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In this paper, we impose the insurer’s Value at Risk (VaR) constraint on Arrow’s
optimal insurance model. The insured aims to maximize his expected utility of
terminal wealth, under the constraint that the insurer wishes to control the VaR
of his terminal wealth to be maintained below a prespecified level. It is shown that
when the insurer’s VaR constraint is binding, the solution to the problem is not
linear, but piecewise linear deductible, and the insured’s optimal expected utility will
increase as the insurer becomes more risk-tolerant. Basak and Shapiro (2001) showed
that VaR risk managers often choose larger risk exposures to risky assets. We draw a
similar conclusion in this paper. It is shown that when the insured has an exponential
utility function, optimal insurance based on VaR constraint causes the insurer to
suffer larger losses than optimal insurance without insurer’s risk constraint.
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Introduction

When faced with the uncertainty of loss, the insured can buy an insurance
contract and transfer some risk to the insurer, who agrees to give him some
payments when losses occur to him. There is a trade-off between the benefit of
receiving indemnity and the cost of insurance premium. A problem arises
about how a risk-averse insured balances the trade-off and chooses his optimal
insurance so as to make him well off in the future.

The optimal insurance decision is usually determined by the maximization of
the insured’s expected utility or the minimization of the residual risk. Arrow
(1963) showed that full coverage above a fixed deductible is optimal for a
utility-maximizing individual. Under Arrow’s framework, Raviv (1979),
Deprez and Gerber (1985), Young (1999), Promislow and Young (2005),
Zhou et al. (2008) used different insurance premium principles to study the
optimal insurance problem. Instead of maximizing the expected utility of
terminal wealth, Gajek and Zagrodny (2000, 2004) consider the optimal
reinsurance problem by minimizing the insurer’s residual risk.
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Wang et al. (2005) and Huang (2006) embedded the insured’s Value at Risk
(VaR) constraint into the optimal insurance problem. When an insurer offers
the insured an insurance contract, he will take on the insured’s risk and thus
will be faced with some risk exposures. It is important for the insurer to control
his risk exposure when he designs an optimal insurance contract. Zhou and Wu
(2008) considered the optimal insurance problem under the insurer’s expected
loss constraint. Namely, the insured aims to maximize the expected utility of
his terminal wealth, under the constraint that the expected loss of the insurer’s
terminal wealth is maintained below some prespecified level.

Value at Risk (VaR) is a standard risk measure for financial risk
management, and is widely used in practice. VaR is defined as the “possible
maximum loss over a given holding period within a fixed confidence level,”
where the confidence level is always set a relatively large value, such as 99
percent or 95 percent. In this paper, we extend the work of Zhou and Wu
(2008), and solve the optimal insurance problem under the insurer’s VaR risk
constraint. It is shown that when the insurer’s VaR constraint is binding, the
solution to the problem is not linear, but piecewise linear deductible, and the
insured’s optimal expected utility will increase as the insurer becomes more risk
tolerant. Basak and Shapiro (2001) showed that VaR risk managers often
choose larger risk exposures to risky assets. We draw a similar conclusion in
this paper. It is shown that when the insured has an exponential utility
function, optimal insurance based on VaR constraint causes the insurer to
suffer larger losses than optimal insurance without insurer’s risk constraint.

The rest of paper is organized as follows. In the next section, we embedded
the insurer’s VaR constraint into Arrow’s optimal insurance model. Following
Raviv (1979) and Gollier (1987), we solve the problem via two steps. In the first
step, we solve the optimal insurance problem with a fixed premium. Suppose
when the premium is fixed as 7, the optimal insurance is I*(x; 7). Then in the
second step, we deal with the problem of finding the optimal n*, thus
completing the determination of the optimal insurance. In the next following
section we deal with the first step, and in the subsequent section we proceed to
deal with the second step. The penultimate section provides a numerical
example where the insured has an exponential risk preference, and the losses
are exponentially distributed. The final section concludes the paper.

