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Practical applications

Black–Scholes option pricing model is widely used within the asset and risk management of

traditional and alternative investments. From the investors’ point of view, Black–Scholes model

provides a unique price of a contingent claim in an ideal, complete and unconstrained market based on

the fundamental principles of ‘absence of arbitrage opportunities’. The assumptions of the model,

however, may not be closely met in practice. I show various approaches to derive closed-form

solutions of tight upper and lower bounds, and implications on delta hedging strategies.

Abstract

This paper has reviewed the literature on option pricing

in incomplete markets. Tight upper and lower bounds

can be derived based on the assumptions of mean and

variance of the underlying asset price, not on its entire

distribution. The differences between estimated upper

or lower bounds and Black–Scholes price are quite

small for deep in-the-money options, but can be very

significant for deep out-of-the-money options. But at

the same time, despite the wide pricing bounds,

analysis of the implied hedging bounds suggests that

the implications for asset allocation of incomplete

markets are fairly limited.
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INTRODUCTION

The seminal Black–Scholes
1

model provides the

unique price of a contingent claim in an ideal,

complete and unconstrained market based on

the fundamental principles of ‘absence of

arbitrage opportunities’. In other words, this

price is unique if there are no arbitrage

opportunities by taking either a short or long

position in the claim and investing wisely in the

market. The Black–Scholes model also implies a
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single hedging portfolio, which one can use to

exactly duplicate the claim. The Black–Scholes

model has been extended in a multitude of

directions and, as is well known with complete

markets, the results generalise and produce a

unique hedging portfolio.

The assumptions of the model, however, may

not be closely met in practice. This could be

either because markets are incomplete or

because there is underlying model error. Market

incompleteness generally comes from two main

sources:

1 There are not enough assets in the market to

‘span’ the uncertainty. (An example would be

standard stochastic volatility.)

2 Trading strategies are limited or not ideal

because of discrete trading or transaction

costs, short selling constraints, etc.

This paper provides a synthetic review of the

literature on these issues and the consequences

for hedging portfolios. In incomplete markets,

instead of a single arbitrage-free price there

appears an ‘arbitrage-free’ interval [hlow, hup],

which contains the complete markets price.

Here, hup represents the lowest price the seller

can accept without risk, and hlow is the greatest

price the buyer can afford to pay without risk.

This interval has the following properties:

— Every price level outside the interval leads to

an arbitrage opportunity.

— There are no arbitrage opportunities for

price level in the interior of the interval.

The interval on pricing also implies an

interval on hedging portfolios.

There is no one widely accepted method to

calculate the incomplete market pricing interval.

The first approach is to find a super-replicating

portfolio, see Cvitanic et al.
2,3

This is a portfolio

whose payoffs are always (in any state of the

world) at least as big as the payoff of the options.

The value of the options is then bounded by the

value of the super-replicating portfolios.
4

The

second approach is utility-based valuation,

which has been developed and studied by,

among others, Hicks
5

Hodges and Neuberger,
6

Davis,
7

Karatzas and Kou
8

and Kallsen (2002).
9

The investor of the contingent claims assumes

unhedgable risk, which will affect the

probability distribution of his consumption and

final wealth level, and his utility. The certainty

equivalent wealth of the expected utility is then

the value an investor is prepared to pay for the

claim. This wealth is the ‘shadow’ market value

of the (partially) unhedgable claim. The final

approach stems from a no-arbitrage argument, to

compare different portfolio strategies involving

the underlying asset and options, and work out

the option bounds by excluding the existence of

any dominant strategies.

Pricing bounds are useful in many situations

in which a relative pricing approach is

appropriate but perfect replication is not

possible. A few examples follow: (1) A trader can

use the bounds as buy and sell points in the

search for ‘good deals’ in asset markets (with the

usual warning question of why the market leaves

good deals undiscovered). (2) A bank or other

institution that markets or synthesises nontraded

securities can use bounds as bid and ask prices.

(3) Bounds can be used as economic measures of

the accuracy of option pricing formula. (4)

Option pricing techniques are increasingly

applied to ‘real option’ in capital budgeting,

investment with irreversibility and policy

questions. A relative pricing approach is

appropriate but the focus payoffs typically cannot
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be perfectly replicated. (5) Option pricing

formulas are often used in risk assessments to

quantify the exposure of a position or

institutions to various risk factors. It is useful to

assess such risks when perfect replication is

impossible and to quantify the importance of the

market price of risk assumptions.

