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ABSTRACT In this article, we propose a new empirical version of the Fama and French

(F&F) model based on a new version of the Hausman (1978) specification test. This empirical

model incorporates correction factors for risk exposure. These factors take into account the

problem of errors-in-variables. Our model also features another innovation. It uses higher

moments of the four factors of the augmented F&F model as instruments to tackle the

problem of errors-in-variables. This new method reflects the nonlinear character of risk. We

highlight the link between our new version of the Hausman artificial regression and the

standard two-stage least-squares method. Our results suggest that it is preferable to account

for errors-in-variables and more generally specification errors when estimating the F&F

model because it might cause serious biases of important parameters like alpha and beta.
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INTRODUCTION
Financial returns, and especially hedge funds

returns, are contaminated by errors-in-variables.

If neglected, this problem may completely

invalidate the results obtained when estimating

financial models, like the market model or the

Fama and French (F&F)1–3 one or any standard

linear factor model. Nevertheless, researchers

seldom tackle the problem of errors-in-variables

in their empirical works, perhaps because the

econometric methods related to the correction

of this problem are not so advanced as other

fields of financial econometrics. Some papers4

have proposed correction techniques for errors-

in-variables in a capital asset pricing model

(CAPM) setting, but these studies are not

numerous and much work remains to be done.

In this article, we develop a new empirical

version of the F&F model based on a new

version of the Hausman5 specification test.6 This

empirical model incorporates correction factors

for risk exposure. These factors deal with the

problem of errors-in-variables. Our model also

includes another innovation. It uses higher

moments as instruments for correcting the

problem of errors-in-variables. In fact, the

methods of financial econometrics were

traditionally well suited to estimate financial

models, which, like the CAPM, postulate a

linear relationship between return and risk. But

this kind of relation is valid only if risk is not

very high or under very special assumptions as

Gaussian returns or quadratic utility function,

which is not very realistic because it implies

increasing absolute risk aversion. Investor

prudence,7 which is associated to the utility

function third derivative, and fat-tail risk, which

is related to the fourth derivative, introduce

nonlinearities in the relation between return and

risk. In this article, we reformulate the problem

of correcting errors-in-variables in the setting of

a nonlinear relation between return and risk.

Higher-order moments and cumulants of returns

become very important in this analysis in

relation to nonlinear risk (Racicot and

Théoret8,9 ).

According to Campbell et al,10 the errors-in-

variables problem in asset pricing models can be

addressed in two ways. The first way (Fama and

MacBeth11 ) is to reduce this problem by pooling

stocks into portfolios. The second way

(Shanken12 ) is to explicitly adjust the coefficient

standard errors to reduce the biases resulting

from the errors-in-variables. However, there is a

more recent approach proposed by Kandel and

Stambaugh13 using generalized least squares

instead of ordinary least squares (OLS) as

estimator. But, in this approach, the covariance

matrix required to weight the observations must

be estimated, which might be a problem.

Durbin,14 Pal15 and more recently Racicot

(1993) and Dagenais and Dagenais16,17 have

proposed an estimation method to tackle the

problem of errors-in-variables based on an

optimal combination of estimators built on the

cumulants of the explanatory variables. These

cumulants are used as instruments to reduce the

problem of errors-in-variables. In this article, we

use a variant of this method to correct the errors-

in-variables problem, which might bias the

estimation of the well-known augmented F&F

model and which is based on higher moments.

The Fama and French model
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As shown in this article, using higher

moments to tackle errors-in-variables opens the

way to a synthesis between the modern asset

pricing theory and the financial econometric

treatment of errors-in-variables. Surely,

Durbin,14 Pal,15 Racicot18 and Dagenais and

Dagenais16,17 did not aim at transposing their

technique to the asset pricing theory and risk

measures. But it is widely recognized now that

the first two moments of returns, that is, the

mean and the variance, are largely insufficient to

measure the risk of a portfolio. Huang and

Litzenberger,19 Ingersoll20 and Levy21 have

mentioned that portfolio selection paradigm

based on the first two moments of the returns

distribution maximizes the expected utility of a

representative agent only in either of the two

following situations: his utility function is

quadratic or the returns distribution is normal.

Of course, these two postulates are violated in

the real world. Following this ‘constat’,

Samuelson,22 Rubinstein,23 Kraus and

Litzenberger,24 Friend and Westerfield25 and

Sears and Wei26 have laid the foundations of the

approach based on higher moments for pricing

financial instruments. These theoretical

developments gave birth to the three-moment

and the four-moment CAPM.23

The theoretical developments related to the use

of higher moments as measures of financial risk

are linked to other sections of risk theory, but a

synthesis is yet to do. The theory of stochastic

dominance27 has a long history. The stochastic

dominance theory considers an increasing

amount of higher moments of a return

distribution to evaluate whether a portfolio is

superior to another. This theory has delivered

new risk measures like the risk of shortfall, which

is based on the returns probability distribution

and transfers of probability masses between

high-wealth states of nature and low-wealth states

of nature. In the same line of ideas, Scott and

Hovarth28 argue that the odd moments of the

returns distribution, like a positive mean and a

positive skewness, provide positive marginal

utility to an investor. The positive even moments,

like variance and kurtosis, entail negative

marginal utility. These developments lay the

foundations of the modern theory of risk, which

is under construction.

The new empirical version of the F&F model,

based on the Hausman specification test we

propose, is in line with the new risk literature.

Our contribution is twofold. First, we add

factors adjusting or correcting for risk exposure

in the F&F model, this correction being

required by a potential problem of errors-in-

variables, which will be detected by our new

version of the Hausman specification test. Next,

we use as instruments the higher moments of the

regressors in the F&F equation. These

instruments not only serve as technical tools, but

also as risk measures that implement our

estimation method in the modern theory of risk

analysis, which is essentially nonlinear. As we

will observe, our procedure has another

advantage as the regressors (factors) of the F&F

equation are long–short portfolios, which are

consequently similar to those of hedge funds.

Indeed, these long–short portfolios are

mimicking market anomalies, and thus they are

long in a category of returns (for example,

returns of small firms) and short in the opposite

category (for example, returns of big firms).

Consequently, they behave as options portfolios

that incorporate many nonlinearities. Higher-

order moments are therefore required to account

for these nonlinearities. Taleb29 even suggests

using moments of order higher than four to

measure the risk of an option, odd moments

Racicot et al
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being measures of asymmetry and even moments

being measures of convexity.30 The empirical

work shows that our choice of instruments is

judicious. In fact, the correlation of a regressor

with moments higher than two is often much

more important than the correlation with

conventional inferior moments.

This article is organized as follows. The

methodology used to carry our empirical analysis

is explained in the next section. First, we discuss

the theoretical aspects related to errors-in-

variables and to the choice of instruments,

which consist in the higher moments of the

regressors of the F&F model. Second, the

estimation method used to correct the problem

of errors-in-variables in the F&F model is

presented. That gives rise to the development of

our new empirical version of the F&F model,

which features a new two-stage least-squares

estimator incorporating a Hausman specification

test using an artificial regression. The subsequent

section describes the data series used in this study

and reports the empirical results. Concluding

remarks are given in the final section.

METHODOLOGY

The biases caused by

errors-in-variables

The errors-in-variables problem is well-known in

the econometric literature, but is often overlooked

in finance. Assume31 a regression model where

observed y and x variables are measured with

errors. The true values of these variables are y�

and x�. The relations between the observed

variables and their true counterparts are:

y ¼ y� þ u ð1Þ

x ¼ x� þ v ð2Þ

where u and v are error vectors. These error

vectors have zero means and their variances are:

E(uu0)¼su
2I and E(vv0)¼sv

2I. The vectors u and

v are assumed orthogonal.

