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PRACTICAL APPLICATIONS Hedge funds exhibit complex, non-normal return distributions.

In this context, it is difficult for investors to determine how much capital to allocate across different

hedge fund strategies. Standard mean-variance portfolio theory and performance measures based on it

(for example, the Sharpe ratio) may be inappropriate. The paper proposes an alternative portfolio

allocation technique based on polynomial goal programming (PGP) that is simple to implement and

computationally robust.

ABSTRACT This paper develops a technique for fund of hedge funds to allocate capital

across different hedge fund strategies and traditional asset classes. Our adaptation of the

polynomial goal programming optimisation method incorporates investor preferences for

higher return moments, such as skewness and kurtosis, and provides computational

advantages over rival methods. We show how optimal allocations depend on the interaction

between strategies, as measured by covariance, co-skewness and co-kurtosis. We also

demonstrate the importance of constructing ‘like for like’ representative portfolios that

reflect the investment opportunities available to different-sized funds. Our empirical results
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reveal the importance of equity market neutral funds as volatility and kurtosis reducers and

of global macro funds as portfolio skewness enhancers.
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INTRODUCTION
As hedge funds continue to become more and

more popular with investors, the amount of

assets under their management has steadily

grown, from around $40 billion in 1990 to an

estimated $1839 billion by September 2007.

Most investors do not invest in individual hedge

funds directly, but invest in so-called funds of

hedge funds (FoHF) instead. In return for a

typically not-insignificant fee, FoHF (claim to)

take care of the many unavoidable, time-

consuming and complex issues that come with

investing in a highly opaque asset class such as

hedge funds. Although FoHF have been around

for quite some time, it is still unclear how FoHF

should optimally allocate capital across various

hedge fund strategies.1 In this paper, we show

how a simple allocation technique based on

polynomial goal programming (PGP) is

particularly well-suited to dealing with the

complex return distributions of hedge funds and

their practical institutional constraints.

Amin and Kat,2 Anson3 and others show that

hedge fund returns are substantially more

complex than common stock and bond returns.

Not only do hedge fund return distributions tend

to exhibit significant skewness and kurtosis, they

also tend to display significant co-skewness with

the returns on other hedge funds as well as equity.

As a result, standard mean-variance portfolio

theory (as well as performance measures based on

it, such as the Sharpe ratio) is inadequate when

dealing with portfolios of (or including) hedge

funds – a more extensive model is required.4

Here, we construct a PGP optimisation model

that is able to balance multiple conflicting and

competing hedge fund allocation objectives:

maximising expected return while

simultaneously minimising return variance,

maximising skewness and minimising kurtosis.

We show how changes in investor preferences

lead to different asset allocations across hedge

fund strategies and across asset classes (hedge

funds, stocks and bonds). The PGP model

provides guidance on how much capital, if any,

should be allocated to each hedge fund strategy.

In this way, a fund of funds can incorporate the

investment goals of its target investors to help

determine whether it should hold a wide

cross-section of strategies (as the majority of

FoHF do), or instead should focus its expertise

on a few strategies or a single strategy.

We proceed as follows. The next section

formulates optimal hedge fund portfolio

selection within a four-moment framework

as a multiple-objective problem. The following

section describes the data. The penultimate

section provides illustrative empirical results.

The final section concludes. The Appendix

outlines the procedure used for unsmoothing the

raw hedge fund return data.

PORTFOLIO SELECTION IN A

FOUR-MOMENT FRAMEWORK
The PGP approach was first used in finance by

Tayi and Leonard5 to facilitate bank balance

sheet management. It has subsequently been

used by Lai,6 Chunhachinda et al,7 Sun and Yan8

Davies et al
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and Prakash et al 9 to solve portfolio selection

problems involving a significant degree of

skewness. Here, we adapt the basic PGP

approach to the context of FoHF portfolio

selection. In order to incorporate more

information about the non-normality of

returns, we augment the dimensionality of

the PGP portfolio selection problem from

mean-variance-skewness to mean-variance-

skewness-kurtosis. Later, we describe how we

construct representative portfolios for each

hedge fund strategy.

Consider an environment with nþ 1 assets.

Each of the assets 1, 2,y, n is a portfolio of

hedge funds selected in a manner described

below to represent a typical portfolio of funds

drawn from each of the n hedge fund strategy

classifications. Each strategy portfolio has a

random return R̃i. We impose a no short-sale

requirement: negative positions in the portfolios

of hedge funds are not allowed. Asset nþ 1 is the

risk-free asset, with rate of return r for both

borrowing and lending.

Let xi denote the percentage of wealth

invested in the ith asset and let

X ¼ ðx1; x2; . . . ; xnÞ
>. Corresponding to

R
~
¼ ð ~R1; ~R2; . . . ; ~RnÞ

> is a positive definite

n� n variance-covariance matrix V. The

percentage invested in the risk-free asset is

determined by xnþ1 ¼ 1� I>X, where I is an

n� 1 identity vector. As the portfolio decision

depends on the relative percentage invested in

each asset, the portfolio choice X can be rescaled

and restricted on the unit variance space (that is,

fXjX>VX ¼ 1g). Then, the portfolio selection

problem may be stated as the following multiple-

objective programming problem:

Maximise Z1 ¼ E ½X>R
~
� þ xnþ1r; ð1Þ

maximise Z3 ¼ E ½X>ðR
~
� E ½R

~
� Þ�

3
; ð2Þ

minimise Z4 ¼ E ½X>ðR
~
� E ½R

~
� Þ�

4
; ð3Þ

subject to X>VX ¼ 1; XX0;

xnþ1 ¼ 1� I>X: ð4Þ

where portfolio expected return is Z1, skewness

is Z3 and kurtosis is Z4.

Given an investor’s preferences among

objectives, a PGP can be expressed instead as

Minimise Z ¼ ð1þ d1Þ
a
þ ð1þ d3Þ

b

þ ð1þ d4Þ
g; ð5Þ

subject to E ½X>R
~
� þ xnþ1r þ d1 ¼ Z�1 ;

ð6Þ

E ½X>ðR
~
� E ½R

~
� Þ�

3
þ d3 ¼ Z�3 ; ð7Þ

�E ½X>ðR
~
� E ½R

~
� Þ�

4
þ d4 ¼ �Z�4 ; ð8Þ

d1; d3; d4X0; ð9Þ

X>VX ¼ 1; XX0;

xnþ1 ¼ 1� I>X; ð10Þ

where Z�1 ¼MaxfZ1jX
>VX ¼ 1g is the mean

return for the optimal mean-variance portfolio

with unit variance, Z�3 ¼ MaxfZ3jX
>VX ¼ 1g

is the skewness value of the optimal skewness-

variance portfolio with unit variance and

Z�4 ¼MinfZ4jX
>VX ¼ 1g is the kurtosis

value of the optimal kurtosis-variance portfolio

with unit variance; and where a, b and g are

the non-negative investor-specific parameters

representing the investor’s subjective degree of

preferences on the mean, skewness and kurtosis

of the portfolio return. The specification of our

objective function in (5) ensures that it is
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monotonically increasing in d1, d3 and d4 for all

possible values.

In summary, solving the multiple-objective

PGP problem involves a two-step procedure.

First, the optimal values for Z1
*, Z3

* and Z4
*,

expected return, skewness and kurtosis,

respectively, are each obtained within a unit

variance two-space framework. Subsequently,

these values are substituted into the conditions

(6)–(8), and the minimum value of (5) is found

for a given set of investor preferences {a,b, g}
within the four-moment framework.

All the optimal portfolios obtained above are

composed of risky assets (hedge fund strategy

portfolios) and the risk-free asset, in order to

ensure the uniqueness of each optimal portfolio.

To capture an investor that is fully invested in

hedge funds, we rescale the portfolio X such

that the total investment is 1 (that is, so that

xnþ 1¼ 0). Let yi¼ xi/(x1þ x2þyþ xn) be the

percentage invested in the ith asset in the optimal

portfolio Y. In the context of FoHF portfolios,

yi is the capital weight allocated to each hedge

fund strategy in the optimal hedge fund portfolio.