The paper is organised as follows. I start the

second section with a description of the problem

and methodology. The third and fourth sections

show how to calculate lower and upper bounds

on European option prices. The fifth section is

meant to illustrate our results numerically and

graphically. In the sixth section, I derive the

corresponding options hedging intervals. The

seventh section concludes.

DESCRIPTION OF THE PROBLEM

Consider a European call option on a risky asset

with current price S that matures at time T

having exercise prices X. In an arbitrage-free

setting, the price of this option can be

determined as

C ¼ expð�rf T ÞE
Q½ðST � KÞþ� ð1Þ

where rf denotes the risk-free interest rate and

where the stochastic process {St, tZ0}, starting

at S0¼ S, describes the price process of the

underlying asset. I assume that Q is the unique

equivalent probability measure, such that the

discounted price process is a martingale, or

EQ[exp(rf t) St]¼ S.

Following Merton,
10

the option price must

satisfy

max 0; S � expð�rf TÞX
� �

� C � S ð2Þ

The Merton
10

bounds require no knowledge

of the underlying asset’s terminal price

distribution, which paved the way for

subsequent research that produced increasingly

tighter bounds by adding structure to the

underlying asset’s terminal price distribution and

by further restricting investor behaviour.

A unique option price can only be obtained if

the distribution of the underlying asset price

process {St, tZ0} is known for sure, which may

not be a realistic assumption in some contexts.

The most commonly used assumption is the

Black and Scholes setting, where the price

process is assumed to follow a geometric

Brownian motion. This means that

St ¼ S exp ðrf �
1

2
s2Þt þ sWt

� �� �
ð3Þ

where Wt is standard Brownian motion. Thus,

under the measure Q the variable St/S are

lognormally distributed with mean rf and

variance s2t. Under these assumptions, the price

of a European call can be found according to the

well-known Black and Scholes formula
1

C ¼ SN ðd1Þ � Xe�rf T N ðd2Þ ð4Þ

with

d1 ¼
1ffiffiffiffiffiffiffiffiffi
s2T
p flnðS=XÞ þ ðrf þ

1

2
s2ÞTg

d1 ¼
1ffiffiffiffiffiffiffiffiffi
s2T
p flnðS=XÞ þ ðrf �

1

2
s2ÞTg

where N(*) denotes the cumulative distribution

function of the standard normal distribution.

As mentioned in the Introduction, the Black

and Scholes pricing formula shows some

imperfections in that the whole distribution of

the price process is fixed by means of a

lognormal model. Although this model performs

well in a lot of cases (it is still the most widely

used approach for the valuation of options),

wrong prices can arise due to strong

assumptions. In order to avoid the problem of
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model risk, many approaches have been

suggested to modify the assumptions.

Perrakis and Ryan
11

improve the Merton
10

bounds under very mild preference assumptions.

While the bounds they develop require more

information than the Black–Scholes models,

they do not rely on the ability to create riskless

hedges. Perrakis
12

further tightens the lower

bounds by restricting the range of allowable

terminal underlying asset prices.

Levy
13

uses first- and second-order stochastic

dominance concepts to derive option pricing

bounds in a discrete setting. After obtaining

Merton’s
10

bounds using first-order stochastic

dominance, he tightens those bounds using

second-order stochastic dominance analysis. In a

simultaneous contribution, Richken
14

uses linear

programming to find the same bounds as Levy
13

under additional assumptions on risk aversion

and state probabilities. Practical limitations of the

linear programming bounds are caused by the

fact that, in addition to the volatility, the

instantaneous mean return must be estimated.

Lo
15

finds semi-parametric upper bounds with

the property that only the first two moments of

the underlying asset’s terminal price distribution

need to be known. Boyle and Lin
16

extend Lo’s
15

results to options with multiple underlying assets.

Laurence and Wang
17

derive distribution-free

sharp bounds for the price of a basket option.

Rodriguez
18

starts from a general expression

for the call option prices as a sum of three

components, one of which contains the discount

factor of the corresponding put options. By

focusing on this discount factor, he recognises

the former results of Merton, Levy and others;

he also extends the approach to a new tighter

lower bound.

