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In this paper, we impose the insurer’s Value at Risk (VaR) constraint on Arrow’s
optimal insurance model. The insured aims to maximize his expected utility of
terminal wealth, under the constraint that the insurer wishes to control the VaR
of his terminal wealth to be maintained below a prespecified level. It is shown that
when the insurer’s VaR constraint is binding, the solution to the problem is not
linear, but piecewise linear deductible, and the insured’s optimal expected utility will
increase as the insurer becomes more risk-tolerant. Basak and Shapiro (2001) showed
that VaR risk managers often choose larger risk exposures to risky assets. We draw a
similar conclusion in this paper. It is shown that when the insured has an exponential
utility function, optimal insurance based on VaR constraint causes the insurer to
suffer larger losses than optimal insurance without insurer’s risk constraint.
The Geneva Risk and Insurance Review (2009) 34, 140–154. doi:10.1057/grir.2009.3

Keywords: optimal insurance; value at risk; risk constraint

Introduction

When faced with the uncertainty of loss, the insured can buy an insurance
contract and transfer some risk to the insurer, who agrees to give him some
payments when losses occur to him. There is a trade-off between the benefit of
receiving indemnity and the cost of insurance premium. A problem arises
about how a risk-averse insured balances the trade-off and chooses his optimal
insurance so as to make him well off in the future.

The optimal insurance decision is usually determined by the maximization of
the insured’s expected utility or the minimization of the residual risk. Arrow
(1963) showed that full coverage above a fixed deductible is optimal for a
utility-maximizing individual. Under Arrow’s framework, Raviv (1979),
Deprez and Gerber (1985), Young (1999), Promislow and Young (2005),
Zhou et al. (2008) used different insurance premium principles to study the
optimal insurance problem. Instead of maximizing the expected utility of
terminal wealth, Gajek and Zagrodny (2000, 2004) consider the optimal
reinsurance problem by minimizing the insurer’s residual risk.
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Wang et al. (2005) and Huang (2006) embedded the insured’s Value at Risk
(VaR) constraint into the optimal insurance problem. When an insurer offers
the insured an insurance contract, he will take on the insured’s risk and thus
will be faced with some risk exposures. It is important for the insurer to control
his risk exposure when he designs an optimal insurance contract. Zhou and Wu
(2008) considered the optimal insurance problem under the insurer’s expected
loss constraint. Namely, the insured aims to maximize the expected utility of
his terminal wealth, under the constraint that the expected loss of the insurer’s
terminal wealth is maintained below some prespecified level.

Value at Risk (VaR) is a standard risk measure for financial risk
management, and is widely used in practice. VaR is defined as the ‘‘possible
maximum loss over a given holding period within a fixed confidence level,’’
where the confidence level is always set a relatively large value, such as 99
percent or 95 percent. In this paper, we extend the work of Zhou and Wu
(2008), and solve the optimal insurance problem under the insurer’s VaR risk
constraint. It is shown that when the insurer’s VaR constraint is binding, the
solution to the problem is not linear, but piecewise linear deductible, and the
insured’s optimal expected utility will increase as the insurer becomes more risk
tolerant. Basak and Shapiro (2001) showed that VaR risk managers often
choose larger risk exposures to risky assets. We draw a similar conclusion in
this paper. It is shown that when the insured has an exponential utility
function, optimal insurance based on VaR constraint causes the insurer to
suffer larger losses than optimal insurance without insurer’s risk constraint.

The rest of paper is organized as follows. In the next section, we embedded
the insurer’s VaR constraint into Arrow’s optimal insurance model. Following
Raviv (1979) and Gollier (1987), we solve the problem via two steps. In the first
step, we solve the optimal insurance problem with a fixed premium. Suppose
when the premium is fixed as p, the optimal insurance is I*(x; p). Then in the
second step, we deal with the problem of finding the optimal p*, thus
completing the determination of the optimal insurance. In the next following
section we deal with the first step, and in the subsequent section we proceed to
deal with the second step. The penultimate section provides a numerical
example where the insured has an exponential risk preference, and the losses
are exponentially distributed. The final section concludes the paper.