When we investigate the asset allocation

strategies for portfolios of stocks, bonds and

hedge funds, there are nþ 3 assets in the world:

n representative portfolios, one for each hedge

fund strategy; the S&P500 index, representing

stocks; the Salomon Brothers 7-Year

Government Bond Index (SALGVT7),

representing bonds; and the risk-free asset. A no

short-sale restriction is imposed for hedge fund

portfolios only. Negative positions in stocks and/

or bonds are allowed for.

Our PGP framework can be thought about in

economic terms. Investors’ utility will be

augmented by a positive first moment (expected

return), positive third moment (skewness) and

negative fourth moment (kurtosis). The investor

preference parameters a, b and g are directly

associated with the marginal rate of substitution,

which measures the desirability of forgoing one

objective in order to gain another (conflicting)

objective. For example, the marginal rate of

substitution between expected return and

skewness is given by ((qZ/qd1)/(qZ/qd3)¼

(a(1þ d1)
a�1)/(b(1þ d3)

b�1)) and the

marginal rate of substitution between

expected return and kurtosis is given by

((qZ/qd1)/(qZ/qd4)¼ (a(1þ d1)
a�1)/

(g(1þ d4)
g�1)).

Thus, our approach allows users a simple,

transparent method to specify their

heterogeneous preferences for higher moments.

This contrasts with standard portfolio

optimisation based on a specific utility

function.10 Recall that even the standard mean-

variance utility function of Markowitz11 and

Sharpe12 may be viewed as an approximation to

the more basic von Neumann–Morgenstern

utility function and more particularly to the

isoelastic family of utility functions.13

Unfortunately, these functions do not provide an

exact preference ordering for risky portfolios

using the first three (or higher) moments of

portfolio returns. To isolate the impact of each

moment, these non-polynomials are typically

expanded using a Taylor series approximation.

From an academic perspective, this is easily

accommodated.14 In practice, however, it is

difficult for investors of hedge funds to describe

their ‘utility function’. Cremers et al15 use a full-

scale optimisation approach to show that

different specifications of investor preferences

(power utility, bilinear utility and S-shaped value

functions) imply considerable differences in the

effect of higher return moments on optimal

hedge fund allocations. Our simple approach

largely mitigates these difficulties.

Davies et al
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It is also important to highlight the advantages

of using our approach over using a one-stage

linear objective function, such as

max E ½Rp� � l1Variance ðRpÞ

þ l2Skewness ðRpÞ � l3Kurtosis ðRpÞ

ð11Þ

This linear objective function requires portfolio

weights to be optimised over four dimensions

simultaneously – potentially a very difficult

computational problem. Worse yet, because

skewness and kurtosis are the third and fourth

return moments scaled by variance, each of the

terms in the objective function interact with

each other in complex ways, making trade-offs

difficult to interpret. Thus, as the possible asset

space increases in size, it becomes increasingly

likely that a numerical solver will solve for a local

maximum (or minimum) rather than the global

maximum of (11).

In contrast, our PGP approach improves

computational tractability by conducting the

optimisation in two stages. In the first stage,

optimisation is conducted in two-dimensional

space, thereby ensuring that a numerical solver

always locates the global maximum (minimum)

value of each moment. Then, in the second

stage, optimisation is conducted relative to these

known targets (an easier computational

problem). Investors can specify their preferences

relative to these targets, allowing them more

control and greater insights about the potential

trade-offs. Throughout this process we set

variance equal to 1 (which can later be rescaled)

– in effect, this means our optimisation uses

unscaled return moments, rather than skewness

and kurtosis. This further improves

computational tractability and also leads to better

investment choices (see Brulhart and Klein16 for

compelling evidence of this).

A natural question to ask is how our PGP

approach performs out of sample relative to

other approaches. Some evidence is provided

by Anson et al,17 who use our PGP optimisation

approach to the CalPERS’ hedge fund portfolio.

They run the optimisation process quarterly,

and impose a 3-month lag between the

optimisation and the implementation (because

of quarterly liquidity constraints). They find

that out-of-sample performance of the

optimised portfolios is better than that of

mean-variance portfolios and that increasing

investor preference parameters for the third

and fourth return moment improves these

moments out of sample. Although this evidence

is certainly encouraging, we caution readers

that higher return moments can be driven by

rare outliers, and therefore a more detailed

out-of-sample analysis would require a longer

history of hedge fund data than that currently

available.

Finally, before proceeding to our empirical

results, we mention that another advantage of

the PGP approach is that it can be adapted to

embed other investor goals. For instance, based

on an earlier version of this paper, at least one

hedge fund has already adapted the PGP

optimisation function to incorporate a value-

at-risk (VaR) measure. Thus, the method could

incorporate features of other hedge fund

allocation techniques, such as the mean-

modified VaR optimisation procedure proposed

by Favre and Galeano.18

Other important approaches in the hedge

fund allocation literature include Lamm’s

Cornish–Fisher expansion,19 Terhaar et al’s factor

model,20 Alexander and Dimitriu’s statistical

factor model approach,21 Cvitanić et al’s

manager ability uncertainty framework,22

Amenc and Martellini’s out-of-sample model23

Fund of hedge funds portfolio selection
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and Popova et al’s benchmark over/under

performance construction.24

STRATEGY CLASSIFICATION

AND DATA
Hedge fund investment strategies tend to be

quite different from the strategies followed by

traditional money managers. In principle every

fund follows its own proprietary strategy, which

means that hedge funds are a very heterogeneous

group. It is, however, customary to ask hedge

fund managers to classify themselves into one of

a number of different strategy groups depending

on the main type of strategy followed. We

concentrate on seven main classes of funds. The

numbers in square brackets indicate the

estimated market share of each strategy group in

terms of assets under management based on the

June 2002 TASS asset flows report:

Long/Short Equity [43 per cent]: Funds that

simultaneously invest on both the long and the

short side of the equity market. Unlike equity

market neutral funds, the portfolio may not

always have zero market risk. Most funds have a

long bias.

Equity Market Neutral [7 per cent]: Funds that

simultaneously take long and short positions of

the same size within the same market, that is,

portfolios are designed to have zero market risk.

Leverage is often applied to enhance returns.

Convertible Arbitrage [9 per cent]: Funds that buy

undervalued convertible securities while

hedging (most of) the intrinsic risks.

Distressed Securities [11 per cent]: Funds that trade

the securities of companies in reorganisation

and/or bankruptcy, ranging from senior secured

debt to common stock.

Merger Arbitrage [8 per cent]: Funds that trade the

stocks of companies involved in a merger or

acquisition, buying the stocks of the company

being acquired while shorting the stocks of its

acquirer.

Global Macro [9 per cent]: Funds that aim to profit

from major economic trends and events in the

global economy, typically large currency and

interest rate shifts. These funds make extensive

use of leverage and derivatives.

Emerging Markets [3 per cent]: Funds that focus on

emerging and less mature markets. These funds

tend to be long only because in many emerging

markets short selling is not permitted and futures

and options are not available.

The database used in this study covers the

period June 1994–May 2001 and was obtained

from Tremont TASS, which is one of the best

known and largest hedge fund databases

available. Our database includes the Asian,

Russian and LTCM crises as well as the end of

the IT bubble and the first part of the bear

market that followed. As of May 2001, the

database contains monthly net-of-fee returns on

a total of 2183 hedge funds and FoHF.

Reflecting the tremendous growth of the

industry as well as a notoriously high attrition

rate, only 264 of these hedge funds had 7 or

more years of data available.

As shown in Amin and Kat,25 concentrating

on surviving funds only will not only

overestimate the mean return on individual

hedge funds by around 2 per cent but will also

introduce significant biases in estimates of

Davies et al
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standard deviation, skewness and kurtosis. To

avoid this problem, we decide not to work with

the raw return series of the 264 survivor funds

but instead to create 348 7-year monthly return

series by, starting off with the 348 funds that

were alive in June 1994, replacing every fund

that closed down during the sample period by a

fund randomly selected from the set of funds

alive at the time of closure following strategy of

the same type and of similar size and age. We do

not include FoHF or dedicated short bias funds

in our sample.