The exact linear relationship between the two

unobserved variables is:

y� ¼ x�b ð3Þ

As y� and x� are unobservable, we substitute

equations (1) and (2) in equation (3):

y ¼ xbþ e ð4Þ

where e¼ v�ub. Consequently, by equation (2),

x is correlated with the error term e, and this

creates a bias. To compute it, we solve equation

(4) for b̂, the estimated value of parameter b, by

the method of least squares:

b̂ ¼ ðx0xÞ�1x0y ð5Þ

Substituting equation (4) in equation (5), we

obtain:

b̂ ¼ bþ ðx0xÞ�1x0e ð6Þ

Equation (6) shows that b̂ is biased. And in large

samples, it is not consistent:

p lim b̂ ¼ b 1�
s2

u

s2
x

� �
ð7Þ

where s2
x ¼ s2

x� þ s2
u. We can rewrite expression

(7) as:

p lim b̂ ¼ b 1� lð Þ ð8Þ

where lo1.

According to equation (8), the problem of

errors-in-variables tends to underestimate b̂, the

degree of underestimation being related to l.
The more l is near 1, the more serious is the

problem of errors-in-variables. At the limit, l is

1 and p lim b¼ 0. When only y is plagued with

errors of measurement in equation (1), there is

The Fama and French model
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no bias because x remains uncorrelated with the

innovation of the equation. The problem

appears when x is measured with error. This

creates a correlation between x and the

innovation term and therefore a bias.

Unfortunately, if there is more than one

explanatory variable in a model, we cannot

know a priori the relative impact of errors-in-

variables on the estimation process. Some

parameters will be overstated and others

understated. But as seen in another section, the

Hausman test, and more precisely the version of

this test based on artificial regressions, will not

only help us to detect errors in variables, but also

give us more information about the incidence of

this problem on estimated parameters.

The choice of instrumental variables

to estimate the augmented F&F

model

The augmented F&F (1992, 1993 and 1997)

model is a purely empirical model that may be

written as:

Rpt � Rft ¼ aþ b1ðRmt � RftÞ þ b2SMBt

þ b3HMLt þ b4UMDt þ et ð9Þ

with:

Rpt�Rft the excess return of a portfolio, Rft

being the risk-free return;

Rmt�Rft the market risk premium;

SMB a portfolio that mimics the ‘small firm

anomaly’, which is long in the

returns of selected small firms and

short in the returns of selected big

firms;

HML a portfolio that mimics the ‘income

stock anomaly’, which is long in

returns of stocks of selected firms

having a high (book value/market

value) ratio (income stocks) and short

in selected stocks having a low (book

value/market value) ratio (growth

stocks);

UMD a portfolio that mimics the ‘momen-

tum anomaly’, which is long in

returns of selected stocks having a

persistent upper trend and short in

stocks having a persistent downwards

trend.

To explain the return of a stock or a portfolio of

stocks, the F&F model adds to the unique factor

retained by the CAPM, the market risk

premium, three other factors that are assumed to

represent market anomalies: the small firm

anomaly, the book value to market value

anomaly and the momentum anomaly.32

We postulate that the three mimicking port-

folios SMB, HML and UMD might be measured

with errors. They are thus possibly correlated

with the innovation term in equation (9), and

the estimators of the parameters of this equation

obtained by OLS are consequently biased and

not consistent. To purge these coefficients from

these biases, we must regress in a first pass the

independent variables on instrumental variables.

The estimated method used in this article, which

is based on the Hausman test, will be explained

below. The problem lies in the choice of these

instruments.

As said previously, it is difficult to find

valuable instruments for the excess returns of the

mimicking portfolios. Being long in some stocks

and short in others, their cash flows are similar

to those of hedge funds. Higher moments of

returns, as asymmetry and kurtosis, might have a

great influence on these returns. This suggests

the use of higher moments of the variables on

the RHS of equation (9) as instrumental

Racicot et al
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variables. An econometric theory is indeed in

construction on this subject. Following Durbin14

and Pal,15 Dagenais and Dagenais16,17 showed

that higher moments33 of independent variables

of a regression might be valid instruments to

remove errors-in-variables. But instead of

defining higher moments as in these papers, we

will adopt a method more akin to asset pricing

theory, which defines higher moments of returns

by powers of these returns.

The method of asset pricing based on higher

moments is not new. Rubinstein23 and Kraus

and Litzenberger24 put the foundations of the

three-moment and four-moment CAPM. The

three-moment CAPM integrated asymmetry of

returns in the analysis while the four-moment

CAPM added kurtosis.

Some authors, like Kraus and Litzenberger,24

use a general utility function to derive the

moment-CAPM. Others use a Taylor expansion

of the utility function, which, following

Samuelson22 and Rubinstein,23 allows

expressing utility in terms of the higher

moments of returns.

Let us assume that the expected utility of

wealth, E[U(W )], is function of the n first

moments of the distribution of wealth:

E½UðW Þ� ¼ j ½ �W ; sW ; skewW ;

kurW ; . . . ; smnW � ð10Þ

with W̄ the expected value of wealth; sW, the

volatility of wealth; skewW, its skewness; kurW, its

kurtosis and smnW, the nth moment of the

distribution of wealth. We incorporate moments

of order 5, particularly because we know that

they might be important to explain the returns

of long–short portfolios like mimicking

portfolios that are the foundation of the F&F

model.

The expected utility of end-of-period wealth

is maximized over the one period horizon

subject to the constraint of initial wealth,

which is:

a0 þ
Xn

i¼1

ai ¼ w0 ð11Þ

According to equation (11), the initial wealth

w0 is allocated between the risk-free asset a0

and n other risky assets designated by ai. To

maximize the utility of end-of-period

wealth subject to (11), we form the usual

Lagrangian:

L ¼ E U Wð Þ½ � � f a0 �
Xn

i¼1

ai � w0

 !

ð12Þ

Taking the first-order conditions for a

maximum, we have:

qL

qa0

¼ j �W�
q �W
qa0

� f ¼ 0 ð13Þ

qL

qai;i 6¼0

¼j �W�
qE wð Þ

qai

þ jsW
�
qsW

qai

þ jskewW

�
qskewW

qai

þ jkurW
�
qkurW

qai

þ � � � þ jsmnW

qsmnW

qan

� f ¼ 0 ð14Þ

with jx¼ (qE[U(X)])/(qx).

End-of-period expected wealth is equal to:

�W ¼ ð1þ R0Þa0 þ
Xn

i¼1

ð1þ EðRiÞÞai½ � ð15Þ

The Fama and French model
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We thus have:

q �W
qa0

¼ 1þ R0 ð16Þ

q �W
qai

¼ 1þ E Rið Þ ð17Þ

We can therefore express the moments of wealth

in terms of the moments of returns of the

portfolio as:

sW ¼
X

i

aibipsp ð18Þ

skewW ¼
X

i

aigipskewp ð19Þ

kurW ¼
X

i

aiyipkurp ð20Þ

smnW ¼
X

i

aioipsmnp ð21Þ

with sp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E Rp � �Rp

� �2
q

, the volatility of

the return of the risk assets; bip¼ (E[(Ri�R̄i)

(Rp�R̄p)])/(sp
2), the beta of risk asset i with

the investor’s portfolio of risk assets.

skewp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E RP � �Rp

� �3
h i

3

r
, the asymmetry of

the return of the portfolio and gip¼ (E[(Ri�R̄i)

(Rp�R̄p)
2])/(skp

3), the gamma of risk asset i with

the investor’s portfolio of risk assets. It is easy to

generate all the other variables by following this

pattern.