Model

Consider a von-Neumann Morgenstern insured with an initial wealth Wy, will
suffer a random loss X, a nonnegative continuous random variable defined on
the probability space (Q, F, P). The insured transfers part of his risk to an
insurer, who agrees to give him a payment /(x) when a loss x occurs to him.
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I(x) is always called the insurance policy or the coverage function in the
literature, which satisfies 0 </(x)<x for all x>0. Let 7 be the set of insurance
policies that satisfy the condition. The insurance premium is assumed to be a
function of the expected benefit received by the insured h(EI), where h(x) is
a strictly increasing function of x with 7(0) =0, and EI = [ol(X(w))P(dw). The
insurer will be faced with some risk exposures if he accepts the insurance
contract, and he wishes to control the VaR of his terminal wealth to be
maintained below some prespecified level. Suppose the insurer has an initial
wealth WW,, then the constraint can be written as:

Pr(Ws — I+ h(ED>W)>1—u (1)

where the floor I and the probability level o €[0, 1) are exogenously specified.
Since the insurer behaves more risk tolerant as o increases, o can represent the
insurer’s risk tolerance level.

Let u(x) be the insured’s utility function, which satisfies «/ >0 and u” <0. The
optimal insurance problem under the insurer’s VaR risk constraint can be
written as

max Eu(W, — X+ 1— h(EI)) )
(S
st. Pr(Wr—I+hEN=W)>1—u

Clearly, the difference between Model (2) and Arrow model in Arrow (1963) is
the insurer’s risk constraint. It proves that the solution to the Arrow model can
be written as I*(x) = (x—d) " =max(x—d, 0) (see Promislow and Young, 2005,
for more discussions and a simplified proof). Therefore, if I*(x) satisfies the
insurer’s risk constraint, it is the solution to the problem (2) as well. However,
when 7*(x) does not satisfy the constraint, the insured will change his insurance
policy to bind the insurer’s risk constraint.

We follow Raviv (1979) and Gollier (1987), and solve the problem via two
steps. In the next section, we first solve the optimal insurance problem with a
fixed premium. Suppose when the premium is 7, the insured’s optimal
insurance is I*(x; w), which is a function of 7. In the next following section, we
proceed to determine the optimal 7*, thus completing the determination of the
solution to the optimization problem (2).

The optimal insurance with a fixed premium

In this section, we keep the insurance premium fixed as n and consider the
following optimization problem:

max EuW,—-X+1-n) (3a)
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s.t. EI = h™'(n) (3b)
PrI<t)z1 —a (3¢)
0<I<X (3d)

where 1= W, +n—W, and h~'(.) is the inverse function of A(.). Since A(.) is a
strictly increasing function, its inverse function 4~ '(.) exists, and is a strictly
increasing function as well.

For 0<I<X, it is easy to show that when n > h(EX) or n<0, constraint (3b)
will never be satisfied. Let X be such that Pr(X<X)=1—«. Then if 7> X, for
I< X we always have Pr(/<7)>Pr(X<X)=1—a. Moreover, if t<0, we always
have Pr(/<1)=0. Therefore, when 7 <0, constraint (3c) will never be satisfied;
and when t > X, constraint (3¢) will not be binding. In the following, we assume
0<n<h(EX) and 7>0, and let IT denote the collections of = which satisfy the
conditions.

When nell, we have the following proposition about the solution to the
optimization problem (3).

Proposition 1 Suppose nell, and let X be such that Pr(X<Xx)=1—a. Then the
solution to the optimization problem (3) can be written as

(x—d)" if x<d+1
I'=<1 if d+1<x<Xx (4)
x—d if x>x

where d>0 satisfies EI* = h~ ().

The proof can be found in Appendix A.
Thus from Proposition 1, we can conclude that the solution to the problem (3),
if it exists, takes one of the two following forms:

L(x) = (x—d)" ()
(x—d)t if x<d++t

Lx)=41 if d+rt<x<x (6)
x—d if x>X

where the risk constraint (3c) is binding for I3, and is not binding for I7. It is
clear that I7 is the solution to the Arrow model with a fixed premium. If /7
satisfies the insurer’s risk constraint (3c), then Ii solves the optimization



The Geneva Risk and Insurance Review

144

problem (3). Otherwise, the insured will change his insurance policy to bind the
insurer’s risk constraint. In this case, we have the following proposition about
the impact of the insurer’s risk constraint on the insured’s optimal choice of
insurance policy.