Model

Consider a von-Neumann Morgenstern insured with an initial wealth W1, will
suffer a random loss X, a nonnegative continuous random variable defined on
the probability space (O,F,P). The insured transfers part of his risk to an
insurer, who agrees to give him a payment I(x) when a loss x occurs to him.
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I(x) is always called the insurance policy or the coverage function in the
literature, which satisfies 0pI(x)px for all xX0. Let I be the set of insurance
policies that satisfy the condition. The insurance premium is assumed to be a
function of the expected benefit received by the insured h(EI), where h(x) is
a strictly increasing function of x with h(0)¼ 0, and EI¼

R
OI(X(o))P(do). The

insurer will be faced with some risk exposures if he accepts the insurance
contract, and he wishes to control the VaR of his terminal wealth to be
maintained below some prespecified level. Suppose the insurer has an initial
wealth W2, then the constraint can be written as:

PrðW2 � Iþ hðEIÞXWÞX1� a ð1Þ

where the floor W and the probability level aA[0, 1) are exogenously specified.
Since the insurer behaves more risk tolerant as a increases, a can represent the
insurer’s risk tolerance level.

Let u(x) be the insured’s utility function, which satisfies u0>0 and u00o0. The
optimal insurance problem under the insurer’s VaR risk constraint can be
written as

max
I2I

EuðW1 � Xþ I� hðEIÞÞ
s:t: PrðW2 � Iþ hðEIÞXWÞX1� a

ð2Þ

Clearly, the difference between Model (2) and Arrow model in Arrow (1963) is
the insurer’s risk constraint. It proves that the solution to the Arrow model can
be written as I*(x)¼ (x�d)þ ¼max(x�d, 0) (see Promislow and Young, 2005,
for more discussions and a simplified proof). Therefore, if I*(x) satisfies the
insurer’s risk constraint, it is the solution to the problem (2) as well. However,
when I*(x) does not satisfy the constraint, the insured will change his insurance
policy to bind the insurer’s risk constraint.

We follow Raviv (1979) and Gollier (1987), and solve the problem via two
steps. In the next section, we first solve the optimal insurance problem with a
fixed premium. Suppose when the premium is p, the insured’s optimal
insurance is I*(x; p), which is a function of p. In the next following section, we
proceed to determine the optimal p*, thus completing the determination of the
solution to the optimization problem (2).

The optimal insurance with a fixed premium

In this section, we keep the insurance premium fixed as p and consider the
following optimization problem:

max
I

EuðW1 � Xþ I� pÞ ð3aÞ
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s:t:EI ¼ h�1ðpÞ ð3bÞ

PrðIptÞX1� a ð3cÞ

0pIpX ð3dÞ

where t¼W2þ p�W, and h�1(.) is the inverse function of h(.). Since h(.) is a
strictly increasing function, its inverse function h�1(.) exists, and is a strictly
increasing function as well.

For 0pIpX, it is easy to show that when p>h(EX) or po0, constraint (3b)
will never be satisfied. Let �x be such that Pr(Xp�x)¼ 1�a. Then if t>�x, for
IpX we always have Pr(Ipt)XPr(Xp�x)¼ 1�a. Moreover, if to0, we always
have Pr(Ipt)¼ 0. Therefore, when to0, constraint (3c) will never be satisfied;
and when tX�x, constraint (3c) will not be binding. In the following, we assume
0ppph(EX) and tX0, and let P denote the collections of p which satisfy the
conditions.

When pAP, we have the following proposition about the solution to the
optimization problem (3).

Proposition 1 Suppose pAP, and let �x be such that Pr(Xp�x)¼ 1�a. Then the
solution to the optimization problem (3) can be written as

I� ¼
ðx� dÞþ if xpdþ t
t if dþ toxp�x
x� d if x4�x

8<
: ð4Þ

where dX0 satisfies EI*¼ h�1(p).