This replacement procedure implicitly

assumes that in case of fund closure, investors are

able to roll from one fund into the other at the

reported end-of-month net asset value and at

zero additional costs. This somewhat

underestimates the true costs of fund closure to

investors for two reasons. First, when a fund

closes shop, its investors have to look for a

replacement investment. This search takes time

and is not without costs. Second, investors may

get out of the old and into the new fund at

values that are less favourable than the end-of-

month net asset values contained in the database.

Unfortunately, it is impossible to correct for this

without additional information.

As hedge funds frequently invest in, to various

degrees and combinations, illiquid exchange-

traded and difficult-to-price over-the-counter

securities, hedge fund administrators can have

great difficulty in marking a portfolio to market

at the end of the month to arrive at the fund’s

net asset value. Having difficulty obtaining an

accurate value for illiquid assets, most will rely

on ‘old’ prices or observed transaction prices for

similar but more liquid assets. Such partial

adjustment or ‘smoothing’ produces systematic

valuation errors, which tend not to be diversified

away, resulting in serial correlation in monthly

returns and underestimation of their true

standard deviations. In this paper we follow the

approach of Brooks and Kat,26 outlined in the

Appendix, to unsmooth hedge fund returns and

thereby reconcile stale price problems. Table 1

provides a statistical summary of reported and

unsmoothed individual hedge fund returns.

Looking at the 1-month autocorrelations, the

smoothing problem is especially acute among

convertible arbitrage and distressed securities

funds. This is plausible as the securities held by

these funds tend to be highly illiquid. As well,

the unsmoothing produces standard deviations

that are substantially higher than those calculated

from reported returns, especially in convertible

arbitrage and distressed securities where we

observe a rise of around 30 per cent. In what

follows, we concentrate on the unsmoothed

returns.

Table 1 offers some other insights as well.

Funds in different strategy groups tend to

generate quite different returns, which confirms

that the (self-)classification used has significant

discriminatory power. From the table it is also

clear that the risk profile of the average hedge

fund cannot be accurately described by standard

deviation alone. The table reports that the

majority of funds in each strategy group reject

the null hypothesis of a normal return

distribution under a Jarque–Bera test at the

5 per cent significance level. All strategy groups

exhibit non-zero skewness and excess kurtosis,

with global macro being the only strategy

producing positive skewness.

Most existing research on optimal hedge fund

allocation, including Lamm,19 Morton et al,27

Amenc and Martellini23 and Cvitanić et al,22

uses well-known hedge fund indices (obtained

from, for example, HFR or CSFB-TASS) to

represent the different hedge fund strategy

Fund of hedge funds portfolio selection
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classes. Given the different number of funds in

each index, however, different indices will

achieve different levels of diversification. As

shown in Amin and Kat28 and Davies et al,29

hedge fund portfolio return properties vary

substantially with the number of hedge funds

included in the portfolio. For instance, an index

constructed from only 10 funds will typically

have significantly higher variance than a similar

index constructed from 100 funds. An index

composed of more funds is therefore likely to be

allocated more capital. This higher allocation,

however, results because this index has less

specific risk than other indices based on a smaller

number of funds, rather than because this strategy

has lower risk.

Table 1: Statistical summary of reported and ‘unsmoothed’ hedge fund returns and stock/

bond returns

N Mean SD Skewness Kurtosis AC(1) AC(2) AC(3) AC(4) J–B (%)

Based on reported returns

Convertible arbitrage 24 0.96 3.01 �1.14 5.93 0.30 0.15 0.09 0.02 91.7

Distressed securities 29 0.89 2.37 �0.78 6.36 0.25 0.08 �0.04 0.02 86.2

Equity market neutral 12 0.54 2.70 �0.41 2.82 0.20 0.03 0.05 0.05 50.0

Global macro 46 0.77 5.23 1.06 7.63 0.11 0.01 �0.00 �0.03 84.8

Long/short equity 172 1.34 5.83 0.00 3.35 0.09 �0.00 0.01 �0.03 69.2

Merger arbitrage 18 1.17 1.75 �0.50 4.96 0.10 �0.00 0.00 �0.03 77.8

Emerging markets 47 0.22 7.85 �0.86 5.79 0.10 �0.01 �0.00 �0.02 68.1

S&P500 — 1.36 4.39 �0.83 1.11 �0.11 �0.05 0.03 �0.06 —

Bond index — 0.59 0.84 0.24 1.39 0.22 0.12 0.06 0.02 —

Based on ‘unsmoothed’ returns

Convertible arbitrage 24 0.96 3.99 �0.91 5.46 0.00 �0.03 �0.01 �0.02 79.2

Distressed securities 29 0.91 3.06 �0.67 6.60 0.01 �0.03 �0.01 �0.02 86.2

Equity market neutral 12 0.55 3.06 �0.39 2.94 0.01 �0.03 �0.01 �0.02 50.0

Global macro 46 0.76 5.35 1.03 7.16 0.01 �0.02 �0.01 �0.03 82.6

Long/short equity 172 1.37 6.35 0.01 3.19 0.00 �0.03 �0.00 �0.03 68.6

Merger arbitrage 18 1.17 2.06 �0.46 4.65 0.00 �0.03 �0.01 �0.02 77.8

Emerging markets 47 0.23 9.63 �0.91 5.91 0.01 �0.03 �0.01 �0.02 66.0

Reported values are calculated from monthly net-of-all-fee returns and averaged across funds. ‘Unsmoothed’

returns are reported returns adjusted for possible stale price effects using the technique described in the

Appendix. Kurtosis measures excess kurtosis. First-order to fourth-order autocorrelation is given by AC(1)–

AC(4). The final column reports the percentage of funds within each strategy that reject the null hypothesis of a

normal return distribution under a Jarque–Bera (J–B) test with a 5 per cent significance level.

Davies et al
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To compare ‘like for like’, we construct

representative portfolios containing the same

number of funds for each hedge fund strategy.

Specifically, we consider representative portfolios

of 5 and 15 funds to capture the feasible

investment possibilities of small- and large-sized

FoHF. In practice, FoHF have to deal with

minimum investment requirements, typically

ranging from $100 000 to $500 000 per fund.

For smaller FoHF, this forms a significant barrier

to diversification. In contrast, large FoHF

typically spread their investments over a

relatively large number of managers to prevent

the fund from becoming the dominant investor

in any one particular fund.30

We construct the representative portfolios for

a given strategy as follows. First, we randomly

sample 5000 portfolios of a given size (5 or 15

funds). We calculate each portfolio’s mean,

standard deviation, skewness and kurtosis and

take the average of each moment over the 5000

portfolios. The representative portfolio is then

selected from the 5000 random portfolios in

order to minimise the sum of the ranked

differences across each of the four average

moments. Table 2 provides the return

characteristics of the representative portfolios

thus obtained. In unreported results, we also

considered representative portfolios of 10 and 20

funds. Our results show that as the number of

funds in portfolio increases, standard deviations

fall substantially. This indicates relatively low

correlation between funds within the same

strategy group, that is, a high level of fund-

specific risk. Also, when the number of funds

increases, portfolio return distributions become

more skewed, indicating a high degree of

co-skewness between funds within the same

strategy group. Diversification is no longer a free

lunch: Investors pay for a lower standard

deviation by accepting a lower level of skewness.

The only exception is global macro, where lower

standard deviations go hand in hand with higher

levels of skewness.

In practice, managers of FoHF do not select

hedge funds by random sampling. This said, the

fact that many spend a lot of time and effort to

select the funds they invest in does not necessarily

mean that in many cases a randomly sampled

portfolio is not a good proxy for the portfolio that

is ultimately selected. There is no evidence that

some FoHF are able to consistently select future

outperformers, nor is there any evidence of

specific patterns or anomalies in hedge fund

returns. When properly corrected for all possible

biases, there is no significant persistence in hedge

fund returns, nor is there any significant

difference in performance between older and

younger funds, large and small funds, and so on.

In addition, older funds may be more or less

closed to new investment, implying that

expanding fund of funds are often forced to invest

in funds with little or no track record. The fund

prospectus and manager interviews may provide

some information, but in most cases this

information will be sketchy at best and may add

more noise than actual value.