Schepper and Heijnen
19

derive a new formula

for option bounds by making use of the

knowledge of successive moments of the real

price distribution instead of the complete

distribution in a risk-neutral setting.

LOWER OPTION PRICING BOUND

Rodriguez
18

presents a single framework to

derive various previous traditional lower pricing

bounds. Assuming C and P are the current price

of a European call and put option respectively on

the same underlying asset, with the exercise

price X and time to maturity T. Current asset

price is S and its terminal price when the options

expire is ST, with cumulative distribution

function F(ST). The risk-free rate is rf, and the

required rate of return on the underlying asset,

call and put are rS, rC and rP, respectively.

The terminal price of a call option is

CT¼max [0, ST�X]; its expected value is

found by integrating CT over STA[0,N) and

simplifying

EðCT Þ ¼

Z1

X

STdFðST Þ � X ½1� FðXÞ�

EðCT Þ ¼

Z1

0

STdFðST Þ �

ZX

0

STdFðST Þ

� X½1� FðXÞ�

where
R

0
NST dF(ST) is the expected underlying

asset price at the option’s expiration, which can

be written as E(ST)¼ S*exp(rST). Also, using

the product rule of calculus on the second

integral in the above equation yields the general

expression of the expected terminal price of a

call European option:

EðCT Þ ¼ SerST � X þ

ZX

0

FðST ÞdðST Þ

ð5Þ
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To find the current price of a call option C(S),

each component in the right-hand side of

equation (5) should be discounted at a rate

commensurate with its risk. The first term in the

right-hand side is the expected value of the

underlying asset’s terminal price, which should

be discounted at its required rate, rS. The second

term is the exercise price, and because it is

known with certainty, it must be discounted

at the risk free rate, rf. And the integral term

in equation (5) is the expected value of the

put option at maturity, which should be

discounted at the put’s appropriate rate, rP.
18,20

To

simplify notation, let the integral part in

equation (1) be denoted by I(S) and let

Ri�exp(�riT ) for i¼ f, S, C, P represent the

discount factors. Rodriguez
18

presents the

general expression for the current price of a

European call option:

CðSÞ ¼ S � XRf þ RpðSÞIðSÞ ð6Þ

In fact, Merton’s
10

lower pricing bound,

CZmax [0, S�X*Rf ], can be obtained by

assuming RP(S) in equation (2) is 0. Hence, the

functional form of RP(S) is

RPðSÞ ¼
CðSÞ � S þ XRf

IðSÞ
¼ V ðSÞ þ

CðSÞ

IðSÞ

where

V ðSÞ ¼
XRf � S

IðSÞ
ð7Þ

Because V(S) always lies below RP(S), this

implies that if some function Vk(S) such that

V(S)rVk(S)rRP(S) is substituted for RP(S) in

equation (2), the following lower bound

function is obtained:

LðSÞ ¼ max½0; S � XRf þ VkðSÞIðSÞ� ð8Þ

All traditional lower bounds mentioned in the

induction section can be explained by equation

(8) by choosing different constant Vk(S)

function, and Rodriguez
18

suggests a new tighter

bound by expanding the set of allowable Vk(S)

beyond the class of constant functions. To

illustrate the synthesising power of equation (8),

several traditional lower bounds are reproduced

in Rodriguez.
18

Merton’s
10

well-known lower bound is as

follows:

LM ðSÞ ¼ max½0; S � XRf �

Perrakis and Ryan’s
11

LPRðSÞ ¼ max½0; S � XRf þ Rf IðSÞ�

Levy’s
13

and Richken’s
14,21

LL=RðSÞ ¼ 0 where 0 � SoSmax

¼ S � XRf þ V ðSmaxÞIðSÞ

where S � Smax

Rodriguez’s
18

new lower pricing bound,

where V0(Si) is the slope of inflexion line:

LRðSÞ ¼ max½0; S � XRf

þ V ðSiÞ þ V 0ðSiÞðS � SiÞ
	 


IðSÞ�

The preceding discussion shows that

LM(S)rLPR(S)rLL/R(S)rLR(S)rC(S).

European call and put option with the same

strike price, expiration date and underlying asset

are not independent. In fact, any one of them

can be replicated by the other two securities: a

put option is a portfolio of the stock and the call

options. This relationship is called the put-call

parity, and was first proposed by Stoll.
22

Thereby,

the lower bound of a put option can be
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determined from the call lower bound using the

put-call parity relation P¼C�SþXRf.