Equating equations (13) and (14) to delete f
and taking into account equations (18) to (21),

we arrive at an expression for E(Ri) in terms

of the moments of the distribution of the return

of an investor’s portfolio:

EðRiÞ � R0 ¼�
jsW

j �W

� �
bipsp

�
jskewW

j �W

� �
gipskewp

�
jkurW

j �W

� �
yipkurp

� � � � �
jsmnW

j �W

� �
oipsmnp ð22Þ

with (jmoment)/(jw̄) being an investor’s marginal

rate of substitution between expected wealth and

a specific moment. According to Scott and

Hovarth,28 these marginal rates of substitution

are positive for odd moments, like mean and

positive asymmetry, and negative for even

moments, like variance and kurtosis. From

equation (22), odd moments have, ceteris paribus,

a negative impact on expected return from the

point of view of investors. Even moments have a

positive impact because they represent risk.

Moving from equation (22) to the condition

of market equilibrium for E(Ri) requires making,

according to Kraus and Litzenberger,24 the

strong assumption of homogeneous expectations

for investors. Following this assumption,

equation (22) becomes, assuming that p is the

market portfolio:

EðRiÞ � R0 ¼
d �W

dsW

� �
smbim þ

d �W

dskewW

� �
skewmgim

þ
d �W

dkurw

� �
kurmyim þ � � �

þ
d �W

dsmnW

� �
smnmoin ð23Þ

The terms in brackets in expression (23)

are the slopes of the efficient frontiers whose

arguments are expected wealth and the

Racicot et al
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respective moment. We obtain finally the

n-moment CAPM:

EðRiÞ � Rf ¼ c1bim þ c2gim

þ c3yim þ � � � þ cnsmnm ð24Þ

We might use directly expression (24) to

define our instruments for removing errors-in-

variables by the methods of higher moments in

the F&F model. Assume we want to correct the

mimicking portfolio SMB for errors-in-

variables. In the first pass of our regressions, we

would regress this variable on the co-moments

of the lagged excess return of the market

portfolio. The variable SMB corrected for

errors-in-variables would be:

SM̂Bt ¼ k0 þ k1bim; t�1 þ k2gim; t�1

þ k3yim; t�1 þ � � � þ knsmnm; t�1 ð25Þ

In fact, we would also have to introduce the

co-moments of the mimicking portfolios. This

approach would be laborious and would require

computing rolling windows of co-moments. But

there is a procedure for simplifying equation

(25). Kraus and Lintzenberger24,34 have shown

that a three-moment CAPM is consistent with

the following quadratic form:

Ri � R0 ¼ a0 þ a1 Rm � R0ð Þ þ a2 Rm � R0ð Þ
2

ð26Þ

and consequently a n-moment CAPM can be

written as:

Ri � R0 ¼ a0 þ a1 Rm � R0ð Þ þ a2 Rm � R0ð Þ
2

þ a3 Rm � R0ð Þ
3
þ � � �

þ an�1 Rm � R0ð Þ
n�1

ð27Þ

A test on a2 is a test on skewness preferences

in asset pricing and a test on a3, a test on kurtosis

preferences, and so on. The higher moments

are consequently powers of returns in this

approach. We therefore use a financial theory,

the n-moment CAPM, to give an object to the

method of Dagenais and Dagenais17 for

correcting errors-in-variables. Let us return to

the variable SMB, which we want to correct for

the problem of errors-in-variables. In the first

pass of the regression, this variable will be

regressed on:

SMB̂t ¼ f Fit�1; F2
it�1; F3

it�1; . . . ; F5
it�1; . . .

� �
ð28Þ

where Fi are the variables in the RHS of the

F&F equation (equation (9)) including SMB.

They stand for the higher moments of these

variables. F it�1
2 stands for the skewness of factor

Fi ; F it�1
3 , for its kurtosis, and so on. The

variables appearing on the RHS of equation (28)

will serve as instrumental variables in the first

pass of the Hausman test, as explained in the

following section.

Hausman specification test and

errors-in-variables

To detect errors in variables in our sample of

hedge funds, we could use the original Hausman

h test.35 To explain this test, let us suppose the

following classical model:

Y ¼ Xbþ e ð29Þ

with Y a (n� 1) vector representing the

dependent variable; X, a (n� k) matrix of the

explicative variables; b, a (k� 1) vector of the

estimates of the parameters and eBiid(0, s2).

Hausman compares two sets of estimates

of the parameters vector, say, bOLS, the

least-squares estimator (OLS), a bA, and

alternative estimator that can take a variety

of forms, but which for our purposes is the

The Fama and French model
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instrumental variables estimator which we

designate by bIV. The hypotheses to test are H0,

being in our case the absence of errors in

variables and H1, being the presence of errors in

variables. The vector of estimates bIV is

consistent under both H0 and H1 but bOLS is

consistent under H0 but inconsistent under H1.

Under H0, bIV is indeed less efficient than bOLS.

Hausman wants to verify whether the

‘endogeneity’ of some variables,36 the variables

measured with errors in our case, has any

significant effect on the estimation of the vector

of parameters. To do so, he defines the following

vector of contrasts: bIV� bOLS. The test statistic

may be written as follows:

h ¼ b̂IV � b̂OLS

	 
T

Var b̂IV

	 

� Var b̂OLS

	 
h i�1

� b̂IV � b̂OLS

	 

� w2ðgÞ ð30Þ

with Var(b̂IV) and Var(b̂OLS) being consistent

estimates of the covariance matrices of b̂IV and

b̂OLS. g is the number of potentially endogenous

regressors, that is the variables measured with

errors in our case. H0 will be rejected if the

P-value of this test is less than a, with a being the

critical threshold of the test, say 5 per cent.

According to MacKinnon,37 this test

might run into difficulties if the matrix

IVar(b̂IV)�Var(b̂OLS)m that weights the vector

of contrasts is not positive definite. Fortunately,

there is an alternative way to do the Hausman test

which is much easier. This test goes as follows.

Assume a two-variable linear model:

yt ¼ b0 þ b1x
�
1t þ b2x

�
2t þ et ð31Þ

with eBN(0, s2).

The variables x�1t and x�2t
38 are observed with

errors, that is:

x1t ¼ x�1t þ u1t ð32Þ

x2t ¼ x�2t þ u2t ð33Þ

with x1t and x2t, the corresponding observed

variables which are measured with errors. By

substituting equations (32) and (33) in equation

(31), we have:

yt ¼ b0 þ b1x1t þ b2x2t þ e�t ð34Þ

with e�t ¼ et�b1u1�b2u2. As seen before,

estimating coefficients of equation (34) by the

OLS method gives way to biased and

inconsistent coefficients because the explanatory

variables are correlated with the innovation.

Consistent estimators can be found if we can

identify an instruments vector zt that is

correlated with every explanatory variable but

not with the innovation of equation (31). Then

we regress these two explanatory variables on zt.

We have:

x1t ¼ x̂1t þ ŵ1t ¼ ĝ1zt þ ŵ1t ð35Þ

x2t ¼ x̂2t þ ŵ2t ¼ ĝ2zt þ ŵ2 ð36Þ

with x̂it, the value of xit estimated with

the vector of instruments and ŵit, the residuals

of the regression of xit on x̂it. Substituting

equations (35) and (36) into equation (34),

we have39:

yt ¼ b0 þ b1x̂1t þ b2x̂2t þ b1ŵ1t

þ b2ŵ2t þ e�t ð37Þ

The explanatory variables of this equation are,

on the one hand, the estimated values of x1t and

x2t, obtained by regressing these two variables on

the vector of instruments zt, and on the other

hand, the respective residuals of these

regressions. Equation (37) is therefore an

augmented version of equation (34), which

might be qualified of auxiliary or artificial

regression.