Proposition 2 Suppose the solution to the problem (3) is Ii(x) as Eq. (6).
Without the insurer’s risk constraint (3c), the solution is I;(x) = (x—d’)*. Then
we have d<d’'<x—r.

Proof Since Ii is the solution to the problem (3), and I is not, from
Eq. (6) it is easy to show that (x +1—X)" <I3(x)<(x—d) ™. Since Pr(/3(x)<
(x—d) ") >0 we have E(I3) < E(X—d)*. Therefore if d>d’, we have

E(L)<E(X —d)" <E(X —d')" = E(I})

which contradict the condition that E(/¥)= E(J3)=h""(n). Similarly we can
prove d'<x—1. W

Proposition 2 states that when I7(x) = (x—d’) " does not satisfy the insurer’s
risk constraint, the deductible of the optimal insurance I5 is less than d’.
Figure 1 depicts the curves of I} and I5.

Figures 2 and 3 depict the impact of the insurer’s VaR constraint on the
insurer’s and insured’s terminal wealth, respectively. In Figure 2, W,(I})
and W,(I3) represent the insurer’s terminal wealth under I¥ and I3,
respectively.

I'(x)

0 d d’ d+t X X

Figure 1. The impact of the insurer’s risk constraint on the optimal policy.
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Figure 2. The impact of the insurer’s risk constraint on the insurer’s terminal wealth.
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Figure 3. The impact of the insurer’s risk constraint on the insured’s terminal wealth.

Similarly in Figure 3, W (I}) and W,(I3) represent the insured’s terminal
wealth under I} and I3, respectively. It can be seen from Figure 2 that I5 makes
the insurer suffer more when large losses occur. Figure 3 shows that I3 makes
the insured better off when the loss is beyond Xx.

Determination of the optimal insurance

In the previous section, the insurance premium is assumed to be fixed, and d is
a function of =. In this section, we proceed to determine the optimal premium,
or the optimal d, thus completing the determination of the optimal insurance
policy.
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Proposition 3 The solution to the optimization problem (2) takes one of two
forms as Eqs (5) and (6). If IT is the optimal solution, where de (0, + o), then
IT shall satisfy

u' (Wi —d — h(EL)) (7)
= W(EL)ElW (W) — X + I} — h(EL))]

Wy — W+ h(EL)>(x —d)" (8)

If I3 is the optimal solution, where d,7€(0, + o) and d+ 1<, then I5 shall
satisfy

W (W —d = h(EL))[1 = I(ELy) + i (EL) F(d)]

)
= I (EL)E[W (Wi — X — h(EL))1x<)]

Wy — W+ h(EL) =1 (10)

where F(.) is the cumulative distribution function of X. Moreover, let
V= Eu(W—-X+ I5—h(EI})) be the insured’s optimal expected utility, then we
have 0V/0x<0. Since X is a decreasing function of «, the insured’s optimal
expected utility will increase if the insurer’s risk tolerance o increases.

The proof can be found in Appendix B.

Thus with the help of Proposition 3, we can solve the problem (2). Note that
as well as Eq. (7), Eq. (9) can be interpreted economically, where the left-hand
side is the marginal utility benefit of receiving additional indemnity, and the
right-hand side represents the marginal utility cost of paying the corresponding
additional premium. Since

Ed (W) — X — WEI)) = (Wy —d— h(E})(1 ~ F(d))
+ E[L/(W] - X - h(E]T))l{ng}]

Eq. (7) can also be written as

W/ (Wy = d— h(ET)[ = (EI}) + i (EI}) F(d)]
= W (ER)E[W (W) — X — h(E)) (x<a)]
which has a similar format as Eq. (9).

Proposition 3 states that if the insurer’s risk constraint (3c) is binding, the
insured will adopt I3 as his optimal insurance, and his optimal expected utility
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will increase if the insurer’s risk tolerance increases. When the insurer’s risk
tolerance increases to a level high enough to make I satisfy the risk constraint,
then the insured would adopt /7 instead of I3 as his optimal insurance policy.
Now the insured’s optimal expected utility will remain fixed even if the insurer
increases his risk tolerance.