Finally, our analysis uses the sample average of

the 90-day US T-bill rate, r¼ 0.423317 per cent

on a monthly basis, as the risk-free rate. Although

for the most part we focus on the portfolio

selected by a FoHF that neither borrows nor

lends, the risk-free rate is necessary to determine

the optimal portfolio as it reflects the leverage

possibilities available to a FoHF investor.

EMPIRICAL RESULTS
We now use PGP optimisation to obtain optimal

portfolios for 10 different sets of investor
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preferences, for both FoHF portfolios and

portfolios of stocks, bonds and hedge funds.

These preference sets are chosen to illustrate the

extent to which investors must trade off different

moments, to determine which hedge fund

strategies are crucial in determining overall

portfolio performance and to see how allocations

change if we impose capital constraints on each

hedge fund strategy.

Trade-off between multiple

objectives
The more importance investors attach to a

certain moment, that is, the greater the

preference parameter for this moment, the

more favourable the value of this moment

statistic will tend to be in the optimal portfolio.

Investor preferences (a,b, g) determine the

relative importance of the difference between

Table 2: Statistical summary of returns for representative portfolios

Mean SD Skewness Kurtosis

Small investors (each strategy portfolio has 5 funds)

Convertible arbitrage 0.96 2.84 �0.83 5.11

Distressed securities 0.89 2.23 �1.89 11.00

Equity market neutral 0.50 1.75 �0.40 1.53

Global macro 0.75 3.37 0.64 2.41

Long/short equity 1.38 4.03 �0.21 2.10

Merger arbitrage 1.16 1.54 �1.08 6.62

Emerging markets 0.25 7.54 �1.15 5.80

Large investors (each strategy portfolio has 15 funds)

Convertible arbitrage 0.95 2.35 �1.00 4.65

Distressed securities 0.90 2.03 �2.55 14.31

Equity market neutral 0.52 1.31 �0.65 1.26

Global macro 0.75 2.79 0.76 1.64

Long/short equity 1.37 3.55 �0.23 1.83

Merger arbitrage 1.17 1.37 �1.71 8.98

Emerging markets 0.22 7.19 �1.27 5.93

Representative portfolios are obtained by first randomly sampling 5000 portfolios of a given size (5 or 15 funds).

The mean, standard deviation, skewness and kurtosis of each randomly sampled portfolio’s return series are

calculated. Then, the average of each moment over the 5000 portfolios is taken. The representative portfolio is

then selected from the 5000 random portfolios to minimise the sum of the ranked differences across each of the

four average moments. Reported values are calculated from monthly net-of-all-fee returns and averaged across

funds. Kurtosis measures excess kurtosis.
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the values for expected return, skewness

and kurtosis obtained in mean-variance-

skewness-kurtosis space and their corresponding

optimal values obtained in mean-variance

(Z1
* ), skewness-variance (Z3

* ) and kurtosis-

variance space (Z4
* ). Figure 1 shows that the

difference, d1 ¼ Z�1 � E ½X>R
~
� � xnþ1r,

decreases monotonically as investors’ preference

for expected return (a) increases, holding

b¼ 1 and g¼ 0.5 fixed. It also provides the

analogous results for skewness (holding a¼ 1

and g¼ 0.5 fixed) and kurtosis (holding a¼ 1

and b¼ 1 fixed). Based on these results, we

choose realistic values for the preference

parameters: a,bA{0(none), 1(low),

2(medium), 3(high)} and gA{0(none),

0.25(low), 0.5(medium), 0.75(high)}, to

capture investors with no, low, medium and

high preference, respectively, for the applicable

return moment.
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Figure 1: This figure illustrates how the deviation from the two-space optimal expected return

varies as we vary the large investor’s preference parameter over the given moment, holding

the investor’s preference over the other moments constant. For expected return, we hold b¼ 1

and g¼ 0.5 constant and plot the deviation d1 versus the preference parameter over expected

return (a). The deviation is measured relative to 0.97, which is the highest obtainable expected

return when variance is held constant at 1. For skewness, we hold a¼ 1 and g¼ 0.5 constant

and plot the deviation d3 versus the preference parameter over skewness (b). The deviation is

measured relative to 0.85, which is the highest obtainable skewness value when variance is

held constant at 1. For kurtosis, we hold a¼ 1 and b¼ 1 constant and plot the deviation d4

versus the preference parameter over kurtosis (g). The deviation is measured relative to �0.10,

which is the lowest obtainable kurtosis value when variance is held constant at 1.
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Table 3: Moment statistics and asset allocation across strategy classes for optimal FoHF

portfolios

Portfolio

A B C D E F G H I J

a 1.00 1.00 1.00 3.00 1.00 1.00 2.00 2.00 3.00 3.00

b 0.00 1.00 1.00 1.00 3.00 1.00 1.00 3.00 2.00 1.00

g 0.00 0.00 0.25 0.25 0.25 0.75 0.75 0.25 0.25 0.50

Small investors (representative strategy portfolios have 5 funds)

Moments

Expected return 1.07 0.85 1.38 0.83 0.79 0.70 0.66 0.84 0.79 0.77

SD 1.30 2.78 4.03 1.42 2.40 1.59 1.46 2.84 1.70 1.38

Skewness �1.25 0.66 �0.21 0.25 0.63 0.27 0.23 0.66 0.51 0.15

Kurtosis 6.07 1.96 2.10 1.01 1.76 �0.26 �0.27 1.72 1.35 0.05

Allocation

Convertible arbitrage 0.05 0.04 0.00 0.10 0.13 0.11 0.13 0.03 0.09 0.11

Distressed securities 0.00 0.00 0.00 0.00 0.04 0.00 0.10 0.00 0.00 0.00

Equity market neutral 0.10 0.01 0.00 0.27 0.12 0.52 0.51 0.04 0.28 0.41

Global macro 0.05 0.78 0.00 0.32 0.66 0.28 0.25 0.78 0.43 0.25

Long/short equity 0.00 0.10 1.00 0.00 0.05 0.09 0.00 0.15 0.01 0.04

Merger arbitrage 0.80 0.07 0.00 0.30 0.00 0.00 0.00 0.00 0.19 0.19

Emerging markets 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Large investors (representative strategy portfolios have 15 funds)

Moments

Expected return 0.97 0.75 0.76 0.85 0.73 0.66 0.77 0.75 0.78 0.79

SD 0.92 1.51 1.40 1.13 1.69 1.35 0.92 1.50 1.26 0.93

Skewness �1.29 0.83 0.80 0.31 0.85 0.42 0.19 0.83 0.72 0.21

Kurtosis 6.19 1.42 1.29 1.13 1.42 0.19 0.29 1.40 1.20 0.45

Allocation

Convertible arbitrage 0.02 0.01 0.04 0.09 0.00 0.16 0.09 0.02 0.03 0.08

Distressed securities 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Equity market neutral 0.30 0.32 0.34 0.27 0.32 0.45 0.47 0.32 0.34 0.44

Global macro 0.00 0.49 0.44 0.30 0.56 0.35 0.19 0.49 0.38 0.20

Long/short equity 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00

Merger arbitrage 0.68 0.18 0.18 0.34 0.09 0.00 0.25 0.17 0.25 0.29

Emerging markets 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00

Reported values are calculated from monthly net-of-all-fee returns. Investors assign capital to representative

portfolios of convertible arbitrage, distressed securities, equity market neutral, global macro, long/short equity,

merger arbitrage and emerging market hedge funds. Optimal allocations are based on investors’ preferences over

expected return (a), skewness (b) and kurtosis (g) using the PGP technique.
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Table 3 provides the return characteristics of

PGP optimal portfolios for small and large

investors for different sets of investor preferences

over expected return (a), skewness (b) and

kurtosis (g). Portfolio A with (a,b, g)¼
(1, 0, 0) corresponds with the mean-variance

efficient portfolio. Expected return is relatively

high and standard deviation low, which in

mean-variance terms makes for a highly

attractive portfolio. Looking beyond mean

and variance, however, we see that the skewness

and kurtosis properties of this portfolio are

extremely unattractive. This confirms the point

raised by Amin and Kat2 that mean-variance

optimisers may be nothing more than skewness

minimisers.