Racicot et al
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We can show that:

p lim

P
ŵ1te�t
N

� �
¼ p lim

�b1

P
x1tu1t

N

� �
¼ �b1s

2
u1

ð38Þ

and the same for w2t. When there is no

measurement error, s2
u1
¼ 0 and OLS gives way

to a consistent estimator for the parameter of ŵ1t

in equation (37), that is b1. When there are

measurement errors, s2
u1
6¼ 0 and therefore this

estimator is not consistent.

We can therefore write the following test to

detect the presence of errors in variables. As we

do not know a priori whether there are errors in

variables, we replace the coefficients of ŵ1t and

ŵ2t in equation (37) by g1 and g2. We have:

yt ¼ b0 þ b1x̂1t þ b2x̂2t þ g1ŵ1t

þ g2ŵ2t þ e�t ð39Þ

But following equations (35) and (36)

x̂1t¼ x1t�ŵ1t and x̂2t¼ x2t�ŵ2t. We can

therefore rewrite equation (39) as follows:

yt ¼b0 þ b1x1t þ b2x2t þ g1 � b1

� �
ŵ1t

þ g2 � b2

� �
ŵ2t þ e�t ð40Þ

If there is no measurement error for both

variables x1t and x2t, then g1¼ b1 and g2¼ b2.

If there are measurement errors, giabi and the

coefficients of the residuals terms wit will not

be zero.

There is more information that we can draw

from equation (40). Indeed, if the estimated

coefficient (gi�bi) is significantly positive, that

indicates that the estimated coefficient of the

corresponding explanatory variable xit is

overstated in the OLS run. Therefore, the

estimated coefficient for this variable will

decrease in equation (40). On the other hand,

if the estimated coefficient (gi�bi) is significantly

negative, that indicates that the estimated

coefficient of the corresponding explanatory

variable xit is understated in the OLS run.

Therefore, the estimated coefficient for this

variable will increase in equation (40). These

effects of errors in variables produced by

equation (40) are very informative. In the next

section, we will transpose these results to the

F&F model.

We must note that the coefficients bi

estimated by the equation (40) are identical to

those produced by a two-stage least squares

(TSLS) procedure using the same instruments.

Equation (40) is therefore another way to do a

TSLS. But in view of the useful information

produced by equation (40), this equation opens

the doors to new financial models. We will

therefore prefer this formulation to that one

represented by TSLS to estimate the augmented

F&F model. And we thus have a new empirical

formulation for the F&F model.

We therefore proceed as follows to test for

errors in variables. First, we regress the observed

explanatory variables xit on the instruments

vector to obtain the residuals ŵit. Then, we

regress yt on the observed explanatory variables

xit and on the residuals ŵit. This is an auxiliary or

artificial regression. If the coefficient of the

residuals of an explanatory variable is

significantly different from 0, we may conclude

that there is a measurement error on this

explanatory variable. We may use the Wald test

(F test) to determine whether the whole set

of (gi�bi) coefficients is significantly different

from zero.

We can generalize the preceding procedure to

the case of k explanatory variables, which are

potentially suffering from the problem of errors

The Fama and French model

287& 2011 Macmillan Publishers Ltd. 1753-9641 Journal of Derivatives & Hedge Funds Vol. 16, 4, 278–302



in variables. Let X be a (n� k) matrix of

explanatory variables that are potentially

suffering from the disease of errors in variables

and let Z be a (n� s) matrix of instruments

(s4k). To perform the Hausman test based on an

artificial regression, we first regress X on Z

to obtain X̂, that is:

^
X ¼ Zŷ ¼ Z Z0Zð Þ

�1
Z0X ¼ PZX ð41Þ

where PZ is the ‘predicted value maker’. Having

performed this regression, we compute the

matrix of residuals ŵ:

ŵ ¼ X�
^
X ¼ X� PZX ¼ I� PZð ÞX

ð42Þ

Then we perform the following artificial

regression:

y ¼ bXþ lŵ ð43Þ

An F test on the l coefficients will indicate

whether they are significant as a group. A t test

on individual coefficients will indicate whether

the corresponding b is understated or overstated,

as discussed previously.

The vector of b estimated by equation (43) is

identical to the TSLS estimates, that is:

b ¼ bIV ¼ X0PZXð Þ
�1

X0PZy ð44Þ

To detect errors in variables in the augmented

F&F model, we will run two sets of regressions.

First, we will run the OLS one, that is:

Rpt � Rft ¼ aþ b1 Rmt � Rft

� �
þ b2SMBt

þ b3HMLt þ b4UMDt þ et ð45Þ

Then, we will run the following artificial

regression explained previously:

Rpt � Rft ¼ a� þ b �1 Rmt � Rft

� �
þ b �2 SMBt

þ b �3 HMLt þ b �4 UMDt

þ
X4

i¼1

jiŵit þ e�t ð46Þ

The estimated coefficients ji will allow

detecting errors in variables, and their signs will

indicate whether the corresponding variable is

overstated or understated in the OLS regression.

As said previously, the b � estimated by

equation (46) are equivalent to the TSLS

estimates. But we prefer equation (46) because it

gives more information on the problem of errors

in variables. Equation (46) is thus our new

empirical version of the augmented F&F model.

The ji are really factors of correction of the risk

exposure of a Fund to the ith factor of risk. If ji

is positive, that means that the exposure to the

ith risk factor is overstated in the OLS

regression. The b associated with this factor will

thus decrease in the artificial regression. And

vice-versa if ji is negative. Moreover, according

to our previous developments, we expect a high

positive correlation between (b̂i�b̂
�
i ), that is

the estimated error on the coefficient of factor i,

and ĵi, the estimated coefficient of the

corresponding artificial variable (ŵi).

EMPIRICAL RESULTS AND

ANALYSIS
Our sample of hedge funds returns comprises

the monthly returns of 20 Greenwich-Van US

American hedge funds indexes classified by

categories or groups of categories. The appendix

gives the enumeration of these funds with their

chosen symbol. The observation period runs

from January 1995 to November 2005, for a

total of 131 observations. The risk factors that

appear in the F&F equation – that is the market

risk premium and the three mimicking

portfolios: SMB, HML and UMD – are for their

part drawn from the French’s website.40

Table 1 gives a first glance of our hedge fund

sample, and reports the descriptive statistics of

Racicot et al
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the ‘average’ fund. At 11.6 per cent, the

annualized mean return of this sample is quite

high and its standard deviation is relatively

moderate. But it is well known that standard

deviation is a reliable measure of risk only

if risk is small or under very special conditions.

Otherwise, we must consider the higher

moments of the distributions of excess returns.

The skewness of the average fund is close to 0

but the mean level of kurtosis, at 6.4, is quite

high, the level of kurtosis associated with a

normal distribution being 3. Obviously, a large

number of equity-oriented hedge funds

strategies exhibit payoffs that are similar to those

of a short position in a put option written on the

market index,41 and therefore bears significant

left-tail risk, risk that is ignored by the

commonly used mean-variance framework. This

may imply that rare events are more frequent

than in a normal distribution, and that

nonlinearities of payoffs are quite important.

Incidentally, there are 18 funds over 20 that

have a kurtosis level exceeding three and 17 that

have non-Gaussian returns according to the

Jarque–Bera test.

We now define the instruments necessary to

perform the Hausman test. Table 2 gives the

correlations of the F&F factors with themselves

and their instruments from January 1995 to

November 2005. In addition to the instruments

discussed before, we add other macroeconomic

variables: the monthly and annual American

inflation rate, IPC_MENS and IPC_ANN, and

the monthly and annual growth rate of the

American industrial production, PROD_MENS

and PROD_ANN.

