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Mortality improvements pose a challenge for the life annuity business. For the
management of such portfolios, it is important to forecast future mortality rates.
Standard models for mortality forecasting assume that the force of mortality at age
x in calendar year t is of the form exp(axþ bxkt), where the dynamics of the time
index kt is described by a random walk with drift. Starting from such a best
estimate of future mortality (called second-order mortality basis in actuarial
science), the paper explains how to determine a conservative life table serving as
first-order mortality basis. The idea is to replace the stochastic projected life table
with a deterministic conservative one, and to assume mutual independence for the
remaining life times. The paper then studies the distribution of the present value of
the payments made to a closed group of annuitants. It turns out that De Pril–Panjer
algorithm can be used for that purpose under first-order mortality basis. The
connection with ruin probabilities is briefly discussed. An inequality between the
distribution of the present value of future annuity payments under first-order and
second-order mortality basis is provided, which allows to link value-at-risk
computed under these two sets of assumptions. A numerical example performed on
Belgian mortality statistics illustrates how the approach proposed in this paper can
be implemented in practice.
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Introduction and motivation

Lee and Carter (1992) proposed a simple model for describing the secular
change in mortality as a function of a single time index. The method describes
the log of a time series of age-specific death rates as the sum of an age-specific
component that is independent of time and another component that is the
product of a time-varying parameter reflecting the general level of mortality,
and an age-specific component that represents how rapidly or slowly mortality
at each age varies when the general level of mortality changes. This model is
fitted to historical data. The resulting estimate of the time-varying parameter
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is then modeled and projected as a stochastic time series using standard
Box–Jenkins methods. From this forecast of the general level of mortality, the
actual age-specific rates are derived using the estimated age effects. Often a
simple random walk with drift is used to project the time index to the future.
The Lee–Carter model is relatively easy to understand, and easy to implement
in the stochastic simulations used by actuaries. Moreover, it performed quite
well since it has been proposed in 1992.

This paper discusses the technical basis for life annuities. By technical basis,
actuaries mean a set of assumptions used to set premium rates in life insurance.
Here, we consider first-order mortality basis, which makes conservative or
‘‘safe-side’’ assumptions about future mortality. Experience basis is called
second-order basis by actuaries. Contrarily to first-order mortality basis,
second-order mortality basis consists in the best estimate of future death rates
applying to the insured population. Second-order mortality basis will be taken
as the Lee–Carter stochastic forecast.

What is ‘‘safe-side’’ in respect of mortality depends on the nature of the risk
insured. In the context of life annuities, first-order mortality basis are routinely
obtained by decreasing second-order death rates or one-year death probabil-
ities. The present paper aims to provide a method to design first-order
mortality basis in the context of life annuities.

The paper is organized as follows. In the next section, we briefly present the
log-bilinear model for mortality projection proposed by Lee and Carter (1992).
The following section explains how to determine a conservative, first-order life
table. The subsequent section studies the distribution of the present values of
the payments made to a closed group of life annuitants. In the penultimate
section, a case study based on Belgian mortality statistics is proposed. The final
section concludes and discusses further issues.

The contribution of this paper is twofold. First, we supplement the work by
Frostig et al. (2003) with a simple formula to compute the ruin probability for
life annuities portfolios. In the context of life annuity contracts, this amounts
to study of the distribution of the present values of the payments made to a
closed group of life annuitants. We explain how the actual computations can
be performed with the help of De Pril–Panjer recursive algorithms under first-
order mortality basis. Switching from a stochastic projected life table (under
second-order mortality basis) to a deterministic conservative one (under first-
order mortality basis) and replacing correlated life times (under second-order
mortality basis) with independent ones (under first-order mortality basis)
greatly facilitate the computations. As a second contribution, the paper
compares the distribution of the present value of the payments made to a
closed group of life annuitants under first-order and second-order mortality
basis. This helps to quantify the impact of adopting the conservative life table
suggested in this paper, and of assuming independence between the remaining
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life times. As a direct application, we get useful inequalities between the value-
at-risk computed under the two sets of technical assumptions.

