173 13.2863

70% 11.8810 8.6565 13.5967 10.6676 7.6746 12.5245 23.8136 28.3429 15.7296

þ 10% 11.5226 8.0723 12.9891 10.4112 7.0256 11.8092 25.3967 31.6002 18.3593

Change in marginal distributions

16 June 2005 11.8810 8.6565 13.5967 10.6676 7.6746 12.5245 23.8136 28.3429 15.7296

15 June 2005 10.7310 8.2408 12.5582 11.7098 8.0169 13.3996 23.7728 28.2518 15.6911

14 June 2005 11.8660 8.6613 13.5788 10.6678 7.5834 12.4334 24.0053 28.3474 15.8234

13 June 2005 12.1701 8.6327 13.8366 10.7890 7.5723 12.5271 23.9965 28.0608 15.7524

10 June 2005 12.0111 8.6703 13.7035 10.6838 7.5857 12.4440 23.8509 28.2718 15.7388

9 June 2005 11.7826 8.6459 13.4747 10.6074 7.5667 12.3625 23.8299 28.3336 15.7647

8 June 2005 11.8482 8.6541 13.5402 10.6270 7.5915 12.3996 23.7488 28.1794 15.6899

7 June 2005 11.6440 8.6512 13.2623 10.5353 7.5794 12.4223 23.5086 28.3395 15.6186

6 June 2005 12.2302 8.7217 13.9232 10.8683 7.6063 12.5828 23.8400 29.1867 16.0417

3 June 2005 12.3162 8.3922 13.9068 10.9804 7.9467 12.7940 24.1428 28.2236 15.8426

2 June 2005 12.4490 8.7543 14.1123 10.9861 7.6800 12.7144 24.1272 28.1812 15.8145

1 June 2005 12.0405 8.4071 13.7324 10.7548 7.9623 12.5169 23.9543 28.0822 15.7040

For the case of the t-copula the table illustrates the sensitivity of the multivariate option values with respect to

(i) a variation in the correlation matrix and (ii) a change in the marginal distributions of the basket constituents.

For the latter analysis, the marginal distributions are replaced by those from the previous two trading weeks,

while holding the dependence structure of 16 June 2005 constant.
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distribution function from which option prices

are obtained by simulation. This approach

enables the separate modeling of marginals and

dependence structure so that the procedure

for identifying the joint distribution becomes

more tractable. The method thus allows the

construction of multivariate distributions that

better reflect market conditions and that also

provide more accurate, market-consistent values

of multivariate options.

In an empirical study, risk-neutral marginals

are extracted from univariate options traded at

the Eurex, while the dependence structure is

estimated from historical stock returns. Various

copula families are calibrated. It emerges that

Archimedean copulas are not well suited to

modeling the dependence in more than two

dimensions because of their restrictive

characteristics, whereas elliptical t-copulas

provide the best data fit. When valuing

multivariate equity options substantial

differences result from assumptions about the

underlying copula. Parameter sensitivity in the

copula models is of concern as well.

The applied approach is very flexible and can

be extended in numerous ways. First, other

copula families could be considered such as

hierarchical Archimedean copulas, which are

much less restrictive than the simple Archimedean

copulas. A better fit that takes into account

asymmetrical dependencies could be achieved

and lead to a more accurate valuation. Second,

another promising direction is the consideration

of dynamic dependence. Allowing the copula

parameters to be time-varying (see Van den

Goorbergh et al5 for such an approach in two

dimensions) should further improve the

performance of the model. Finally, the collection

of a range of OTC market prices for multivariate

equity options from market participants such

as banks could yield more valuable insights

into the empirical pricing mechanism and

‘market-implied copulas’.
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Milan, June 2005.

9 Nelsen, R. (2006) An Introduction to Copulas, 2nd edn.

New York: Springer.

10 Sklar, A. (1959) Fonctions de répartition à n dimensions
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