According to Table 2, the F&F factors are

more or less correlated with conventional

instruments as the first lag of the factor or with

the macroeconomic variables. Regarding the

macroeconomic variables, we observe that their

correlation with the risk factors located at the

top of the columns is quite low. Only the

industrial production annual growth has a

moderate correlation with three of these

factors.42

With respect to the risk factors of equation

(45), we noted before that there are many

nonlinearities in these mimicking portfolios that

are similar to hedge fund portfolio. We also

noted before that these nonlinearities might be

captured by the higher moments of these factors.

Corroborating this assumption, we observe from

Table 2 that the risk factors are usually more

correlated or cross-correlated with the higher

moments of the first lag of a risk factor than to

the first lag itself. For instance, the market risk

premium is more related to the higher moments

of UMD(-1) than to UMD(-1) itself. Indeed, the

Table 1: Descriptive statistics of the sample

of 20 hedge funds returns

Statistics Average Std. dev

Mean yield 0.0097 0.003

Median yield 0.0098 0.004

Maximum yield 0.1066 —

Minimum yield �0.0879 —

Skewness 0.0959 0.817

Kurtosis 6.3812 3.304

Jarque–Bera 133.048 284.206

P-value 0.042 0.121

Number of funds

with kurtosis 4 3

18 —

Number of funds with

non-Gaussian yields

17 —

The Fama and French model
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correlation between RM_RF and UMD(-1)

is quite low: 0.03, but it is equal to 0.22 for

UMD(-1),7 that is the higher moment of

UMD(-1) of order 5. The same is true for

the factor SMB and the higher moments of

SMB(-1). Consequently, higher moments of

lagged variables may constitute quite good

instruments.9

Before discussing the results, let us note that

we performed a Wald test over the whole set of

the four coefficients associated with the risk

factors of equation (46). For this test, the null

hypothesis H0 is:

j1 ¼ j2 ¼ j3 ¼ j4 ¼ 0

If this hypothesis is not rejected, we cannot

detect errors-in-variables for the four factors

considered as a group. This hypothesis was not

rejected for any fund, and consequently it seems

that there is no problem of errors-in-variables in

our sample of hedge funds when we consider the

four factors as a group. But as we will see,

individual t tests reveal that in some cases, the

bias caused by the presence of errors in variables

may be quite serious.

Tables 3 and 4 give a first grasp of the

estimations of equations (45) and (46) over

the whole sample of our hedge funds. These

Table 2: Correlation between the four factors

and their instruments

RM_RF SMB HML UMD

RM_RF 1.00 — — —

SMB 0.23 1.00 — —

HML �0.30 �0.37 1.00 —

UMD �0.23 0.04 �0.62 1.00

RM_RF(-1) 0.03 0.17 0.16 �0.11

RM_RF(-1)2 0.08 0.07 �0.02 �0.07

RM_RF(-1)3 �0.07 0.10 0.10 �0.02

RM_RF(-1)4 0.11 0.01 �0.05 �0.05

RM_RF(-1)5 �0.10 0.04 0.08 0.01

HML(-1) �0.16 0.06 0.11 0.01

HML(-1)2 �0.06 �0.23 0.17 �0.01

HML(-1)3 �0.14 0.18 �0.06 0.09

HML(-1)4 0.01 �0.29 0.19 �0.10

HML(-1)5 �0.12 0.24 �0.11 0.11

SMB(-1) 0.08 �0.02 �0.04 0.11

SMB(-1)2 �0.01 �0.19 0.20 �0.10

SMB(-1)3 0.12 �0.17 0.03 0.01

SMB(-1)4 0.04 �0.29 0.24 �0.15

SMB(-1)5 0.13 �0.23 0.06 �0.06

UMD(-1) 0.03 �0.15 �0.07 �0.07

UMD(-1)2 �0.20 �0.08 0.18 0.07

UMD(-1)3 0.19 �0.06 �0.01 �0.22

UMD(-1)4 �0.21 �0.12 0.16 0.15

UMD(-1)5 0.22 �0.01 �0.05 �0.22

IPC_ANN �0.03 0.00 0.10 �0.03

IPC_MENS �0.11 �0.06 �0.01 0.06

PROD_ANN 0.12 �0.23 �0.11 0.05

PROD_MENS �0.02 �0.04 �0.07 0.02

Table 3: Count of significant coefficients for

the constant and the four factors for the OLS

and the artificial Hausman regressiona

C Rm-Rf SMB HML UMD Line

total

OLS 13 18 17 7 9 64

Hausman 15 16 17 5 7 60

aFor a variable, the table gives the number of

significant coefficients for a=5 per cent. There are 20

yield indexes of hedge funds in the sample. The

estimation goes from January 1995 to November

2005.

Abbreviation: OLS, ordinary least squares.

Racicot et al
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tables contain the total count of significant

coefficients at a confidence level of 95 per cent

and the mean level of the t statistics computed

over the 20 funds for both estimation methods.

Table 3 indicates that the constant and the

coefficients of regression of the risk premium

and SMB are significant for the majority of the

funds of our sample. The variable UMD is

significant for approximately 50 per cent of

the sample while the variable HML is more

problematic, being significant for only a

minority of funds. Table 4, which produces

the average of the t statistics for the constant and

the four factors computed over the 20 funds,

confirms those preliminary observations. Let us

note that equation (46) produces less significant

coefficients than equation (45), even if this

difference is not quite high. It is well known that

the coefficients estimated by TSLS tend to have

a larger variance than those resulting from a

corresponding OLS regression. As seen

previously, the artificial regression given by

equation (46) is equivalent to TSLS method.

On the other hand, the average R2 of the two

estimation methods are quite comparable, being

0.55 for the OLS estimation and 0.54 for the

artificial regression.

From Table 5, we find the mean levels of the

coefficients estimated by the OLS method and

by the artificial regression for the whole set of

funds. The mean level of the constant, which

corresponds to the alpha, is practically the same

for both regression methods. We note that the

beta seems to be overstated by the OLS

regression that produces biased coefficients if

there are errors in variables. The average beta

resulting from the OLS estimation is 0.25 and

0.23 for the artificial one. Otherwise, the impact

of SMB tends to be understated by the OLS

regression, its average coefficient being 0.17 in

the OLS regression and 0.21 in the artificial one.

The average incidence of the UMD factor is

quite similar for the two estimation methods but,

as we will see, this situation hides quite a high

dispersion. Finally, the influence of HML is quite

low in both estimation methods, being

moderately overstated by the OLS regression.

As the F&F model is a purely empirical one,

there is no theory on the signs of the four factors

of this model, except perhaps for the market

index whose coefficient is generally positive

according to the CAPM. But if we consider the

three mimicking portfolios SMB, HML and

UMD as risk factors, it is reasonable to expect

Table 4: Average level of the t statistics for

the constant and the four factors for the OLS

and the artificial Hausman regressiona

C Rm-Rf SMB HML UMD Line

average

OLS 3.16 8.62 5.54 1.72 1.99 4.21

Hausman 2.68 8.64 5.18 1.53 1.80 3.97

aThe average is computed for a sample of 20 hedge

funds indexes.

Abbreviation: OLS, ordinary least squares.

Table 5: Mean level of the estimated

coefficients for the constant and the four

factors for the OLS and the Hausman

artificial regression

C Rm-Rf SMB HML UMD

OLS 0.0036 0.2479 0.1709 0.0321 0.0764

Hausman 0.0039 0.2346 0.2057 �0.0126 0.0745

Spread �0.0003 0.0133 �0.0348 0.0447 0.0019

Abbreviation: OLS, ordinary least squares.