Portfolios B–J show that variations in investor

preferences will change the risk-return

characteristics of the optimal portfolio to quite

an extent. These results reinforce the trade-offs

illustrated in Figure 1 and show that as one

moment statistic improves, at least one of the

other three moment statistics will tend to

deteriorate. Compare, for example, portfolio E,

(a,b, g)¼ (1, 3, 0.25), with portfolio H,

(a,b, g)¼ (2, 3, 0.25). These two portfolios have

the same level of preference over skewness and

kurtosis. Despite this, the higher preference over

expected return in portfolio H leads to a higher

expected return at the cost of a higher standard

deviation. The same phenomenon can be

observed by comparing portfolio G,

(a,b, g)¼ (2, 1, 0.75), with portfolio H. Higher

preference for skewness and lower preference for

kurtosis cause the high kurtosis and high

standard deviation of portfolio H to be traded in

for a higher expected return and substantially

higher skewness.
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Figure 2: This figure illustrates the feasible set of portfolios and the efficient frontier in a

mean-variance framework for large investors. The square point indicates the optimal portfolio

for (a, b, g)¼ (1, 0, 1). The triangle point indicates the optimal portfolio for (a, b, g)¼ (0, 0, 1). The

diamond point indicates the optimal portfolio for (a, b, g)¼ (1, 1, 0).
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The above observation that hedge fund

moment statistics tend to trade off against each

other is quite an interesting one. Despite the fact

that hedge funds often follow highly active,

complex strategies, hedge fund returns seem to

exhibit the same type of trade-offs typically

observed in the underlying securities markets,

where prices are (thought to be) explicitly set to

generate this type of phenomenon. Hedge funds

therefore appear unable to dodge the rules of the

game and seem to pick up a lot more from the

markets that they trade than their well-cultivated

market neutral image may suggest.

Figure 2 shows the feasible set of portfolios

and the resulting mean-variance efficient frontier

as well as the mean-variance coordinates of some

specific optimal portfolios, including the mean-

variance-skewness efficient portfolio (portfolio

B with (a, b, g)¼ (1, 1, 0)), and the mean-

variance-kurtosis efficient portfolio (with

(a,b, g)¼ (1, 0, 1)). Doing so demonstrates a key

point of our analysis: if investor preferences over

skewness and kurtosis are incorporated into the

portfolio decision, then in mean-variance space

the optimal portfolio may well lie below the

mean-variance efficient frontier. The reason is,

of course, that expected return, skewness and

kurtosis are conflicting objectives. Portfolios

with relatively high skewness and low kurtosis

will tend to come with a relatively low expected

rate of return and vice versa.

Even though investor preferences over

variance (or standard deviation) are not explicitly

specified in our objective function, variance still

plays a key role in the trade-off interaction. In

the first stage of our PGP optimisation, the

optimal values of Z1
*, Z3

* and Z4
* are each

obtained by seeking the best trade-off between

variance and return, variance and skewness, and

variance and kurtosis, respectively. In the second

stage of the PGP optimisation, we obtain the

optimal portfolio that has the best possible

expected return, skewness and kurtosis with the

relative trade-offs between them determined by

how close their values are to Z1
*, Z3

* and Z4
* with

the difference ‘penalty’ determined by investor

preferences. Standard deviation is therefore

essentially the trade-off counterpart to every

moment in the optimisation process.

Optimal allocation across hedge

fund strategies

Table 3 also reports the optimal allocation

weights across the different hedge fund strategies

for different sets of investor preferences over

expected return, skewness and kurtosis. When

the analysis is limited to mean-variance space

(portfolio A), merger arbitrage is allocated a

dominant 80 per cent. This, however, fully

reflects merger arbitrage’s comparatively low

volatility and high return during our data period.

The attractive mean-variance characteristics of

merger arbitrage come at the cost of

unfavourable skewness and kurtosis properties.

When preference for skewness and kurtosis is

introduced, the allocations change dramatically.

The allocation to merger arbitrage drops to a

much lower level, whereas global macro and

equity market neutral take over as the dominant

strategies, irrespective of investor size or

preferences. Convertible arbitrage and long/

short equity tend to receive relatively small

allocations here and there. No money is

allocated to distressed securities and emerging

markets.

The allocations in Table 3 are not at all in line

with strategies’ means and variances as reported

in Table 2. Purely based on mean and variance,

one would expect a much higher allocation to
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merger arbitrage, convertible arbitrage, long/

short equity and distressed securities. Part of the

explanation lies in the skewness and kurtosis

values reported in Table 2. Global macro

combines positive skewness with low kurtosis.

Merger arbitrage, convertible arbitrage, and

especially distressed securities, however, exhibit

exactly the opposite characteristics.

It is well known that in diversified portfolios,

the marginal return characteristics of the assets

involved only play a relatively minor role in

determining the return characteristics of the

portfolio. To explain the above allocations we

therefore must look not only at the various

strategies’ marginal return properties (as given by

Table 2) but also, and especially, at the way they

are related to each other. Doing so may explain

why for example in the PGP optimal portfolios,

equity market neutral, which offers a low

expected return and significant negative

skewness, receives a higher allocation than long/

short equity, which offers a high expected return

and less skewness.

As shown in Davies et al,31 long/short equity

tends to exhibit negative co-skewness and high

co-kurtosis with other strategies. This means

that in a portfolio context, the (negative) impact

of long/short equity on portfolio skewness and

kurtosis will be stronger than that evident from

its marginal statistics. Equity market neutral on

the other hand tends to exhibit low covariance

and low co-kurtosis with other strategies. This

makes this strategy attractive as a volatility and

kurtosis reducer, which is reflected in the

allocations, especially when preference for

kurtosis is high as in portfolio F and portfolio G.

Global macro tends to exhibit positive co-

skewness with other strategies and thereby acts as

portfolio skewness enhancer, which explains

why this particular strategy picks up by far the

highest allocations, particularly when there is a

strong preference for skewness such as in

portfolio E and portfolio H. Contrary to global

macro, distressed securities display strong

negative co-skewness with other strategies,

which explains the complete lack of allocations

to the latter strategy.

From an economic perspective, none of the

above comes as a complete surprise. Although

many hedge funds do not invest directly in

equities, a significant drop in stock prices is often

accompanied by a widening of credit spreads, a

significant drop in market liquidity, higher

volatility, and so on. As hedge fund returns are

highly sensitive to these factors, most of them

will perform poorly when there is a fall in stock

prices, which will technically show up as

negative co-skewness.32 The recent bear market

provides a good example. Over the 3 years

that stock prices dropped, overall hedge

fund performance (as measured by the main

indices) was virtually flat. The main exceptions

to the above are equity market neutral and

global macro funds. For equity market

neutral funds, maintaining market neutrality

is one of their prime goals, which makes

them less sensitive to market moves than

other funds. Global macro funds tend to take

views on macroeconomic events and are

generally thought to perform best when markets

drop and/or become more volatile, which is

confirmed by their positive co-skewness

properties. Convertible arbitrage funds, which

are long convertibles, will suffer when stock

markets come down. On the other hand, they

will benefit from the simultaneous increase in

volatility. Overall, this provides convertible

arbitrage with relatively moderate risk

characteristics, which in turn explains the

allocations to this particular strategy.33
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Table 4: Asset allocation for optimal hedge fund portfolios with constrained portfolio standard

deviation, skewness or kurtosis for small investors

Portfolio

A B C D E F G H I J

a 1.00 1.00 1.00 3.00 1.00 1.00 2.00 2.00 3.00 3.00

b 0.00 1.00 1.00 1.00 3.00 1.00 1.00 3.00 2.00 1.00

g 0.00 0.00 0.25 0.25 0.25 0.75 0.75 0.25 0.25 0.50

(A) SD constrained (10% improvement)