UPPER OPTION PRICING BOUND

Perrakis and Ryan,
11

Richken,
14

Levy
13

and

Rodriguez
18

develop parametric option-pricing

upper bounds, where the particular values of the

bounds depend critically on the specific stock

price distribution assumed. To find an upper

bound, recall C(S)¼ exp (�rCT )*E (CT),

suggested in equation (5). Because CT¼max

[0, ST –X], the cumulative distribution function

of CT, H(CT) and of ST, F(ST) obey the relation

H(w)¼F(Xþw) for wZ0. This implies that ST

stochastically dominates CT in the first order

sense, so CT is riskier than ST in the Rothschild

and Stiglitz
23

sense. As a result, risk-averse

investors require a higher rate of return on the

call option than on its underlying asset, that is,

rC>rS.
23,24

So C(S)¼ exp (�rCT )*E (CT)oexp

(�rST )*E (CT). Substituting this in

equation (5), the upper bound for the price of a

call option is

UðSÞ ¼ S � XRS þ RSIðSÞ ð9Þ

Lo
15

derives upper bounds for option

prices and for expected pay-offs that depend

no longer on the distribution but on the mean

and variance of the terminal asset prices (two

orders of terminal asset prices). Corresponding

semi-parametric upper bounds can be derived

for option prices when the variance of the

associated risk-neutral pricing distribution is

known. Lo’s
15

upper bounds for call and put

options are

UL ¼
S � XRf þ SV �R2

f

1þ V �R2
f

if

S

X
�

2Rf

1þ V �R2
f

¼
1

2
S � XRf þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXRf � SÞ2 þ S2V �R2

f

qh i

if

S

X
o

2Rf

1þ V �R2
f

ð10Þ

where

V � ¼ R2
f ½expðs2T � 1Þ�

V * and s2 are the risk-neutral variance and

underlying asset variance, respectively, assuming

that underlying asset is lognormally distributed.

Put upper bound can be derived directly from

the call upper bound using the put-call parity

relation P̄¼ C̄�SþXRf. It can readily be

shown that these bounds satisfy many well-

known properties of rationally determined

option prices, for example increasing in rf, T, and

V *and homogeneity of degree one in S and X.

CALIBRATION

In this the first section calibrates the option pricing

bounds method with an illustrative sample. The

underlying asset’s price return, ST/S is assumed

lognormally distributed with parameters m and s2,

so that rS¼ mþ s2/2 and I(S) is

IðSÞ ¼ XN ð�a2Þ �
S

RS

Nð�a1Þ ð11Þ

where N(*) represents the standard normal

cumulative distribution function and
25

a1 ¼
lnðS=XÞ þ ðrs þ s2=2ÞT

s
ffiffiffiffi
T
p

a2 ¼ a1 � s
ffiffiffiffi
T
p
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Option Pricing Bounds
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Figure 1: Deviation of lower and upper pricing bounds from the Black–Scholes call price,

$ (X¼ $50, T¼ 1 year, rf¼ 0.1, m¼ 0.18, s¼0.20)
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Figure 2: Deviation of lower and upper pricing bounds from the Black–Scholes call price,

% (X¼ $50, T¼ 1 year, rf¼ 0.1, m¼ 0.18, s¼ 0.20)
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All the lower and upper option pricing bounds

discussed in previous sections are calculated,

employing the same assumption used in

Rodriguez
18

parameters X¼ $50, T¼ 1 year,

rf¼ 0.1, m¼ 0.18, s¼ 0.2 and implied rs¼ 0.2.

Table 1 summarises results of various bounds and

Black–Scholes price.