In what follows, many quantities used have a dependence on n, the number
of contracts. This dependence is suppressed for notational convenience.

Log-bilinear model for mortality forecasting

Log-bilinear form for the forces of mortality

Under the Lee–Carter model, the (central) death rate applying to age x in
calendar year t is assumed to be of the form

mxðtjjÞ ¼ expðax þ bxktÞ ð1Þ
where the parameters bx and kt are subject to constraints ensuring model
identification. Interpretation of the parameters involved in model (1) is quite
simple. The value of exp ax is the general shape of the mortality schedule. The
actual forces of mortality change according to an overall mortality index kt
modulated by an age response bx. The shape of the bx profile tells which forces
of mortality decline rapidly and which slowly over time in response of change
in kt. The time factor kt is intrinsically viewed as a stochastic process and Box–
Jenkins techniques are then used to model and forecast kt.

Calibration

The main statistical tool of Lee and Carter (1992) is least-squares estimation
via singular value decomposition of the matrix of the log age-specific observed
forces of mortality. To account for the higher variability at older ages, Brouhns
et al. (2002a, b) and Renshaw and Haberman (2003) replaced ordinary least-
squares regression with Poisson regression for the death counts. Alternative
approaches include Negative Binomial regression as in Delwarde et al. (2007),
Binomial regression as in Cossette et al. (2007), as well as penalized estimation
methods as in Delwarde et al. (2007) and Bayesian methods as in Czado et al.
(2005).

Booth et al. (2002) designed procedures for selection of an optimal
calibration period. An ad hoc procedure for selecting the optimal fitting
period has been suggested in Denuit and Goderniaux (2005). The restriction of
the optimal fitting period favors the random walk with drift model for the kt’s.
It also corresponds to a conservative approach, since the decline in the kt’s
usually tends to fasten after the 1970s (where the optimal fitting period starts in
most cases). In the numerical illustrations of the penultimate section, we will
nevertheless select the appropriate ARIMA model on the basis of standard
goodness-of-fit criteria.
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Projecting the time index

To forecast, Lee and Carter (1992) assume that the ax’s and bx’s remain
constant over time and forecast future values of kt using a standard univariate
time series model. If the kt’s obey to a random walk with drift model, as it is the
case in the majority of applications after having selected the optimal fitting
period, then

kt ¼ kt�1 þ yþ xt with iid xt � N orð0; s2Þ; ð2Þ

where y is known as the drift parameter and N orð0; s2Þ stands for the Normal
distribution with mean 0 and variance s2. We will retain the model (2)
throughout this paper (and justify it in the numerical illustrations). Note that
since the kt’s obey to the dynamics of Eq. (2), the death rates are not constant
but develop over time following a stochastic process.

We will assume in the remainder of this paper that the values k1; . . . ; kt0 are
known but that the kt0þk,’s, k¼1, 2,y, are unknown and have to be projected
from the random walk with drift model (2). To forecast the time index at time
t0þ k with all data available up to t0, we use

kt0þk ¼ kt0 þ kyþ
Xk
j¼1

xt0þj:

The point estimate of the stochastic forecast is thus E½kt0þkjk1; . . . ; kt0 � ¼
kt0 þ ky which follows a straight line as a function of the forecast
horizon k, with slope y. The conditional variance of the forecast is
V½kt0þkjk1; . . . ; kt0 � ¼ ks2. Therefore, the conditional standard errors for
the forecast increase with the square root of the distance to the forecast
horizon k. Now, the covariance structure of the kt0þk’s is given by
Cov½kt0þk1 ; kt0þk2 � ¼ s2 minfk1; k2g.