The Fama and French model
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generally a positive sign for the estimated

coefficients of these factors. In fact, a fund can

short a factor of risk, as it might short the market

index. A hedge fund that makes short selling will

have a negative beta. Another fund that short

sells the mimicking portfolio SMB, say, will have

a negative coefficient for this factor. But this

behaviour seems to be the exception rather than

the rule. Risk factors in returns equations should

generally be preceded by positive signs.

Table 6 gives information on this matter for

our sample. For both estimation methods, the

estimated coefficients of the four factors have

positive signs for the majority of funds. That

comforts us in our expectations of considering

the mimicking portfolios as risk factors and not as

market anomalies as they were viewed in the past.

To conclude these preliminary observations,

we may say that the problem of errors in

variables does not seem to be very serious for the

group of funds surveyed in this study. But

average behaviour might hide a great dispersion

at the individual level. As we will see in the

following paragraphs, the biases caused by errors

in variables might be severe for some funds.

In our sample, it was the factor HML that

seemed to be suffering most from errors in

variables. The artificial regression reveals that its

residuals were significant at the 95 per cent

confidence level for four funds. For both SMB

and UMD, the residuals are significant for three

funds.

We will gain a better grasp of our estimations

if we look at the individuals results. Table 7 gives

the estimated betas, that is the coefficient of the

risk premium (Rm�Rf ), for each fund and for

the two estimation methods. This table also

provides the corresponding coefficient j in

the artificial regression (equation (46)). This

coefficient is in bold when it is significant at

the 95 per cent confidence level.43

We note from Table 7 that for five funds,

the spread between the OLS and the Hausman

estimate, which is the measurement error on this

coefficient, is quite high. For these funds, it is

overstated four times and understated one time

by the OLS method. When the beta of a fund is

overstated, Table 7 reveals that the artificial

coefficient j associated with the residuals of the

market risk premium in equation (46) is positive,

as it must be. In the case of the ‘aggressive

growth’ fund designated by ag, the beta is greatly

understated by the OLS regression and the

corresponding j is therefore negative. Let us

note that the correlation between the spreads

(errors) column in our tables and the

corresponding j column is 0.98. Therefore,

the association between the level of the

measurement error on a coefficient and the

corresponding level of j is positive and almost

perfect.44 Moreover, the regression of the

error of the ith fund, that is the spread

(b̂i,OLS�b̂i,HAUS), on the corresponding artificial

variable ĵi, gives the following result:

b̂i;OLS � b̂i;HAUS

	 

¼� 0:005þ 0:70ĵi

ð�2:45Þ ð23:96Þ

Table 6: Count of positive signs for the

constant and the four factors for both

estimation methods

C Rm-Rf SMB HML UMD Line

total

OLS 17 18 19 15 20 89

Hausman 17 18 18 13 17 83

Abbreviation: OLS, ordinary least squares.
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For this regression, the adjusted R2 is 0.96.

Therefore, the level of the artificial variable is a

very good indicator of the measurement error of

the corresponding coefficient. It thus gives

precious information on the measurement error,

and it is the reason why we prefer the Hausman

version of the F&F model to the equivalent

TSLS one. We will not repeat this regression

for the other factors of risk of the F&F model

because the results are very similar to those

obtained for the risk premium.

Table 8 provides the same information as

Table 7 concerning the SMB factor. There are

five funds where the measurement error is high.

With regard to these funds, we note that the

coefficient of this variable is understated four

times and overstated one time by the OLS

regression. When the impact of SMB is

understated, the corresponding j is negative,

and when it is overstated the corresponding j is

positive, as it might be. The SMB coefficient is

particularly understated for the emerging

markets fund (em), and its associated j is

therefore negative and very high in absolute

value.

Table 9 reveals that the estimation of the

HML coefficient is quite problematic, the j
coefficients for this variable being very high

for some funds. The OLS regression tends to

overstate greatly the impact of this variable on

the returns of four funds. In this study, this

overstatement is explained by a possible serious

problem of errors in variables.

Finally, according to Table 10, the

overstatement of the impact of the factor UMD

is quite high in three cases. It is moderately

understated in two cases. Moreover, if we

correlate the OLS- and Hausman-estimated

coefficients for this factor, we obtain only 0.23.

The corresponding coefficients for the three

other factors – Rm�Rf, SMB and HML – are

0.99, 0.91 and 0.80, respectively. Consequently,

there is a great divergence between the results

Table 7: Spread (error) between the OLS and

the Hausman beta for each fund of the

studya

OLS

beta

Hausman

beta

Error j

emn 0.095 0.126 �0.031 �0.039

ed 0.264 0.201 0.063 0.085

ds 0.144 0.082 0.063 0.091

ss 0.322 0.275 0.048 0.063

mna 0.082 0.069 0.014 0.018

shs �0.908 �0.922 0.014 0.043

va 0.515 0.494 0.020 0.022

f �0.007 �0.129 0.122 0.189

macro 0.303 0.349 �0.046 �0.036

mt 0.325 0.291 0.034 0.051

dtg 0.155 0.088 0.067 0.110

mng 0.145 0.118 0.026 0.035

lsg 0.431 0.431 0.000 0.000

ag 0.650 0.744 �0.094 �0.125

oi 0.368 0.360 0.008 0.013

specg 0.525 0.532 �0.008 0.009

em 0.678 0.686 �0.008 0.021

inc 0.138 0.131 0.007 0.007

msi 0.388 0.427 �0.039 �0.050

hf 0.345 0.338 0.007 0.012

aThe spread (error) is the difference between the

OLS coefficient and the corresponding Hausman

coefficient. For each spread, we produce the

coefficient (j) of the corresponding artificial variable.

The Funds having the highest spreads in absolute

value are bold-faced. The coefficient j is bold-faced

when significant. Note the high positive relation

between the error and its associated j.

Abbreviation: OLS, ordinary least squares.
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Table 8: Spread (error) between the OLS and

the Hausman SMB estimated coefficients for

each fund of the studya

SMB

coef.

OLS

SMB

coef.

Hausman

Spread j

emn 0.123 0.158 �0.035 �0.036

ed 0.225 0.252 �0.027 �0.052

ds 0.188 0.232 �0.044 �0.074

ss 0.250 0.279 �0.028 �0.056

Mna 0.062 0.066 �0.004 �0.012

shs �0.422 �0.359 �0.063 �0.077

va 0.331 0.272 0.058 0.101

f 0.021 �0.053 0.073 0.149

macro 0.199 0.381 �0.182 �0.238

mt 0.102 0.070 0.032 0.055

dtg 0.087 0.080 0.007 0.039

Mng 0.133 0.150 �0.017 �0.028

lsg 0.288 0.248 0.040 0.074

ag 0.359 0.368 �0.010 �0.025

oi 0.318 0.256 0.062 0.140

specg 0.276 0.459 �0.183 �0.293

em 0.396 0.659 �0.264 �0.423

inc 0.105 0.145 �0.040 �0.068

msi 0.159 0.214 �0.055 �0.079

hf 0.220 0.236 �0.016 �0.021

aThe spread (error) is the difference between the OLS

coefficient and the corresponding Hausman coeffi-

cient. For each spread, we produce the coefficient (j)

of the corresponding artificial variable. The Funds

having the highest spreads in absolute value are bold-

faced. This coefficient j is bold-faced when

significant. Note the high positive relation between

the error and its associated j.

Abbreviation: OLS, ordinary least squares.

Table 9: Spread (error) between the OLS and

the Hausman HML estimated coefficients for

each fund of the studya

HML

coef.