The proof can be found in Appendix A.
Thus from Proposition 1, we can conclude that the solution to the problem (3),

if it exists, takes one of the two following forms:

I�1ðxÞ ¼ ðx� dÞþ ð5Þ

I�2ðxÞ ¼
ðx� dÞþ if xpdþ t
t if dþ toxp�x
x� d if x4�x

8<
: ð6Þ

where the risk constraint (3c) is binding for I2
n, and is not binding for I1

n. It is
clear that I1

n is the solution to the Arrow model with a fixed premium. If I1
n

satisfies the insurer’s risk constraint (3c), then I1
n solves the optimization
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problem (3). Otherwise, the insured will change his insurance policy to bind the
insurer’s risk constraint. In this case, we have the following proposition about
the impact of the insurer’s risk constraint on the insured’s optimal choice of
insurance policy.

Proposition 2 Suppose the solution to the problem (3) is I2
n(x) as Eq. (6).

Without the insurer’s risk constraint (3c), the solution is I1
n(x)¼ (x�d 0)þ. Then

we have dod 0o�x�t.

Proof Since I2
n is the solution to the problem (3), and I1

n is not, from
Eq. (6) it is easy to show that (xþ t��x)þpI2

n(x)p(x�d)þ. Since Pr(I2
n(x)o

(x�d)þ )>0 we have E(I2
n)oE(X�d)þ. Therefore if dXd 0, we have

EðI�2ÞoEðX� dÞþpEðX� d 0Þþ ¼ EðI�1Þ

which contradict the condition that E(I1
n)¼E(I2

n)¼ h�1(p). Similarly we can
prove d 0o�x�t. ’

Proposition 2 states that when I1
n(x)¼ (x�d 0)þ does not satisfy the insurer’s

risk constraint, the deductible of the optimal insurance I2
n is less than d 0.

Figure 1 depicts the curves of I1
n and I2

n.
Figures 2 and 3 depict the impact of the insurer’s VaR constraint on the

insurer’s and insured’s terminal wealth, respectively. In Figure 2, W2(I1
n)

and W2(I2
n) represent the insurer’s terminal wealth under I1

n and I2
n,

respectively.

X-d

I*(x)

0 d d′ X x

I1
*

I2
*

d+τ

τ

Figure 1. The impact of the insurer’s risk constraint on the optimal policy.
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Similarly in Figure 3, W1(I1
n) and W1(I2

n) represent the insured’s terminal
wealth under I1

n and I2
n, respectively. It can be seen from Figure 2 that I2

n makes
the insurer suffer more when large losses occur. Figure 3 shows that I2

n makes
the insured better off when the loss is beyond �x.

Determination of the optimal insurance

In the previous section, the insurance premium is assumed to be fixed, and d is
a function of p. In this section, we proceed to determine the optimal premium,
or the optimal d, thus completing the determination of the optimal insurance
policy.

W2(x)

W2+π

W2+π-τ

W2+π+d-X

W2(I2
*)

W2(I1
*)

0 d d′ d+τ X x

Figure 2. The impact of the insurer’s risk constraint on the insurer’s terminal wealth.

W1(x)

W1-π

W1-π-d

W1-π-d′

0 d d′ d+τ x

W1(I2
*)

W1(I1
*)

X

W1-π+τ-X

Figure 3. The impact of the insurer’s risk constraint on the insured’s terminal wealth.
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Proposition 3 The solution to the optimization problem (2) takes one of two
forms as Eqs (5) and (6). If I1

n is the optimal solution, where dA(0, þN), then
I1
n shall satisfy

u0ðW1 � d� hðEI�1ÞÞ
¼ h0ðEI�1ÞE½u0ðW1 � Xþ I�1 � hðEI�1ÞÞ�

ð7Þ

W2 �Wþ hðEI�1ÞXð�x� dÞþ ð8Þ

If I2
n is the optimal solution, where d, tA(0, þN) and dþ tp�x, then I2

n shall
satisfy

u0ðW1 � d� hðEI�2ÞÞ½1� h0ðEI�2Þ þ h0ðEI�2ÞFðdÞ�

¼ h0ðEI�2ÞE½u0ðW1 � X� hðEI�2ÞÞ1fXpdg�
ð9Þ

W2 �Wþ hðEI�2Þ ¼ t ð10Þ

where F(.) is the cumulative distribution function of X. Moreover, let
V¼Eu(W�Xþ I2

n�h(EI2
n)) be the insured’s optimal expected utility, then we

have qV/q�xp0. Since �x is a decreasing function of a, the insured’s optimal
expected utility will increase if the insurer’s risk tolerance a increases.