In the following proposition, we prove that when the insured has an
exponential preference, the imposition of VaR constraint helps the insured
transfer more of his large losses to the insurer.

Proposition 4 Suppose the insurer’s utility is given by the exponential
function as u(W)=a—be *", where b, R>0 and R is the (constant) absolute
risk aversion parameter. Let d, 7 >0 be the solution to Eq. (9) and Eq. (10), and
d’ be the solution to Eq. (7). Then when 4" =0 we have d=d’; when #” >0 we

have d<d’'.

The proof can be found in Appendix C.

Actually 42" >0 is a commonly used assumption in the literature (see Raviv,
1979). Proposition 4 says when the insured has an exponential preference, and
the insurance premium is given by the expected value principle, i.e.,
h(ED) = (14 0)EI the inclusion of insurer’s loss constraint does not change
the optimal deductible of Arrow’s model. Under general setting A’ >0, d<d’
implies that compared to Arrow model, the optimal insurance under insurer’s
VaR constraint provides more coverage for larger losses.

An example: The exponential utility and exponential loss distribution

In this section, we provide a simple example to illustrate the calculation process
of the optimal insurance. The insured’s utility is assumed to be
uWy=a"(1—e ") where a >0 is the (constant) absolute risk aversion. Then
we have u/(W)=e “". The premium principle is given by h(EI) = (1 + 0)E()
where 0>0. Let X be the random variable with p.d.f f{x)=le™**, where x>0
and 1 is a positive constant. Since 1—o=Pr(X<x)=1—¢ **, we have

i=-2""Ina (11)
If If(x)=(x—d) " is the optimal insurance, then from Eq. (C.1) we have

(1+0)(Je ™ —ae™™) =)—a ifi#a (12)
(1+0)(1 + Ad)e= =1 ifl=ua

If d satisfies the insurer’s risk constraint Eq. (8), then /7(x)=(x—d) " is the
optimal insurance.
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Otherwise, let I3(x) be as Eq. (6), then we have

d+t X
h(EL) = (1 +0) [/(X — d)de " dx + / the Mdx
d d+t

+ 7(x - d))ue)'xdx]

= (1+0)1 e (1 — )
+(1+0)F—d—1t+2 e ™

Substitute it into Eq. (10), and we can obtain

=Wy — W+ (1 + 0)17187151(1 _ efﬂ.r)

- (13)
+(0+0)GF—d—t+ 21 He ™
Thus from Proposition 4 we can calculate d by solving Eq. (12), and 7 by
solving Eq. (13).
Let 1=0.5,0=0.2,a=0.1, W,—W=5,0=0.05, from Eqs (11), (12) and (8)
we have ¥~5.99, d~3.56, h(EIf)=(1+ 0)A"'e *~0.40 and

Wy — W+ h(EL) — (X —d)" ~297>0 (14)

Therefore in this case the optimal insurance is 17 = (x—3.56) ™.

Now let «=0.01 with other parameters unchanged, then from Eq. (11) we
have x~9.21. From Eq. (14), d=3.56 does not satisfy the insurer’s risk
constraint. From Eq. (13), we can obtain 1~ 5.40. Therefore in this case the
optimal insurance is

0 if x<3.56
L(x) = x—3.56 if 3.56<x<8.97
2T ) 54 if 8.97<x<9.21

x—3.56 if x>9.21

Conclusion

In this paper, we impose the insurer’s VaR constraint on the Arrow’s optimal
insurance model, and discuss its impact on the insured’s optimal choice of his
insurance policy.
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Undoubtedly, if the solution to the Arrow model satisfies the insurer’s risk
constraint, then adding the constraint to the Arrow model will not change the
solution. The solution can be written as I7(x) = (x—d) *. Otherwise, the insured
will make his insurance policy bind the insurer’s risk constraint. It is shown
that now the insured’s optimal insurance, if it exists, can be written as

(x—d)" if x<t+d
L=<¢1 if 1+d<x<x
x—d if x>x

We show that now the insured’s optimal expected utility will increase if the
insurer increases his risk tolerance. Basak and Shapiro (2001) showed that VaR
risk managers often choose larger risk exposures to risky assets. We draw a
similar conclusion in this paper. It is shown that when the insured has an
exponential utility function, optimal insurance based on VaR constraint causes
the insurer to suffer larger losses than optimal insurance without insurer’s risk
constraint.
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Appendix A