OLS

HML

coef.

Hausman

Spread j

emn 0.016 0.021 �0.004 0.009

ed 0.074 0.065 0.009 �0.006

ds 0.071 0.033 0.039 0.052

ss 0.084 0.093 �0.009 �0.037

mna 0.004 0.014 �0.010 �0.023

shs 0.508 0.320 0.187 0.334

va 0.029 0.019 0.010 0.024

f 0.165 �0.137 0.302 0.548

macro 0.025 �0.080 0.106 0.217

mt �0.175 �0.249 0.073 0.131

dtg 0.037 �0.161 0.198 0.362

mng 0.025 0.026 �0.002 �0.009

lsg �0.046 �0.072 0.026 0.058

ag �0.297 �0.250 �0.047 �0.069

oi �0.086 �0.185 0.099 0.208

specg 0.072 0.098 �0.026 �0.047

em 0.082 0.096 �0.014 �0.021

inc 0.086 0.105 �0.020 �0.046

msi �0.018 0.012 �0.030 �0.046

hf �0.014 �0.020 0.006 0.013

aThe spread (error) is the difference between the OLS

coefficient and the corresponding Hausman coeffi-

cient. For each spread, we produce the coefficient (j)

of the corresponding artificial variable. The Funds

having the highest spreads in absolute value are bold-

faced. This coefficient j is bold-faced when

significant. Note the high positive relation between

the error and its associated j.

Abbreviation: OLS, ordinary least squares.
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obtained by the OLS and Hausman regressions

for the UMD factor, which is not observed for

the other ones.

From Tables 11 and 12, we find, respectively,

the OLS and artificial regressions for the funds

that seem to suffer the most from a problem of

error in variables. The adjusted R2 varies greatly

for these funds, having a low of 0.02 for the

futures funds and a high of 0.85 for the short

selling funds. The artificial regressions (Table 12)

were performed by using the higher moments of

the predetermined variables of our model as

instruments.

Table 12 reports our preferred empirical

version of the F&F model. It is a new version

that has not been produced yet. Therefore, it is

not only an artificial regression, but a new

empirical model. It includes the estimated

coefficients of the residuals that produce a great

amount of information about the correction of

the exposures of the funds to the risk factors,

as we have seen before. This correcting process

is required because of the problem of errors

in variables. In Table 13, we note that the

coefficients of the regressions performed in

Table 12 are identical to the coefficients obtained

by a TSLS using the same instruments as

equation (46). But this last estimation form is less

informative than the one produced by the

artificial regression, which constitutes a new

empirical model.

To check the relevance of higher moments as

instruments, we repeat the estimations appearing

in Table 13, but without using higher moments.

The instruments used are therefore standard

predetermined variables, that is, exogenous

variables or lagged endogenous or exogenous

variables not powered. Table 14 provides this

estimation. The results are obviously bad

compared to those obtained by TSLS using

higher moments as instruments. Higher

moments are therefore good candidates for

instruments. They take into account the

Table 10: Spread (error) between the OLS

and the Hausman UMD estimated coeffi-

cients for each fund of the studya

UMD coef.

OLS

UMD coef.

Hausman

Spread j

emn 0.101 0.160 �0.060 �0.079

ed 0.086 0.083 0.003 �0.001

ds 0.019 0.009 0.009 0.016

ss 0.115 0.120 �0.005 �0.015

mna 0.029 0.036 �0.007 �0.014

shs 0.047 �0.103 0.150 0.256

va 0.045 0.054 �0.009 �0.016

f 0.187 �0.027 0.213 0.352

macro 0.150 0.204 �0.055 �0.037

mt 0.038 �0.027 0.065 0.103

dtg 0.139 0.024 0.115 0.199

mng 0.060 0.078 �0.017 �0.027

lsg 0.064 0.054 0.010 0.017

ag 0.059 0.082 �0.023 �0.023

oi 0.112 0.102 0.010 0.033

specg 0.075 0.176 �0.100 �0.136

em 0.082 0.215 �0.133 �0.173

inc 0.071 0.090 �0.019 �0.031

msi 0.021 0.073 �0.052 �0.072

hf 0.064 0.085 �0.021 �0.028

aThe spread (error) is the difference between the OLS

coefficient and the corresponding Hausman coeffi-

cient. For each spread, we produce the coefficient (j)

of the corresponding artificial variable. The Funds

having the highest spreads in absolute value are bold-

faced. This coefficient j is bold-faced when

significant. Note the high positive relation between

the error and its associated j.

Abbreviation: OLS, ordinary least squares.
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nonlinearities of the payoffs of hedge funds that

are neglected by classic instruments.

SUMMARY AND CONCLUSION
In this article, we have developed a new

empirical version of the F&F model aimed at

testing and simultaneously correcting the

problem of errors-in-variables. This model

includes variables to account for the biases in the

estimated exposures to risk factors. This

correction process allows reducing the errors-in-

variables biases from the estimated coefficients of

the risk factors. These correction factors, based

on the artificial regression of the Hausman

specification test, are interesting because they

give information on the understatement or

overstatement of risk resulting from the problem

of errors-in-variables and of the kind of

specification errors.

Our new empirical version of the F&F model

provides another novelty. It uses as instruments

the higher moments of the mimicking portfolios

returns distribution to correct the F&F model

from its errors-in-variables. The fact that these

instruments should be highly related to the risk

factors is explained by the nonlinearities

incorporated in the factor mimicking portfolios.

These nonlinearities cannot be captured by a

standard CAPM or APT model that postulates

a linear relation between the returns to be

explained and their risk factors. The F&F model

is also linear in its factors. But the risk factors

SMB, HML and UMD partly account for the

presence of these nonlinearities. The strong

relation between these factors and the

Table 11: Estimation of Funds plagued with errors in variables by the OLS methoda

Fund c Rm-Rf SMB HML UMD adj. R2 DW

DTG 0.004 0.155 0.087 0.037 0.139 0.129 1.98

1.80 2.94 1.55 0.51 2.56 — —

EM �0.001 0.678 0.396 0.082 0.082 0.456 1.49

�0.32 7.38 4.06 0.65 0.87 — —

F 0.005 �0.007 0.021 0.165 0.687 0.023 1.86

1.61 �0.08 0.23 1.41 2.13 — —

MACRO �0.001 0.303 0.199 0.025 0.150 0.361 1.93

�0.33 5.41 3.33 0.33 2.60 — —

OI 0.006 0.368 0.318 �0.086 0.112 0.726 1.56

3.76 9.60 7.81 �1.64 2.85 — —

SHS 0.002 �0.908 �0.422 0.508 0.047 0.854 1.91

0.71 �14.13 �6.44 6.01 0.74 — —

SPECG 0.000 0.525 0.276 0.072 0.075 0.507 1.54

�0.09 8.43 4.17 0.85 1.18 — —

aIn italic, we find the t statistic of the corresponding estimated coefficient.

Abbreviation: OLS, ordinary least squares.
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instruments we proposed in this article, which

are the higher moments of those variables, tends

to validate these points. Moreover, a TSLS run

on hedge funds returns using conventional

instruments performed very poorly with respect

to a TSLS using higher moments instruments.

Many recent articles criticize the F&F

model.45 Our article provides instead arguments

supporting this model. The three factors, SMB,

HML and UMD, of the F&F model have their

justification in the explanation of risk, because

they aggregate the many nonlinearities that are

present in the distribution of returns. They are

not market anomalies as they were considered

in the past. They are instead ‘réservoirs’ of

moments and co-moments risks.