The proof can be found in Appendix B.
Thus with the help of Proposition 3, we can solve the problem (2). Note that

as well as Eq. (7), Eq. (9) can be interpreted economically, where the left-hand
side is the marginal utility benefit of receiving additional indemnity, and the
right-hand side represents the marginal utility cost of paying the corresponding
additional premium. Since

Eu0ðW1 � X� hðEI�1ÞÞ ¼ u0ðW1 � d� hðE�
1ÞÞð1� FðdÞÞ

þ E½u0ðW1 � X� hðEI�1ÞÞ1fXpdg�

Eq. (7) can also be written as

u0ðW1 � d� hðEI�1ÞÞ½1� h0ðEI�1Þ þ h0ðEI�1ÞFðdÞ�
¼ h0ðEI�1ÞE½u0ðW1 � X� hðEI�1ÞÞ1fXpdg�

which has a similar format as Eq. (9).
Proposition 3 states that if the insurer’s risk constraint (3c) is binding, the

insured will adopt I2
n as his optimal insurance, and his optimal expected utility
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will increase if the insurer’s risk tolerance increases. When the insurer’s risk
tolerance increases to a level high enough to make I1

n satisfy the risk constraint,
then the insured would adopt I1

n instead of I2
n as his optimal insurance policy.

Now the insured’s optimal expected utility will remain fixed even if the insurer
increases his risk tolerance.

In the following proposition, we prove that when the insured has an
exponential preference, the imposition of VaR constraint helps the insured
transfer more of his large losses to the insurer.

Proposition 4 Suppose the insurer’s utility is given by the exponential
function as u(W)¼ a�be�RW, where b,R>0 and R is the (constant) absolute
risk aversion parameter. Let d, tX0 be the solution to Eq. (9) and Eq. (10), and
d 0 be the solution to Eq. (7). Then when h00 ¼ 0 we have d¼ d 0; when h00>0 we
have dpd 0.

The proof can be found in Appendix C.
Actually h00X0 is a commonly used assumption in the literature (see Raviv,

1979). Proposition 4 says when the insured has an exponential preference, and
the insurance premium is given by the expected value principle, i.e.,
h(EI)¼ (1þ y)EI, the inclusion of insurer’s loss constraint does not change
the optimal deductible of Arrow’s model. Under general setting h00X0, dpd 0

implies that compared to Arrow model, the optimal insurance under insurer’s
VaR constraint provides more coverage for larger losses.

An example: The exponential utility and exponential loss distribution

In this section, we provide a simple example to illustrate the calculation process
of the optimal insurance. The insured’s utility is assumed to be
u(W)¼ a�1(1�e�aW) where a>0 is the (constant) absolute risk aversion. Then
we have u0(W)¼ e�aW. The premium principle is given by h(EI)¼ (1þ y)E(I)
where y>0. Let X be the random variable with p.d.f f(x)¼ le�lx, where xX0
and l is a positive constant. Since 1�a¼Pr(Xp�x)¼ 1�e�l�x, we have

�x ¼ �l�1ln a ð11Þ

If I1
n(x)¼ (x�d)þ is the optimal insurance, then from Eq. (C.1) we have

ð1þ yÞðle�ad � ae�ldÞ ¼ l� a if l 6¼ a
ð1þ yÞð1þ ldÞe�ld ¼ 1 if l ¼ a

ð12Þ

If d satisfies the insurer’s risk constraint Eq. (8), then I1
n(x)¼ (x�d )þ is the

optimal insurance.
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Otherwise, let I2
n(x) be as Eq. (6), then we have

hðEI�2Þ ¼ ð1þ yÞ
Zdþt

d

ðx� dÞle�lxdxþ
Zx

dþt

tle�lxdx

2
4

þ
Zþ1

x

ðx� dÞle�lxdx

3
5

¼ ð1þ yÞl�1e�ldð1� e�ltÞ
þ ð1þ yÞðx� d� tþ l�1Þe�lx

Substitute it into Eq. (10), and we can obtain

t ¼ W2 �Wþ ð1þ yÞl�1e�ldð1� e�ltÞ
þ ð1þ yÞðx� d� tþ l�1Þe�lx

ð13Þ

Thus from Proposition 4 we can calculate d by solving Eq. (12), and t by
solving Eq. (13).