Let us denote the ultimate age of the life table as o. Precisely, o is such that
po(t)¼0 for every year t. The random vector ðkt0þ1; . . . ; kt0þo�x0Þ governing the
survival of the cohort aged x0 in year t0 is Multivariate Normal with mean
vector m ¼ ðkt0 þ y; . . . ; kt0þo�x0 þ ðo� x0ÞyÞT and variance–covariance
matrix

R ¼

s2 s2 � � � s2

s2 2s2 � � � 2s2

..

. ..
. . .

. ..
.

s2 2s2 � � � ðo� x0Þs2

0BB@
1CCA:
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First-order mortality basis

Requirement

Now, let us determine a conservative life table as follows. Let us consider the
cohort reaching age x0 (typically, retirement age) in year t0. For this cohort, we
determine the first-order death rates m

½1�
x0þk, k¼1, 2,y, in order to satisfy

Pr½expðax0þk þ bx0þkkt0þkÞpm
½1�
x0þk for some k ¼ 1; 2; . . .�pemort

for some probability level emort small enough. In order to find the m
½1�
x0þk’s, we

express them as a percentage p of a set of reference forces of mortality m
ref
x0þk,

that is, m
½1�
x0þk ¼ pmref

x0þk. Then, the value of p comes from the constraint

Pr kt0þkX
lnðpmref

x0þkÞ � ax0þk

bx0þk

for all k ¼ 1; 2; . . .

" #
¼ 1� emort:

Note that the reduction of death rates by a constant factor p is in line with
the proportional hazard transform approach to measure risk that has been
proposed by Wang (1995).

Reference life table

The set of the m
ref
x0þk’s can be the latest available population life table, for

instance. Here, we take for the m
ref
x0þk’s the exponential of the point estimates of

the kt0þk’s, that is,

m
ref
x0þk ¼ expðax0þk þ bx0þkðkt0 þ kyÞÞ:

The m
ref
x0þk’s thus correspond to the deterministic projected life table produced

by the Lee–Carter approach to mortality forecasting. In order to fix the value
of p, we then require that

Pr½expðax0þk þ bx0þkkt0þkÞXp expðax0þk þ bx0þkðkt0 þ kyÞÞ
for all k ¼ 1; 2; . . .�X1� emort

, Pr½bx0þkðkt0þk � ðkt0 þ kyÞÞX ln p

for all k ¼ 1; 2; . . .�X1� emort:

The value of ln p can then be determined as a quantile of the random vector

ðbx0þ1ðkt0þ1 � ðkt0 þ yÞÞ; . . . ; boðkt0þo�x0 � ðkt0 þ ðo� x0ÞyÞÞÞT
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that is multivariate Normal with 0 mean and variance–covariance matrix

eR ¼

s2b2x0þ1 s2bx0þ1bx0þ2 � � � s2bx0þ1bo
s2bx0þ1bx0þ2 2s2b2x0þ2 � � � 2s2bx0þ2bo

..

. ..
. . .

. ..
.

s2bx0þ1bo 2s2bx0þ2bo � � � ðo� x0Þs2b2o

0BBBB@
1CCCCA:

Present value of life annuity benefits

First-order and second-order mortality basis

Let us consider a portfolio of n life annuity contracts. The policyholders have
respective lifetimes T1,T2,y,Tn. We assume that all the annuity contracts pay
one monetary unit at the end of each year, as long as the annuitant survives.

Let us consider the random variable Zk representing the present value of the
payments made to the annuitants up to time k, that is,

Zk ¼
Xn
i¼1

a
minfTi ;kgj;

where a�k|¼
P

j¼1
k v(0, j) denotes the present value of a sequence of unit cash-

flows due at times 1,y, k discounted with the help of the v(0, j)’s. This
definition is easily extended to non-integer k’s by first rounding it to its integer
part. Taking k¼o�x0 gives the random variable Z ¼ Zo�x0 representing the
present value of all the payments made to the group of n annuitants aged x0 in
year t0.