Proof When d+ 1> X, we have I"(x)=(x—d)" from Eq. (4). Since I(x) is
the solution to Arrow model with fixed premium, to prove I*(x)=(x—d) " is
the solution to the problem (3), it remains to show that I*(x) satisfies the
insurer’s risk constraint (3c). For t>=0, we have

Pr(I'<t) = Pr((X — d)* <1)
=Pr(X<d+1)>Pr(X<x)=1-«a

where the inequality follows from the fact that d+t>X implies
{w: X(w)<d+1}2{w: X(0)<X}.

When d+1<%, from Eq. (4) we have Pr(/*<1) =Pr(X<X)=1—o. There-
fore, in this case I™ satisfies the insurer’s risk constraint (3c) with equality. It
remains to prove I* is the solution to the optimization problem (3) where the
risk constraint is binding. To show this, we adopt the convex-duality approach
(see Karatzas and Shreve, 1998, for example) and consider the following dual
optimization problem:

max, g(y)=u(W)—x+y—mn)—Aly+ i<y (A1)
s.t. 0<y<x '

where 1,eR, J, =u(W,—d—n)—i(X—d)—u(W =X+ 1—m)+ /47, and 1< is
the indication function whose value is 1 when y<t and is zero otherwise.
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Lemma 1 The solution to the optimization problem (15) can be written as

(x—d)" if x<d+1
Y=< if d+t<x<x
x—d if x>x

where d=(W,—n—v(41))", v(.) is the inverse function of /(.). Moreover we
always have 4,>0.

Proof  Let g1(y) =u(W—x +y—m)—/A1y, and g/'(y) =/ (W —x + y—m)—4, =0,
we have y =x—[W—n—v(/)]. Since g(p) is a strictly concave function of y, it
is easy to show that g;(y), when ye[0, x], attains its maximum at y, = (x—d) ¥,
where d=(W,—n—v(A,))". Therefore, g(y)=g,(y)+ Aol < when ye[0, x]
attains its maximum at either y; = (x—d)* or y,=1.

To get the optimal solution to the dual problem (15), we consider the
following three cases:

(1) x<d++=

In this case we have y; =(x—d) " <t and

g) =a(n) +/4h=gi(c) + 4 = g(1)

Thus g(y) attains its maximum when ye[0, x] at y* =y, =(x—d) ™.
2) d+t<x<X
In this case we have y, =x—d>r, g(y1) = u(W,—d—n)—1,(x—d), and

gt)=uW)—x+1—m)—it+ A
=uW)—x+1—n)+u(W,—d—n)
—M(E—-d)—uW) —xX+1—n) (A.2)
=gly)+uW,—x+t—n)+ Ahx
—[u(W) —xXx+1—-n) — AX]|

Let G(x) =u(W;—x +t—m) + A1 x. Since x> d+ 1> Wi—n—v(4;) + 7 and /(x)
is a decreasing function, we have

Gx)=h—ud(W ) —x+t—-m)<h —d(v(1)) =0

Therefore G(x) is a decreasing function of x. For x<X, we have G(x) > G(X).
Substituting it into Eq. (A.2), we have g(t) >g(y,) from Eq. (A.2). Meanwhile
since 0 <t < x—d<x, we have g(y) when ye[0, x] attains its maximum at y*=r1.

3)x>x

Similar to case (2), it is easy to show that g(y;) > g(7) in this case. Since x >d,
we have g(y) when ye|0, x] attains its maximum at y* = x—d.
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Finally, to show 4,>0, note that we have
lo=u(W—(d+1)+1—7)+i(d+1)
—u(W) —x+1t—n)+ 4x]=0

where the inequality follows from G(x) is a decreasing function of x and
d+t<x. N

Now let d>0 be the solution to EJI*)=h"'(n) and 1, =u'(W,—n—d).
Applying Lemma 1 pointwise for all x>0, it follows that Eq. (4) is the solution
to the optimization problem.

max; M(Wl - X+1- 7'5) — I+ /121{1<.[}
s.t. 0<I<X

Let J be any candidate coverage function which satisfies the constraints (3b, 3c,
3d), we have