Let l¼ 0.5, y¼ 0.2, a¼ 0.1,W2�W¼ 5, a¼ 0.05, from Eqs (11), (12) and (8)
we have �xE5.99, dE3.56, h(EI1

n)¼ (1þ y)l�1e�ldE0.40 and

W2 �Wþ hðEI�1Þ � ð�x� dÞþ � 2:9740 ð14Þ

Therefore in this case the optimal insurance is I1
n¼ (x�3.56)þ.

Now let a¼ 0.01 with other parameters unchanged, then from Eq. (11) we
have �xE9.21. From Eq. (14), d¼ 3.56 does not satisfy the insurer’s risk
constraint. From Eq. (13), we can obtain tE5.40. Therefore in this case the
optimal insurance is

I�2ðxÞ ¼

0 if xp3:56
x� 3:56 if 3:56oxp8:97
5:4 if 8:97oxp9:21
x� 3:56 if x49:21

8>><
>>:

Conclusion

In this paper, we impose the insurer’s VaR constraint on the Arrow’s optimal
insurance model, and discuss its impact on the insured’s optimal choice of his
insurance policy.
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Undoubtedly, if the solution to the Arrow model satisfies the insurer’s risk
constraint, then adding the constraint to the Arrow model will not change the
solution. The solution can be written as I1

n(x)¼ (x�d)þ. Otherwise, the insured
will make his insurance policy bind the insurer’s risk constraint. It is shown
that now the insured’s optimal insurance, if it exists, can be written as

I�2 ¼
ðx� dÞþ if xptþ d
t if tþ doxp�x
x� d if x4�x

8<
:

We show that now the insured’s optimal expected utility will increase if the
insurer increases his risk tolerance. Basak and Shapiro (2001) showed that VaR
risk managers often choose larger risk exposures to risky assets. We draw a
similar conclusion in this paper. It is shown that when the insured has an
exponential utility function, optimal insurance based on VaR constraint causes
the insurer to suffer larger losses than optimal insurance without insurer’s risk
constraint.
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Appendix A

Proof When dþ t>�x, we have In(x)¼ (x�d)þ from Eq. (4). Since In(x) is
the solution to Arrow model with fixed premium, to prove In(x)¼ (x�d)þ is
the solution to the problem (3), it remains to show that In(x) satisfies the
insurer’s risk constraint (3c). For tX0, we have

PrðI�ptÞ ¼ PrððX� dÞþptÞ
¼ PrðXpdþ tÞXPrðXp�xÞ ¼ 1� a

where the inequality follows from the fact that dþ t>�x implies
{o: X(o)pdþ t}+{o: X(o)p�x}.

When dþ tp�x, from Eq. (4) we have Pr(Inpt)¼Pr(Xp�x)¼ 1�a. There-
fore, in this case In satisfies the insurer’s risk constraint (3c) with equality. It
remains to prove In is the solution to the optimization problem (3) where the
risk constraint is binding. To show this, we adopt the convex-duality approach
(see Karatzas and Shreve, 1998, for example) and consider the following dual
optimization problem:

maxy gðyÞ ¼ uðW1 � xþ y� pÞ � l1yþ l21fyptg
s:t: 0pypx

ðA:1Þ

where l1AR, l2¼ u(W1�d�p)�l1(�x�d)�u(W1��xþ t�p)þ l1t, and 1{ypt} is
the indication function whose value is 1 when ypt and is zero otherwise.
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Lemma 1 The solution to the optimization problem (15) can be written as

y� ¼
ðx� dÞþ if xpdþ t
t if dþ toxp�x
x� d if x4�x

8<
:

where d¼ (W1�p�v(l1))
þ , v(.) is the inverse function of u0(.). Moreover we

always have l2X0.