Let us now explicitly distinguish the two sets of technical assumptions.
Henceforth, we denote as P1[E] the probability of the event E taken under the
first-order mortality basis, and as P2[E] the probability of the event E taken
under the second-order mortality basis. We assume that under P1 the lifetimes
T1,y,Tn are independent with death rates m

½1�
x0þk, k¼1, 2,y. Recall that under

P2 the lifetimes are conditionally independent (given the kt0þk’s) and have
common death rates mx0þkðt0 þ kjjÞ given by (1). The probability measure Pr
used in the preceding section corresponds to P2. This section aims to derive the
distribution function of Zk under P1 and then to relate it to the distribution
function of Zk under P2.

Distribution of Zj under first-order mortality basis

Computing the distribution function of Zj thus amounts to computing the
distribution function of the sum of the a

minfTi ;jgj’s. Under second-order
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mortality basis, we must account for the dependence induced among the Ti’s by
the unknown life table (i.e., by the j random vector). See Denuit and Frostig
(2007a, b) for more details about the correlation structure between the Ti’s in
the Lee–Carter setting. However, this dependence disappears under P1.

Let us now work under the first-order mortality basis, that is, we assume
from now on that the Ti’s are independent and identically distributed, and all
conform to the life table defined by the forces of mortality m

½1�
x0þk. Let us denote

as q
½1�
x0þk the corresponding one-year death probabilities given by

q
½1�
x0þk ¼1� expð�p expðax0þk þ bx0þkðkt0 þ kyÞÞÞ

for k ¼ 0; 1; . . .

In this case, computing the distribution function of Zj thus amounts to
computing the distribution function of a sum of n independent and identically
distributed random variables a

minfT1;jgj
; . . . ; a

minfTn;jgj. Clearly, a
minfTi ;jgj is

valued in {0, a�1|,y, a�j|} and has probability distribution

P1½aminfTi;jgj ¼ 0� ¼P1½Tio1� ¼ q½1�x0

P1½aminfTi ;jgj ¼ a
‘j� ¼P1½‘pTio‘þ 1�

¼p½1�x0
. . . p

½1�
x0þ‘�1q

½1�
x0þ‘ for ‘ ¼ 1; . . . ; j � 1

P1½aminfTi ;jgj ¼ a
jj� ¼P1½TiXj�

¼p½1�x0
. . . p

½1�
x0þj�1

:

Let Xi be aminfTi ;jgj that has been appropriately discretized. Here, we keep the

original probability mass at the origin, and round the other values in the

support of a
minfTi ;jgj to the least upper integer (after having selected an

appropriate monetary unit). The probability mass function pX of the Xi’s has
support {0, 1,y,Jaj|n}, with pX(0)>0 (since the probability mass q

½1�
x0 of

a
minfTi ;jgj at the origin is kept unchanged). De Pril (1985) developed a simple

recursion giving the n-fold convolution of pX directly in terms of pX. This
substantially reduces the number of required operations. Specifically, the
probability mass function of the sum S¼

P
i¼1
n Xi can be computed from the

following recursive formula:

pSðsÞ ¼
1

pXð0Þ
Xs

Z¼1

nþ 1

s
Z� 1

� �
pXðZÞpSðs� ZÞ;

s ¼ 1; 2; . . . ;

starting from pS(0)¼(pX(0))
n. This recurrence relation is a particular case of

Panjer recursion formula in the compound Binomial case. It is known to be
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numerically unstable so that particular care is needed when performing the
computations. Backward and forward computations are often needed to reach
a given numerical accuracy. For more details about these issues, we refer the
reader to Panjer and Wang (1993).

Link between first-order and second-order mortality bases

As mentioned earlier, the distribution of the Zk’s under second-order mortality
basis is more difficult to obtain because of the correlation arising between the
Ti’s (all of them being influenced by the kt0þk’s). The next result gives an
inequality between the distribution of the Zk’s under P1 and P2.

Property 1 For any time horizon k, we have

P2½Zkpz�Xð1� emortÞP1½Zkpz�
for any zX0.