Convertible arbitrage 0.06 0.05 0.07 0.09 0.00 0.12 0.11 0.05 0.13 0.06

Distressed securities 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.07

Equity market neutral 0.21 0.07 0.33 0.35 0.68 0.53 0.47 0.13 0.30 0.63

Global macro 0.05 0.70 0.47 0.25 0.07 0.24 0.22 0.69 0.35 0.05

Long/short equity 0.00 0.07 0.13 0.00 0.01 0.00 0.00 0.13 0.01 0.00

Merger arbitrage 0.68 0.10 0.00 0.31 0.24 0.00 0.20 0.00 0.21 0.18

Emerging markets 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(B) Skewness constrained (10% improvement)

Convertible arbitrage 0.09 0.01 0.07 0.10 0.01 0.11 0.12 0.01 0.08 0.11

Distressed securities 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Equity market neutral 0.13 0.00 0.33 0.26 0.00 0.52 0.50 0.00 0.16 0.40

Global macro 0.13 0.89 0.48 0.34 0.89 0.29 0.28 0.90 0.53 0.26

Long/short equity 0.00 0.12 0.13 0.00 0.11 0.09 0.11 0.12 0.06 0.02

Merger arbitrage 0.65 0.00 0.00 0.30 0.00 0.00 0.00 0.00 0.17 0.21

Emerging markets 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(C) Kurtosis constrained (10% improvement)

Convertible arbitrage 0.08 0.04 0.07 0.12 0.02 0.11 0.14 0.04 0.08 0.10

Distressed securities 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00

Equity market neutral 0.13 0.03 0.33 0.29 0.12 0.53 0.54 0.12 0.24 0.42

Global macro 0.04 0.78 0.48 0.38 0.71 0.27 0.25 0.69 0.48 0.25

Long/short equity 0.00 0.14 0.13 0.16 0.15 0.09 0.03 0.15 0.09 0.02

Merger arbitrage 0.75 0.01 0.00 0.04 0.00 0.00 0.00 0.00 0.11 0.21

Emerging markets 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Panel A illustrates optimal allocations for portfolios that have the same preferences over objectives as those in

Table 3, but under the constraint that the portfolio standard deviation is 10 per cent less than its unconstrained

value. Panel B illustrates the case in which the value of each portfolio’s skewness is constrained to be 10 per cent

higher than its counterpart in Table 3, and panel C illustrates the case in which each portfolio’s kurtosis is

constrained to be 10 per cent lower than its counterpart in Table 3. Each optimal portfolio is constructed under

investors’ preferences over expected return (a), skewness (b) and excess kurtosis (g) using the PGP technique,

selected from representative portfolios of convertible arbitrage, distressed securities, equity market neutral, global

macro, long/short equity, merger arbitrage and emerging market funds. Each representative strategy portfolio

has five funds. Bold numbers indicate that the strategy capital loading has increased relative to the optimal

unconstrained portfolio.
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At this stage, it is important to emphasise that the

PGP technique is general enough to

accommodate an investor that wishes to replace

historic return distributions with her own

beliefs. For instance, an investor could first use

the method proposed by Black and Litterman34

to combine market equilibrium-implied returns

with her own subjective views and then use the

resulting mixed estimate of expected returns to

re-centre the distribution of hedge fund returns

while maintaining its overall shape (in terms of

variance, skewness and kurtosis).35 Clearly, this

approach would lead to different allocations than

those reported here. For example, it would likely

increase expected returns for emerging market

funds and thereby cause this strategy to receive a

higher allocation under some preference

parameters.

Next, we consider the sensitivity of the

allocations to constraints on standard deviation,

skewness and kurtosis.36 Part A of Tables 4 and 5

illustrates optimal allocations for portfolios that

have the same preferences over objectives as

those in Table 3, but under the constraint that

the portfolio standard deviation is 10 per cent

less than its unconstrained value. Part B

illustrates the case in which the value of each

portfolio’s skewness is constrained to be

10 per cent higher than its counterpart in

Table 3, and part C illustrates the case in which

each portfolio’s kurtosis is constrained to be

10 per cent lower than its counterpart in Table 3.

In the tables, equity market neutral’s role in

reducing portfolio standard deviation and

kurtosis and global macro’s role as a skewness

enhancer are evident. Allocations to global

macro increase when portfolio skewness is

constrained, whereas allocations to equity

market neutral increase when standard deviation

or kurtosis is constrained.

We have shown that global macro and equity

market neutral funds have important roles to play

in FoHF portfolios. More generally, our analysis

suggests that it may be optimal for FoHF to

concentrate on just a few specific strategies

rather than diversify across a large variety of

them. In practice, strategy-focused FoHF,

however, are a lot less common than well-

diversified FoHF.

Constraints on capital allocations

Our framework easily accommodates restrictions

on the allocations to a hedge fund strategy. To

illustrate, we consider the case where the

allocation to each hedge fund strategy is

constrained to be no more than 30 per cent of

total capital (xip0.30 8i). Table 6 displays the

resulting optimal allocations. When allocations

are constrained, the degree of variation in return

parameters achievable is quite a lot less than in

the unconstrained case. This underlines that

significant improvements in portfolio skewness

and kurtosis can only be achieved by restricting

the number of hedge fund strategies. In

comparison with Table 3, we notice that the

previously dominant capital weights on equity

market neutral funds and global macro funds are

now forced down to 30 per cent, with merger

arbitrage and convertible arbitrage picking up

the difference. As in the case without constraints,

the model continues to avoid distressed

securities, long/short equity and emerging

markets.

Portfolios of stocks, bonds and

hedge funds

Until now, we have studied FoHF portfolios in

isolation, that is, implicitly assuming that

investors will not invest in anything else than the
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Table 5: Asset allocation for optimal hedge fund portfolios with constrained portfolio standard

deviation, skewness or kurtosis for large investors

Portfolio

A B C D E F G H I J

a 1.00 1.00 1.00 3.00 1.00 1.00 2.00 2.00 3.00 3.00

b 0.00 1.00 1.00 1.00 3.00 1.00 1.00 3.00 2.00 1.00

g 0.00 0.00 0.25 0.25 0.25 0.75 0.75 0.25 0.25 0.50

(A) SD constrained (10% improvement)

Convertible arbitrage 0.03 0.04 0.04 0.00 0.02 0.14 0.07 0.02 0.03 0.03

Distressed securities 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

Equity market neutral 0.39 0.49 0.38 0.46 0.34 0.47 0.57 0.36 0.38 0.62

Global macro 0.01 0.13 0.38 0.23 0.50 0.30 0.00 0.42 0.32 0.00

Long/short equity 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02

Merger arbitrage 0.57 0.34 0.20 0.32 0.15 0.06 0.36 0.19 0.26 0.32

Emerging markets 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00

(B) Skewness constrained (10% improvement)

Convertible arbitrage 0.03 0.01 0.00 0.05 0.00 0.18 0.09 0.00 0.02 0.07

Distressed securities 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Equity market neutral 0.33 0.32 0.30 0.38 0.30 0.26 0.47 0.31 0.33 0.43

Global macro 0.00 0.49 0.62 0.26 0.61 0.48 0.19 0.61 0.44 0.20

Long/short equity 0.00 0.00 0.03 0.00 0.02 0.05 0.00 0.02 0.00 0.00

Merger arbitrage 0.65 0.18 0.06 0.31 0.08 0.00 0.25 0.06 0.21 0.29

Emerging markets 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00

(C) Kurtosis constrained (10% improvement)

Convertible arbitrage 0.03 0.16 0.03 0.13 0.00 0.10 0.07 0.02 0.05 0.08

Distressed securities 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Equity market neutral 0.31 0.46 0.34 0.83 0.32 0.50 0.57 0.34 0.36 0.44

Global macro 0.00 0.34 0.47 0.03 0.58 0.17 0.00 0.48 0.36 0.19

Long/short equity 0.00 0.00 0.05 0.00 0.07 0.00 0.00 0.03 0.00 0.00

Merger arbitrage 0.66 0.00 0.12 0.01 0.03 0.22 0.36 0.14 0.24 0.29

Emerging markets 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Panel A illustrates optimal allocations for portfolios that have the same preferences over objectives as those in