Our study also sheds light on the idiosyncratic

behaviour of hedge funds. The beta of hedge

funds is not generally high as it does not exceed

0.25. The short sellers differ on that matter,

having a mean beta near �1. For hedge funds,

the three factors SMB, HML and UMD are

definitively factors of risk, their estimated signs

being usually positive and significant in the

regressions of the funds returns on these factors.

After the market risk premium, the factor SMB

exerts the most prominent positive impact on

the returns of the hedge funds of our sample.

This factor allows identifying overvalued and

undervalued securities, a useful information for

the investor.

Globally, the problem of errors-in-variables

does not seem to be too serious in our sample of

hedge funds. This problem gives rise to an

overstatement of the impact of the risk premium

and to an understatement of the influence of

Table 13: Estimation of Funds plagued with errors in variables by the TSLS method with

higher moments as instruments

Fund c Rm-Rf SMB HML UMD adj. R2 DW

DTG 0.006 0.088 0.080 �0.161 0.024 0.064 2.02

2.27 0.85 0.87 �1.39 0.25 — —

EM �0.003 0.686 0.659 0.096 0.215 0.416 1.76

�0.59 3.76 4.05 0.47 1.27 — —

F 0.009 �0.129 �0.053 �0.137 �0.027 0.000 1.89

2.25 �0.77 �0.35 �0.74 �0.18 — —

MACRO �0.002 0.349 0.381 �0.080 0.204 0.161 1.98

�0.60 3.96 3.54 �0.60 1.82 — —

OI 0.006 0.360 0.256 �0.185 0.102 0.700 1.60

3.35 4.78 3.82 �2.22 1.46 — —

SHS 0.003 �0.922 �0.359 0.320 �0.103 0.833 1.87

1.09 �7.45 �3.26 2.33 �0.90 — —

SPECG �0.002 0.532 0.459 0.098 0.176 0.453 1.78

�0.49 4.27 4.13 0.71 1.52 — —

Abbreviation: TSLS, two-stage least squares.

Note: Statistics t are in italics.
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SMB. While the impact of HML on hedge funds

returns is quite low, the incidence of UMD is

more questionable. The correlation between the

coefficients adjusted and unadjusted for the

problem of errors-in-variables is negligible in the

case of UMD.

In summary, our new empirical version of the

F&F model relying on a new version of the

TSLS technique incorporating an Hausman test

seems quite promising. Another procedure to

account for error-in-variables is to use optimal

combinations of cumulants46 estimators, in

addition to the combination of Durbin and Pal

estimators we use in Racicot and Théoret,8,9

instead of higher moments to build the

instruments. In finance, we rely usually on

moments to quantify risks, but cumulants are

quite promising on this matter as they generalize

the theory of moments.
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New York: Wiley.

32 The original F&F model contained only the first two

‘anomalies’. The momentum anomaly, which is due to

Carhart, M.M. (1997) On persistence in mutual fund

performance. Journal of Finance 52(1): 57–82, and

Jegadeesh, N. and Titman S. (1993) Returns to buying

winners and selling losers: Implications for stock market

efficiency. Journal of Finance 48(5): 65–91, was

introduced subsequently, to form the augmented Fama

and French model.

33 The reader will excuse us for confounding at this stage

higher moments and cumulants for the sake of the

presentation. We will come back on the distinction

between these two concepts later.

34 See also L’Habitant (2004) on this point, chapter 8.

Sometimes, the higher order moments are expressed

in deviations from the mean. According to this

formulation, the four-moment CAPM would

be: E(Ri)�R0=b1[E(Rm)�R0]+b2[Rm�E(Rm)]2

+b3[Rm�E(Rm)]3.

35 On the Hausman test, see: Hausman (1978)5; Wu, D.

(1973) Alternative tests of independence between

stochastic regressors and disturbances. Econometrica

41(3): 733–750; MacKinnon, J.G. (1992) Model

specification tests and artificial regressions. Journal of

Economic Litterature 30(1): 102–146; Johnston, J. and

Dinardo J. (1997). Econometric Methods, 4th edn.

NewYork: McGraw Hill; and Pindyck, R.S. and

Rubinfeld, D.L. (1998). Econometric Models and Economic

Forecasts, 4th edn. New York: Irwin-McGraw-Hill. A

very good presentation of the version of the Hausman

test using an artificial regression in the context of

correction of errors in variables may be found in

Pindyck and Rubinfeld (1998). This presentation is

done only for one explanatory variable.

36 Therefore, the Hausman test is an orthogonality test,

that is it aims at verifying if p lim (1/T) X’e=0 in large

samples. But, to paraphrase Spencer, D.E. and Berk,

K.N. (1981) A limited information specification test.

Econometrica 49(4): 1079–1085; and Taleb, N. (1997)

Dynamic Hedging. New York: Wiley, the alternative

hypothesis of this test is broad and diffuse. Absence of

orthogonality might be due to many causes: omission of

relevant explanatory variables, errors in variables,

inappropriate aggregation over time, simultaneity and

incorrect functional form. But, according to these

authors, it is true for all existing tests of the

orthogonality assumption and it seems that the solution

of this problem requires some a priori information. For

our purpose, this a priori information is the potential

presence of errors in variables. We want to verify if the

endogeneity of some variables, the variables measured

with errors, has any significant effect on the parameters

estimation.

37 MacKinnon, J.G. (1992) Model specification tests and

artificial regressions. Journal of Economic Literature 30(1):

102–146.

38 As it is standard in econometrics, we use the asterisks

for unobserved variables.

39 Racicot (2003)6 transposes this approach to the market

model. He assumes that the t test associated to the new

variable ŵ is distributed asymptotically as the normal

distribution. According to Pindyck and Rubinfeld

(1998),33 this test is adequate. Racicot (2003)6 also

assumes in this context that the new model resulting

from the addition of the artificial variable may be

viewed as a new model by itself, so we have a new alpha

for this model. We follow a similar approach in this

article.

40 The French’s website is: http://mba.tuck.dartmouth

.edu/pages/faculty/ken.french/data_library.html.

41 A short put option carries the risk of rare but large

losses.

42 We note that the correlation between SMB and the

annual growth of industrial production is quite high,

being equal to �0.23. This correlation suggests that the

SMB factor would have a positive impact on returns in

recessions.

43 It seems relevant to consider also the j which are

significant at the 10 per cent level.

44 Note that usually, the spread is less than j.

45 For example, Chung, Y.P., Johnson, H. and Schill, M.J.

(2001) Asset Pricing When Returns are Nonnormal:

Fama French Factors vs. Higher Order Systematic

Co-moments. Working Paper, SSRN, noted that SMB

and HML become not significant or less significant

when moments or co-moments are taken into account.

In that respect, F&F factors might simply be good

proxies for the higher moments of the return

distribution. But our regression technique, which uses

co-moments as instruments, suggests that they capture

these co-moments and also other influences.

46 On this subject, see: Malevergne, Y. and Sornette, D.

(2005) Higher moments portfolio theory, capitalizing

on behavioral anomalies of stock markets. Journal of

Portfolio Management 31(4): 49–55.

APPENDIX

List of funds included in the study

K USEMN: Equity market neutral

K USED: Event driven

The Fama and French model
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K USDS: Distressed securities

K USSS: special situations

K USMMNA: Market neutral arbitrage

K USSHS: short selling index

K USVA: Value index

K USF: futures index

K USMACRO: Macro

K USMT: Market timing

K USDTG: Directional trading group

K USMNG: Market neutral group

K USLSG: long short group

K USAG: aggressive growth

K USOI: opportunity index

K USSPECG: special strategies

K USEM: emerging markets

K USINC: fixed income

K USMSI: multi strategy index

K USHF: hedge funds index
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