EuW,—-X+TI—-n)—Eu(W,—X+J—n)
=Eu(W, - X+T —n)—th ' (n) + A(1 — )
— [Eu(W) — X +J —7) — ih ™' (n) + Aa(1 — )]
ZEu(W) =X+ T —n) = LWEI") + A E(l{p <)
—[Eu(W) = X +J —n) = LE(J) + LE(11<)]|=0

where the first inequality follows from the fact that the constraint (3¢) holds for
I* with equality, while holding for J with inequality. W

Appendix B
Proof of Proposition 3:
Proof (1) When I} is the optimal solution, let
U(d) = Eu(Wy — X+ (X —d)" — h(E(X — d)"))

From the first order condition U'(d)=0, we have Eq. (7). Moreover for I}
satisfies the risk constraint (3c) we have

Pr(X—d) " <Wr+hEX—-d)") - W)=1—u (B.1)
Since a€[0, 1), we have W5+ h(E(X—d) " )—W=>0 and Eq. (B.1) can be written

as

Pr(X<d+ Wr+ W(EX—d)") = W)=1—u
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Since Pr(X<X)=1—o, we can obtain
d+Wy+h(EX—d)") - W=x

Thus we have proved the first conclusion.

(2) If I3 is the solution to the problem (2), it is easy to show that I3 satisfies
the insurer’s risk constraint with equality. We can calculate d and t by solving
the following optimization problem:

maxy, U(d,t)=Eu(W,— X+ I — h(EL))
st. M(d,t)=h(EE) —t— W+ W,

Let L(d,t)=U(d,t1)—AM(d, ), where A is the Lagrange multiplier. From the
condition 0L/0d =0, we have

o (W1 — d — h(ELy)) = I (EL)

B.2
[Ed/ (W) — X + I, — h(EL)) + /] (B.2)
From the condition 0L/0t =0, we have
[F(x) = F(d + 1)}l (EL)
(B (W) — X + I — h(EI})) + /]
% (B.3)

_ / W (Wi = x + 1 — h(EL)f(x)dx + 2

d+t

From Eqs (B.2) and (B.3), by eliminating A we can obtain Eq. (7).
Moreover, from the envelope theorem (see Jehle and Reny, 2000, Appendix
2.4 for more details), we have

oV oL B
E—g—f(x)

[u(Wy — %+ — h(EI})) — u(W1 — d — h(EL))] (B4
— f®)(x +d— (Wi — d— h(EL))

Since u(.) is a concave function, we have
u(Wy) — X+t — h(EL))
—u(W, —d— h(EL))
<(t+d—-x)d (W) —d— h(EL))

Substituting it into Eq. (B.4), we have 0V/ox<0. N
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Appendix C

Proof of Proposition 4:
Proof From Eq. (9) and the exponential utility function, we have

hRe RWV=d=hEL) (| _ i/ (EL) + K (EL)F(d))

d
/bRC R(W—x—h(EI) dF( )
0

which can also be written as

d
W (EL)] / e RUNGR(x) + 1 — F(d)] = 1 (C.1)
0

Similarly from Eq. (7) and the exponential preference, we have

d

/bR67 (W—x—h(EI) dF( )
0

1 pRe ROV=d—h(EL})) (1— F(d))}

— pReROV=d—h(EL})

W(EL)

which can be simplified as

d

W (E)| / e RE=Ngp(x) + 1 — F(d)] = 1 (C.2)

0

Let G(z)= [§ 53¢ RE"DGR(x) 4+ 1—F(z). We know G(z) is a decreasing function
since G'(z) = —R e “RE=YJF(x)<0. Therefore if #” =0, //(x) is a constant for
any x. From Eqs (C.1) and (C.2) we have d=4d’.

If />0 and d>d’, it easy to show that EIs <EIY and I(ER) <MW (EIY).
G(d)<G(d') can be obtained since G(z) is a decreasing function. For both /()
and G(.) are positive functions, we have /' (EIY)G(d) <} (EIT)G(d'). However,
from Eqs (C.1) and (C.1) we know K (EI})G(d) = W' (EIY)G(d’). The contraction
implies that d<d’. W
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