Proof Let g1(y)¼ u(W1�xþ y�p)�l1y, and g1
0(y)¼ u0(W1�xþ y�p)�l1¼ 0,

we have y¼ x�[W1�p�v(l1)]. Since g1(y) is a strictly concave function of y, it
is easy to show that g1(y), when yA[0, x], attains its maximum at y1¼ (x�d)þ,
where d¼ (W1�p�v(l1))

þ. Therefore, g(y)¼ g1(y)þ l21{ypt} when yA[0, x]
attains its maximum at either y1¼ (x�d)þ or y2¼ t.

To get the optimal solution to the dual problem (15), we consider the
following three cases:

(1) xpdþ t
In this case we have y1¼ (x�d)þpt and

gðy1Þ ¼ g1ðy1Þ þ l2Xg1ðtÞ þ l2 ¼ gðtÞ

Thus g(y) attains its maximum when yA[0, x] at yn¼ y1¼ (x�d)þ.
(2) dþ toxp�x
In this case we have y1¼ x�d>t, g(y1)¼ u(W1�d�p)�l1(x�d), and

gðtÞ ¼ uðW1 � xþ t� pÞ � l1tþ l2
¼ uðW1 � xþ t� pÞ þ uðW1 � d� pÞ

� l1ð�x� dÞ � uðW1 � �xþ t� pÞ
¼ gðy1Þ þ uðW1 � xþ t� pÞ þ l1x

� ½uðW1 � �xþ t� pÞ � l1�x�

ðA:2Þ

Let G(x)¼ u(W1�xþ t�p)þ l1x. Since x>dþ tXW1�p�v(l1)þ t and u0(x)
is a decreasing function, we have

G0ðxÞ ¼ l1 � u0ðW1 � xþ t� pÞpl1 � u0ðvðl1ÞÞ ¼ 0

Therefore G(x) is a decreasing function of x. For xp�x, we have G(x)XG(�x).
Substituting it into Eq. (A.2), we have g(t)Xg(y1) from Eq. (A.2). Meanwhile
since 0ptpx�dpx, we have g(y) when yA[0, x] attains its maximum at yn¼ t.

(3) x>�x
Similar to case (2), it is easy to show that g(y1)>g(t) in this case. Since xXd,

we have g(y) when yA[0, x] attains its maximum at yn¼ x�d.
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Finally, to show l2X0, note that we have

l2 ¼uðW1 � ðdþ tÞ þ t� pÞ þ l1ðdþ tÞ
� ½uðW1 � �xþ t� pÞ þ l1�x�X0

where the inequality follows from G(x) is a decreasing function of x and
dþ tp�x. ’

Now let dX0 be the solution to E(In)¼ h�1(p) and l1¼ u0(W1�p�d).
Applying Lemma 1 pointwise for all xX0, it follows that Eq. (4) is the solution
to the optimization problem.

maxI uðW1 � Xþ I� pÞ � l1Iþ l21fIptg
s:t: 0pIpX

Let J be any candidate coverage function which satisfies the constraints (3b, 3c,
3d), we have

EuðW1 � Xþ I� � pÞ � EuðW1 � Xþ J� pÞ
¼ EuðW1 � Xþ I� � pÞ � l1h�1ðpÞ þ l2ð1� aÞ
� ½EuðW1 � Xþ J� pÞ � l1h�1ðpÞ þ l2ð1� aÞ�
XEuðW1 � Xþ I� � pÞ � l1EðI�Þ þ l2Eð1fI�ptgÞ
� ½EuðW1 � Xþ J� pÞ � l1EðJÞ þ l2Eð1fJptgÞ�X0

where the first inequality follows from the fact that the constraint (3c) holds for
In with equality, while holding for J with inequality. ’

Appendix B

Proof of Proposition 3:

Proof (1) When I1
n is the optimal solution, let

UðdÞ ¼ EuðW1 � Xþ ðX� dÞþ � hðEðX� dÞþÞÞ

From the first order condition U0(d)¼ 0, we have Eq. (7). Moreover for I1
n

satisfies the risk constraint (3c) we have

PrððX� dÞþpW2 þ hðEðX� dÞþÞ �WÞX1� a ðB:1Þ

Since aA[0, 1), we have W2þ h(E(X�d)þ )�WX0 and Eq. (B.1) can be written
as

PrðXpdþW2 þ hðEðX� dÞþÞ �WÞX1� a
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Since Pr(Xp�x)¼ 1�a, we can obtain

dþW2 þ hðEðX� dÞþÞ �WX�x

Thus we have proved the first conclusion.
(2) If I2

n is the solution to the problem (2), it is easy to show that I2
n satisfies

the insurer’s risk constraint with equality. We can calculate d and t by solving
the following optimization problem:

maxd;t Uðd; tÞ ¼ EuðW1 � Xþ I�2 � hðEI�2ÞÞ
s:t: Mðd; tÞ ¼ hðEI�2Þ � t�WþW2

Let L(d, t)¼U(d, t)�lM(d, t), where l is the Lagrange multiplier. From the
condition qL/qd¼ 0, we have

u0ðW1 � d� hðEI�2ÞÞ ¼ h0ðEI�2Þ
½Eu0ðW1 � Xþ I�2 � hðEI�2ÞÞ þ l�

ðB:2Þ

From the condition qL/qt¼ 0, we have

½Fð�xÞ � Fðdþ tÞ�h0ðEI�2Þ
½Eu0ðW1 � Xþ I�2 � hðEI�2ÞÞ þ l�

¼
Z�x

dþt

u0ðW1 � xþ t� hðEI�2ÞÞfðxÞdxþ l

ðB:3Þ

From Eqs (B.2) and (B.3), by eliminating l we can obtain Eq. (7).
Moreover, from the envelope theorem (see Jehle and Reny, 2000, Appendix

2.4 for more details), we have

qV
q�x

¼ qL
q�x

¼ fð�xÞ

uðW1 � �xþ t� hðEI�2ÞÞ � uðW1 � d� hðEI�2ÞÞ
� �
� fð�xÞðtþ d� �xÞu0ðW1 � d� hðEI�2ÞÞ

ðB:4Þ

Since u(.) is a concave function, we have

uðW1 � �xþ t� hðEI�2ÞÞ

� uðW1 � d� hðEI�2ÞÞ

pðtþ d� �xÞu0ðW1 � d� hðEI�2ÞÞ

Substituting it into Eq. (B.4), we have qV/q�xp0. ’
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Appendix C

Proof of Proposition 4:

Proof From Eq. (9) and the exponential utility function, we have

bRe�RðW�d�hðEI�
2
ÞÞ½1� h0ðEI�2Þ þ h0ðEI�2ÞFðdÞ�

¼ h0ðEI�2Þ
Zd

0

bRe�RðW�x�hðEI�
2
ÞÞdFðxÞ

which can also be written as

h0ðEI�2Þ½
Zd

0

e�Rðd�xÞdFðxÞ þ 1� FðdÞ� ¼ 1 ðC:1Þ

Similarly from Eq. (7) and the exponential preference, we have

h0ðEI�1Þ
Zd0

0

bRe�RðW�x�hðEI�
1
ÞÞdFðxÞ

2
4

þbRe�RðW�d0�hðEI�
1
ÞÞð1� FðdÞÞ

i

¼ bRe�RðW�d0�hðEI�
1
ÞÞ

which can be simplified as

h0ðEI�1Þ½
Zd0

0

e�Rðd0�xÞdFðxÞ þ 1� Fðd0Þ� ¼ 1 ðC:2Þ

Let G(z)¼
R
0
ze�R(z�x)dF(x)þ 1�F(z). We know G(z) is a decreasing function

since G0(z)¼�R
R
0
ze�R(z�x)dF(x)p0. Therefore if h00 ¼ 0, h0(x) is a constant for

any x. From Eqs (C.1) and (C.2) we have d¼ d 0.
If h00>0 and d>d 0, it easy to show that EI2

noEI1
n and h0(EI2

n)oh0(EI1
n).

G(d)oG(d 0) can be obtained since G(z) is a decreasing function. For both h0(.)
and G(.) are positive functions, we have h0(EI2

n)G(d)oh0(EI1
n)G(d 0). However,

from Eqs (C.1) and (C.1) we know h0(EI2
n)G(d)¼ h0(EI1

n)G(d 0). The contraction
implies that dpd 0. ’
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