Proof Let us define

A ¼ fjjmx0þkðt0 þ kjjÞXm
½1�
x0þk for all k ¼ 1; 2; . . .g:

For any event E, let I½E� be the indicator of E, that is, I½E� ¼ 1 is E is realized,
and 0 otherwise. Then, denoting as Ei the mathematical expectation taken
under Pi, for i¼1, 2,

P2½Zkpz� ¼ E2½I½Zkpz�I½A�� þ E2½I½Zkpz�I½ �A��
XE2½I½Zkpz�I½A��
XP1½Zkpz�P2½A�
XP1½Zkpz�ð1� emortÞ;

which is the announced result. &

This result is very useful for risk management. If you take for z the (1�e)th
quantile of Zk under P1 then the probability that Zk is less than z under P2 is at
least equal to (1�emort)(1�e). Taking emort¼e¼1 percent for example, shows
that the 99th percentile of Zk under P1 is at least equal to the 98.01th percentile
of Zk under P2.

Remark 2 Property 1 can be extended to the expectation of any non-
increasing function of the Ti’s. It is indeed easy to see that considering any non-
negative non-increasing function g : Rn ! Rþ, we have

E2½gðT1; . . . ;TnÞ�XE2½gðT1; . . . ;TnÞI½A��
XE1½gðT1; . . . ;TnÞ�ð1� emortÞ:
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Ruin probability

Let Ut be the surplus of the insurance company at time t. Starting from U0¼u,
the surplus obeys to the dynamics

Ut ¼ Ut�1ð1þ rtÞ � Lt; t ¼ 1; 2; . . . ; ð3Þ

where L0¼n by convention, where Lt denotes the (random) number of
survivors at time t among the initial n annuitants, and where rt is the
(deterministic) interest rate earned on the reserve during period t (from t�1 to t).

Let us denote the ruin probability at horizon k computed under first-order
basis (i¼1) and under second-order basis (i¼2) as

c½i�
k ðuÞ ¼ 1� f½i�

k ðuÞ
¼ Pi½Uto0 for some t ¼ 1; . . . ; kjU0 ¼ u�
¼ 1� Pi½U1X0;U2X0; � � � ;UkX0jU0 ¼ u�

where fk
[i] is the non-ruin probability. We thus work conditionally on the initial

reserve u, for a given initial number n of annuitants all aged x0 at issuance (in
calendar year t0).

For any horizon k, the non-ruin probability can be expressed as

f½i�
k ðuÞ ¼ Pi½Z1pu;Z2pu; . . . ;Zkpu�:

Coming back to (3), we see that Uto0)Utþ jo0 for any j¼1, 2,y, which in
turn implies that the non-ruin probability can be expressed as

f½i�
k ðuÞ ¼ Pi½Zkpu�: ð4Þ

Computing the non-ruin probability at horizon k then amounts to evaluate the
distribution function of Zk.

Let u be the initial capital such that the ultimate ruin probability c½1�
o�x0

ðuÞ is
at most esolv for a portfolio of n annuitants. Note that the number of annuities
comprised in the portfolio is an element of the computation. Specifically, we
consider the random variable Zo�x0 , and we determine its 1�esolv quantile
under P1.

The ruin probability under the second-order mortality basis is difficult to
evaluate in an analytical way, but we can provide the following easy-to-
compute lower bound. Specifically, considering (4), Property 1 allows us to
write

f½2�
k ðuÞXð1� emortÞf½1�

k ðuÞXð1� emortÞð1� esolvÞ:

For instance, taking emort¼ esolv¼ 1 percent gives a ruin probability of at most
1.99 percent.

Michel Denuit and Esther Frostig
First-Order Mortality Basis for Life Annuities

83



Numerical illustration

Context

This section discusses a practical example. We consider individuals buying a
life annuity at the age of 65 in year 2005. We can think of people getting retired
and desiring to convert their pension fund benefits into periodic payments. In
this section, we consider Belgian males aged 65 in year 2005. We take in all the
computations o¼100.