Figures 1 and 2 graph the deviation of each

pricing bound from the Black and Scholes
1

price

in real value and percentage terms. Both figures

confirm that the deviations of lower bounds are

progressively tighter when asset price (S)

increases, and deviations of upper bounds increase

toward a constant level gradually with S, although

Table 1: Lower and upper bounds for call options price

S LM(S) LPR(S) LL/R(S) LR(S) CBS(S) ULo(S) UM(S)

$30 $0.000 $0.000 $0.000 $0.000 $0.054 $0.580 $0.181

$32 $0.000 $0.000 $0.000 $0.000 $0.128 $0.747 $0.379

$34 $0.000 $0.000 $0.000 $0.017 $0.269 $0.966 $0.709

$36 $0.000 $0.000 $0.000 $0.116 $0.507 $1.259 $1.204

$38 $0.000 $0.000 $0.045 $0.360 $0.873 $1.656 $1.890

$40 $0.000 $0.000 $0.365 $0.797 $1.395 $2.195 $2.777

$42 $0.000 $0.000 $0.983 $1.452 $2.090 $2.921 $3.862

$44 $0.000 $1.044 $1.881 $2.333 $2.968 $3.867 $5.132

$46 $0.758 $2.416 $3.024 $3.429 $4.026 $5.041 $6.564

$48 $2.758 $3.941 $4.374 $4.718 $5.253 $6.420 $8.134

$50 $4.758 $5.589 $5.893 $6.172 $6.635 $7.962 $9.815

$52 $6.758 $7.333 $7.543 $7.764 $8.149 $9.625 $11.584

$54 $8.758 $9.151 $9.295 $9.463 $9.776 $11.374 $13.419

$56 $10.758 $11.023 $11.120 $11.246 $11.493 $13.185 $15.303

$58 $12.758 $12.935 $13.000 $13.092 $13.283 $15.040 $17.224

$60 $14.758 $14.875 $14.918 $14.985 $15.129 $16.928 $19.169

$62 $16.758 $16.835 $16.863 $16.910 $17.018 $18.840 $21.133

$64 $18.758 $18.808 $18.826 $18.859 $18.938 $20.770 $23.109

$66 $20.758 $20.790 $20.802 $20.825 $20.882 $22.715 $25.093

$68 $22.758 $22.779 $22.786 $22.802 $22.843 $24.670 $27.082

$70 $24.758 $24.771 $24.776 $24.787 $24.816 $26.635 $29.075

Note: All calculations assume a lognormal distribution for ST, with parameters X=$50, T=1 year, rf=0.1, m=0.18

and s=0.20. Four lower bounds, two upper bounds and Black-Scholes option price are shown in columns 2

through 8.

LM(S)=Merton’s
10

lower bound for the call option price; LPR(S)=Perrakis and Ryan’s
11

lower bound; LL/

R(S)=Levy’s
13

and Richken’s
14

lower bound; LR(S)=Rodriguez’s
18

lower bound; CBS(S)=call options price

according to the Black and Scholes
1

model; ULo(S)=Lo’s
15

upper bound; UM(S)=Merton’s
10

upper bound.
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in term of percentage both upper and lower

bounds converge to the Black and Scholes price.

The width of the bounds is larger at-the-

money than it is in-the-money or out-of-the-

money. Options are hardest to hedge at the

money because the nonlinearity of the option

payoff as a function of stock price is greatest

here. Therefore, the residual — option payoff

less best bounds — is largest in this region. The

width of the bounds, however, is a much larger

fraction of the call option value for out-of-the-

money options on the left-hand side of the chart.

In this sense, as well as when translated to

implied volatilities, the bounds are wider for

out-of-the-money options.

UPPER AND LOWER DELTA HEDGING

BOUNDS

Option pricing theory is used extensively to

quantify risk exposure by measuring how much

an option value would change if an underlying

asset price changed. This sensitivity is known as

the option’s delta. The delta of a call is

differentiation (4) with respect to S, and the

result is

DcallðS;X ;T Þ ¼
q
qS

CðS;X ;T Þ ¼ Nðd1Þ

ð12Þ

The delta of a put is obtained immediately

from put-call parity, which equals N(d1)�1.

Assume that the delta of the ‘at-the-money’

call option discussed in Table 1 is 0.6. This

means that when the stock price changes by a

small amount, the option price changes by

approximately 60 per cent of that amount.

Suppose the option price is $10 and the stock

price is $100. An investor who has sold 20 call

options contract, that is, options to buy 2,000

shares, the investor’s position could be hedged by

buying 0.6*2,000¼ 1,200 shares. The gain (loss)

on the options positions would tend to be offset

by the loss (gain) on the stock position. For

example, if the stock price goes up by $1

(producing a gain of $1,200 on the shares

purchased), the option price will tend to go up

by $1*0.6¼ $0.6 (producing a loss of $1,200 on

the options written). In this example, the delta

of the investor’s option position is 0.6

*(�2,000)¼�1,200. Hence, the delta of the

total position (short 2,000 call options and long

1,200 shares) is zero. The delta of the position in

the underlying asset offsets the delta of the

option position. A position with a delta of zero is

referred to as being delta neutral.