Table 3, but under the constraint that the portfolio standard deviation is 10 per cent less than its unconstrained

value. Panel B illustrates the case in which the value of each portfolio’s skewness is constrained to be 10 per cent

higher than its counterpart in Table 3, and panel C illustrates the case in which each portfolio’s kurtosis is

constrained to be 10 per cent lower than its counterpart in Table 3. Each optimal portfolio is constructed under

investors’ preferences over expected return (a), skewness (b) and excess kurtosis (g) using the PGP technique,

selected from representative portfolios of convertible arbitrage, distressed securities, equity market neutral, global

macro, long/short equity, merger arbitrage and emerging market funds. Each representative strategy portfolio

has 15 funds. Bold numbers indicate that the strategy capital loading has increased relative to the optimal

unconstrained portfolio.
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Table 6: Moment statistics and asset allocation across strategy classes for optimal fund of

hedge fund portfolios with global constraints on capital investment

Portfolio

A B C D E F G H I J

a 1.00 1.00 1.00 3.00 1.00 1.00 2.00 2.00 3.00 3.00

b 0.00 1.00 1.00 1.00 3.00 1.00 1.00 3.00 2.00 1.00

g 0.00 0.00 0.25 0.25 0.25 0.75 0.75 0.25 0.25 0.50

Small investors (representative strategy portfolios have 5 funds)

Moments

Expected return 0.90 0.82 0.81 0.82 0.81 0.84 0.76 0.81 0.82 0.82

SD 1.28 1.39 1.40 1.38 1.40 1.76 1.61 1.39 1.39 1.42

Skewness �1.26 0.22 0.22 0.21 0.22 0.08 0.04 0.22 0.22 0.19

Kurtosis 3.47 0.74 0.64 0.80 0.67 0.12 0.55 0.69 0.73 0.59

Allocation

Convertible arbitrage 0.19 0.12 0.15 0.10 0.14 0.19 0.30 0.13 0.12 0.14

Distressed securities 0.15 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00

Equity market neutral 0.24 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30

Global macro 0.07 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30

Long/short equity 0.04 0.00 0.00 0.00 0.00 0.19 0.01 0.00 0.00 0.02

Merger arbitrage 0.30 0.28 0.25 0.30 0.26 0.02 0.02 0.27 0.28 0.24

Emerging markets 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00

Large investors (representative strategy portfolios have 15 funds)

Moments

Expected return 0.88 0.83 0.83 0.83 0.83 0.81 0.82 0.83 0.83 0.83

SD 1.00 1.12 1.12 1.12 1.12 1.15 1.14 1.12 1.12 1.12

Skewness �1.32 0.39 0.39 0.39 0.39 0.32 0.34 0.39 0.39 0.39

Kurtosis 3.63 0.91 0.86 0.91 0.91 0.59 0.63 0.91 0.91 0.85

Allocation

Convertible arbitrage 0.18 0.10 0.11 0.10 0.10 0.17 0.16 0.10 0.10 0.11

Distressed securities 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Equity market neutral 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30

Global macro 0.06 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30

Long/short equity 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Merger arbitrage 0.30 0.30 0.29 0.30 0.30 0.23 0.24 0.30 0.30 0.29

Emerging markets 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reported values are calculated from monthly net-of-all-fee returns. Investors assign capital to representative

portfolios of convertible arbitrage, distressed securities, equity market neutral, global macro, long/short equity,

merger arbitrage and emerging market hedge funds. Optimal allocations are based on investors’ preferences over

expected return (a), skewness (b) and kurtosis (g) using the PGP technique. The capital weight for each hedge

fund strategy is constrained to be between 0 and 30 per cent.
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Table 7: Moment statistics and optimal asset allocation across stocks, bonds and hedge fund

strategies

Portfolio

A B C D E F G H I J

a 1.00 1.00 1.00 3.00 1.00 1.00 2.00 2.00 3.00 3.00

b 0.00 1.00 1.00 1.00 3.00 1.00 1.00 3.00 2.00 1.00

g 0.00 0.00 0.25 0.25 0.25 0.75 0.75 0.25 0.25 0.50

Small investors (representative strategy portfolios have 5 funds)

Moments

Expected return 0.83 0.87 0.72 0.76 0.72 0.60 0.74 0.56 0.75 0.75

SD 0.71 3.20 0.87 0.63 0.88 0.75 0.61 0.77 0.73 0.62

Skewness �0.14 0.88 0.70 0.13 0.71 0.16 0.11 0.48 0.48 0.10

Kurtosis 0.94 3.48 1.17 �0.21 1.22 �0.81 �0.40 0.82 0.61 �0.33

Allocation

Convertible arbitrage 0.06 0.19 0.06 0.07 0.06 0.10 0.08 0.14 0.06 0.08

Distressed securities 0.00 0.03 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00

Equity market neutral 0.06 0.00 0.16 0.09 0.16 0.17 0.13 0.15 0.12 0.11

Global macro 0.02 0.00 0.19 0.06 0.19 0.04 0.05 0.00 0.13 0.05

Long/short equity 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Merger arbitrage 0.45 0.00 0.19 0.32 0.19 0.00 0.27 0.00 0.27 0.29

Emerging markets 0.00 0.10 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00

S&P500 �0.04 �0.72 �0.02 �0.05 �0.02 �0.03 �0.04 �0.10 �0.04 �0.05

Bond index 0.46 0.40 0.42 0.51 0.42 0.62 0.52 0.80 0.46 0.52

Large investors (representative strategy portfolios have 15 funds)

Moments

Expected return 0.86 0.87 0.83 0.83 0.77 0.63 0.83 0.85 0.89 0.83

SD 0.65 1.59 1.37 0.72 1.38 0.83 0.67 1.55 1.23 0.67

Skewness �0.48 1.12 1.06 0.25 0.99 0.12 0.02 1.12 0.88 0.01

Kurtosis 0.83 2.53 1.45 0.04 1.38 �0.71 �0.46 2.11 2.90 �0.44

Allocation

Convertible arbitrage 0.05 0.00 0.05 0.12 0.04 0.12 0.13 0.00 0.04 0.12

Distressed securities 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Equity market neutral 0.16 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00

Global macro 0.00 0.31 0.35 0.12 0.42 0.07 0.00 0.34 0.13 0.00

Long/short equity 0.00 0.39 0.25 0.00 0.15 0.00 0.00 0.35 0.30 0.00

Merger arbitrage 0.54 0.27 0.22 0.48 0.22 0.00 0.48 0.24 0.39 0.47

Emerging markets 0.00 0.00 0.00 0.00 0.01 0.05 0.00 0.00 0.00 0.00

S&P500 �0.07 �0.30 �0.21 �0.13 �0.19 0.02 �0.11 �0.27 �0.25 �0.10

Bond index 0.32 0.33 0.35 0.41 0.34 0.58 0.51 0.33 0.40 0.51

Reported values are calculated from monthly net-of-all-fee returns. Investors assign capital to representative

portfolios of convertible arbitrage, distressed securities, equity market neutral, global macro, long/short equity,

merger arbitrage, emerging market hedge funds, the S&P500 index and the Salomon Brothers 7-Year

Government Bond US Index. Optimal allocations are based on investors’ preferences over expected return (a),

skewness (b) and kurtosis (g) using the PGP technique.
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Table 8: Moment statistics and optimal asset allocation across stocks, bonds and hedge fund

strategy classes with global constraints on capital investment

Portfolio

A B C D E F G H I J

a 1.00 1.00 1.00 3.00 1.00 1.00 2.00 2.00 3.00 3.00

b 0.00 1.00 1.00 1.00 3.00 1.00 1.00 3.00 2.00 1.00

g 0.00 0.00 0.25 0.25 0.25 0.75 0.75 0.25 0.25 0.50

Small investors (representative strategy portfolios have 5 funds)

Moments

Expected return 0.81 0.75 0.78 0.77 0.73 0.71 0.77 0.76 0.77 0.76

SD 0.81 1.18 1.47 0.86 1.09 1.16 0.95 0.99 0.92 0.81

Skewness �0.72 0.75 0.65 0.36 0.71 0.38 0.21 0.63 0.51 0.22

Kurtosis 1.11 1.84 0.61 0.45 1.21 �0.29 �0.31 1.18 0.98 0.05

Allocation

Convertible arbitrage 0.12 0.06 0.08 0.09 0.07 0.09 0.09 0.07 0.08 0.09

Distressed securities 0.05 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00