It is important to realise that the investor’s

position remains delta hedged for only a

relatively short period of time (Dt). This is

because delta changes with both changes in

the stock price and the passage of time. In

practice, when delta hedging is implemented,

the hedge has to be adjusted or ‘rebalanced’

periodically.

The existence of an ‘arbitrage-free’ interval,

instead of a single Black–Scholes price, suggests

that the delta hedging ratio is not unique. The

delta hedging ratio corresponding to lower and

upper bounds presented in the third and fourth

sections are calculated below.

The following are the delta hedging ratios

from the various studies reviewed in this paper:

— Merton’s
10

lower-bound

DM ðSÞ ¼ 1

Perrakis and Ryan’s
11

DPRðSÞ ¼ 1þ Rf I
0ðSÞ�
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Levy’s
13

and Richken’s
14

DL=RðSÞ ¼ 1þ V ðSmaxÞI
0ðSÞ

where SZSmax

Rodriguez’s
18

new lower pricing bound is

DRðSÞ ¼ 1þ V ðSiÞ � V 0ðSiÞSi½ �I 0ðSÞ

þ V 0ðSiÞIðSÞ

þ V 0ðSiÞSI 0ðSÞ

ð13Þ

where

I 0ðSÞ ¼ �N ð�a1Þ=RS

Lo’s15 upper bounds are

DL ¼ 1

if

S

X
�

2Rf

1þ V �R2
f

¼
1

2
1þ
�2ðRf X � SÞ þ 2R2

f V �S

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRf X � SÞ2 þ R2

f V �S2

q
2
64

3
75

if

S

X
o

2Rf

1þ V �R2
f

ð14Þ

where

V � ¼ R2
f ½expðs2T � 1Þ�

Figure 3 shows hedging bound of

corresponding Lo’s upper
15

and Rodriguez’s

lower price bounds
18

over Black delta. The lower
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-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.40 0.44 0.48 0.52 0.56 0.60 0.64 0.68 0.72 0.76 0.80 0.84 0.88 0.92 0.96 1.00 1.04 1.08 1.12 1.16 1.20 1.24 1.28

S/X

D
el

ta

Delta upper bound

Delta lower bound

Delta spread

Figure 3: Delta hedging bounds
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hedging bound is much tighter than the upper

bound. The lower hedging bounds converge

towards Black delta for the ratio of underlying

asset price over the strike price is less than about

0.5 or greater than 0.9. The width of the

hedging bounds follows the similar trends as

price bounds, and is larger for close-to-the-

money options.

Figure 4 presents a graph of upper and lower

delta bounds for the out-of-money option when

the stock price ranges from $25 to $40. Because

the slope of Rodriguez’s lower price bounds

converges to Black–Scholes prices faster than

Lo’s upper price bounds, Black delta moves away

from lower bound towards upper bound as price

rises. In this numerical example, the delta

bounds widen when stock price rise to $35 and

narrows afterwards.

In sum, delta hedging bounds can be used in

this way to quantify risk exposure and to assess

the uncertainty in risk exposure calculations and

hedging portfolios design. A number of factors,

however, may change the conclusions. Higher

order risks, that is, gamma and theta, are not

considered in proposed delta hedging, which

may affect the hedging portfolio interval.

CONCLUSIONS

This paper has reviewed the literature on options

pricing in incomplete markets. Tight upper and

lower bounds can be derived based on the

assumptions of mean and variance of the

underlying asset price, not on its entire

distribution. The differences between estimated

upper or lower bounds and Black–Scholes price

are quite small for deep in-the-money options,

but can be very significant for deep out-of-the-

money options. But at the same time, despite the

wide pricing bounds, analysis of the implied

hedging bounds suggests that the implications

for asset allocation of incomplete markets are

fairly limited. The most important assumption

behind these results is the time invariance of the

Option Price delta bounds
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parameters, that is means and variances.

Nonstationarity in the underlying parameters

may well change these conclusions.
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