Equity market neutral 0.19 0.15 0.14 0.19 0.21 0.30 0.24 0.18 0.17 0.23

Global macro 0.04 0.30 0.30 0.16 0.25 0.15 0.13 0.23 0.20 0.13

Long/short equity 0.00 0.00 0.24 0.00 0.00 0.21 0.13 0.00 0.00 0.00

Merger arbitrage 0.30 0.21 0.09 0.30 0.17 0.08 0.25 0.25 0.30 0.30

Emerging markets 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

S&P500 �0.01 �0.02 �0.15 �0.04 �0.01 �0.18 �0.13 �0.03 �0.05 �0.05

Bond index 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30

Large investors (representative strategy portfolios have 15 funds)

Moments

Expected return 0.79 0.87 0.82 0.76 0.87 0.70 0.77 0.87 0.84 0.75

SD 0.63 1.41 1.21 0.67 1.41 0.88 0.71 1.41 1.18 0.60

Skewness �0.32 1.05 0.97 0.44 1.05 0.47 0.16 1.05 0.95 0.04

Kurtosis 0.11 1.95 1.18 0.51 1.94 �0.38 �0.46 1.94 1.25 �0.35

Allocation

Convertible arbitrage 0.10 0.04 0.06 0.08 0.05 0.07 0.08 0.05 0.06 0.09

Distressed securities 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02

Equity market neutral 0.26 0.01 0.06 0.23 0.01 0.30 0.30 0.01 0.04 0.30

Global macro 0.01 0.30 0.30 0.14 0.30 0.15 0.09 0.30 0.29 0.04

Long/short equity 0.02 0.30 0.21 0.00 0.30 0.14 0.09 0.30 0.19 0.00

Merger arbitrage 0.30 0.30 0.26 0.30 0.30 0.14 0.30 0.30 0.30 0.30
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FoHF. In practice, however, investors will mix

FoHF in with their existing portfolio. The

means that preferably the optimal fund of funds

portfolio should be derived from a wider

framework, including stocks and bonds, to take

account of the relation between hedge funds,

stocks and bonds. This is what we do in this

section.

Table 7 reports the moment statistics of

optimal portfolios constructed with stocks,

bonds and hedge fund strategies for small and

large investors. Although the addition of stocks

and bonds results in optimal portfolios with less

kurtosis and higher skewness than the

corresponding optimal portfolios of hedge funds

only, we observe similar behaviour. Again, the

mean-variance efficient portfolio has relatively

unattractive skewness and kurtosis properties,

which improve when explicit preference for

higher moments is introduced. The

improvement comes at a cost, however, as

moment statistics tend to trade off against each

other. An improvement in one statistic can only

be obtained by accepting deterioration in one or

more others.

Table 7 reveals that the bond index is the

primary recipient of capital, receiving at least 40

per cent weight in most instances. In stark

contrast, the stock index is sold short,

irrespective of the investor preference

parameters. This result is consistent with the

observation of Amin and Kat2 and Davies et al31

that hedge funds mix far better with bonds than

with stocks. Whereas the co-skewness between

stocks and most hedge fund strategies is negative,

the co-skewness between bonds and hedge funds

is generally higher and the co-kurtosis lower. A

long bonds position and a short position in

stocks combined with positive holdings in hedge

funds will increase portfolio skewness and reduce

kurtosis. As a result, optimal portfolios have to

rely less on equity market neutral and global

macro to perform these tasks, which allows them

to diversify into strategies such as long/short

equity and merger arbitrage. Even in this new

context, however, no allocation is given to

Table 8 Continued

Portfolio

A B C D E F G H I J

Emerging markets 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00

S&P500 �0.03 �0.25 �0.19 �0.06 �0.26 �0.13 �0.11 �0.26 �0.19 �0.05

Bond index 0.30 0.30 0.30 0.30 0.30 0.30 0.25 0.30 0.30 0.30

Reported values are calculated from monthly net-of-all-fee returns. Investors assign capital to representative

portfolios of convertible arbitrage, distressed securities, equity market neutral, global macro, long/short equity,

merger arbitrage, emerging market hedge funds, the S&P500 index and the Salomon Brothers 7-Year

Government Bond US Index. Optimal allocations are based on investors’ preferences over expected return (a),

skewness (b) and kurtosis (g) using the PGP technique. The capital weight for each hedge fund strategy is

constrained to be between 0 and 30 per cent, and the capital weights for the stock and bond indices are both

constrained to be within 730 per cent.
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distressed securities and emerging markets

strategies.

Table 8 shows the asset allocation across stocks,

bonds and hedge funds under the constraint that

capital weights are between 0 and 30 per cent for

any hedge fund strategy and that the capital

weights are within 730 per cent for both the

stock index and the bond index. In general, these

constraints seem to have quite an impact on the

optimal portfolio moment statistics, reflecting a

substantial change in the underlying allocations.

With the bond allocation restricted to 30 per

cent, the optimal portfolios turn increasingly

towards equity market neutral and global equity

to control variance, skewness and kurtosis.

Investment in equity market neutral and global

macro funds seems to make a similar contribution

to the overall portfolio return distribution as an

investment in the bond index.

CONCLUSION
This paper has incorporated investor preferences

for higher moments into a PGP optimisation

function. This allows us to solve for multiple

competing (and often conflicting) hedge fund

allocation objectives within a four-moment

framework. Our empirical analysis has yielded a

number of conclusions, the most important

being that

— Hedge fund return moment statistics tend to

trade off against each other in much the

same way as in the underlying securities

markets. Despite following often complex

strategies, hedge funds therefore appear

unable to dodge the rules of the game.

This is in line with the results of Amin

and Kat37 who conclude that when taking

the entire return distribution into account,

there is nothing superior about hedge

fund returns.

— Introducing preferences for skewness and

kurtosis in the portfolio decision-making

process may yield portfolios far different

from the mean-variance optimal portfolio,

with much less attractive mean-variance

characteristics. This again emphasises the

various trade-offs involved.

— Equity market neutral and global macro

funds have important roles to play in optimal

hedge fund portfolios, thanks to their

attractive covariance, co-skewness and

co-kurtosis properties. Equity market neutral

funds act as volatility and kurtosis reducers,

whereas global macro funds act as skewness

enhancers.

— Especially in terms of skewness, hedge funds

and stocks do seem not to combine very

well. This suggests that investors may be

better off using hedge funds to replace stocks

instead of bonds, as appears to be current

practice.
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APPENDIX

Procedure to ‘unsmooth’ data

The observed (or smoothed) value Vt
* of a

hedge fund at time t can be expressed as a

weighted average of the underlying (true) value

at time t, Vt, and the smoothed value at time

t�1, Vt�1
* : Vt

*¼ aVtþ (1�a)Vt�1
* . Let B be the

backshift operator defined by BLxt¼ xt�L.

Define the following lag function, Lt(a), which

is a polynomial B, with different coefficients for

each of the t¼ 1,y, 12 appraisal cohorts:

LtðaÞ ¼
t

12
þ
X1
L¼1

ð1� aÞL�1 12� t

12

� ��

þð1� aÞL
t

12

� �i
BL :

Let rt and rt* denote the true underlying

(unobservable) return and the observed return at

time t, respectively. The monthly smoothed

return is given by rt*¼ aLm(a)rt. We then can

derive:

r�t ¼ art þ ð1� aÞr�t�1 ¼ art þ að1� aÞrt�1

þ að1� aÞ2rt�2 . . . : ðA1Þ

Here we implicitly assume that hedge fund

managers use a single exponential smoothing

approach. This yields an unsmoothed series with

zero first-order autocorrelation:

rt¼ a�1(rt*�(1�a)rt�1
* ). As the stock market

indices have around zero autocorrelation

coefficients, it seems plausible in the context of

the results above to set 1�a equal to the first-

order autocorrelation coefficient. The newly

constructed return series, rt, has the same mean

as rt*, and zero first-order autocorrelation (aside

from rounding errors), but with higher standard

deviation.
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