We use the 2005 zero coupon yield curve published by Eurostat (for more
details, we refer the interested reader to the website http://epp.eurostat.ce-
c.eu.int) to obtain the discount factors used for the numerical illustration.
Specifically, the rt’s correspond to the forward rates deduced from the prices of
Euro zero coupon bonds. The Eurostat curve shows the structure of interest
rates for maturities of one year up to 30 years. The bonds are identified as
government issues to guarantee their quality. They are thus appropriate to use
by annuity providers (being non-defaultable and having the same currency as
the insurer’s liabilities).

Mortality projection

We apply the Poisson modeling to the general population data of Belgium. The
ages considered here range from 65 to 100, and the observation period is 1950–
2002. All the data are available from the Human Mortality Database
(maintained by the University of California, Berkeley, U.S.A., and the Max
Planck Institute for Demographic Research, Germany), http://www.mortali-
ty.org (data downloaded in October 2006).

The higher variability observed at advanced ages rules out the least-squares
approach to estimating the Lee–Carter parameters ax, bx and kt (since it
assumes a constant variance across ages) unless the mortality surface is
previously closed as explained in Denuit and Goderniaux (2005). Here, we
resort to the Poisson maximum likelihood approach to estimating the ax’s, bx’s
and kt’s, allowing for heteroskedasticity.

Applying the methodology proposed by Booth et al. (2002) to Belgian males
yields an optimal calibration period starting in 1974. The ad hoc method of
Denuit and Goderniaux (2005) suggests that we could start the fitting period in
1970, since the adjustment coefficient peaks around 1970. Therefore, we focus
on the period 1970–2002 (Figure 1).

Let us now model the time index kt. As in the Lee–Carter methodology the
time factor kt is intrinsically viewed as a stochastic process. Box–Jenkins
techniques are therefore used to estimate and forecast kt within an ARIMA
times series model. First, the kt’s are differenced, to remove the downward
linear trend. Considering the first differences of the time index, the
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autocorrelation functions and partial autocorrelation functions (which both
tail off) clearly suggests that an ARIMA(0,1,0) process is appropriate.
Running a Shapiro–Wilk test yields a P-value of 0.2358, which indicates that
the residuals seem to be approximately Normal. The corresponding Jarque–
Bera statistics is 0.4734, which confirms that there is no significant departure
from Normality. The random walk with drift model outperforms its
competitor on the basis of standard information criteria. The ARIMA(0,1,0)
estimated parameters for the period 1970–2002 are ŷ¼�0.4169175 and
ŝ2¼0.3333644. The projected kt’s are then obtained from last k̂2002 by adding
a linear trend with slope ŷ.

First-order mortality basis

We are now in a position to determine the conservative life table. The criterion
is that the random future life table should not produce smaller death rates than
the conservative life table with probability at least 99 percent (corresponding to
emort¼11 percent). This gives p¼ 0.9320154. This value of p has been found
using the qmvnorm function of the R package mvtnorm.
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Figure 1. Estimated ax’s, bx’s and kt’s obtained for the optimal fitting period 1970–2002.
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This gives a pure life annuity premium amount of 11.62939, to be compared
with 11.37335 obtained with the projected life table. The increase in the
premium amount is rather moderate. This can be explained by the Gaussian
modeling for the time index together with the effect of discounting. The
distribution function of the present values a

Ti j of the life annuity payments for
policyholder i is depicted in Figure 2 (left panel) where Ti obeys to the first-
order life table. The right panel of Figure 2 describes the distribution function
obtained after discretization.

Ruin probabilities

The distribution of Z35 can easily be computed as explained in the previous
section. Figure 3 gives the probability mass function and the distribution
function for n¼10, 20 and 30. Imposing a non-ruin probability of 99 percent
(i.e., esolv¼0.01) under P1 requires an initial capital u(10, 1%, 1%)¼152,
u(20, 1%, 1%)¼287, and u(30, 1%, 1%)¼417.9, respectively, under P1. These
values correspond to ruin probabilities of at most 2 percent under P2.
Increasing the number of policies clearly reduces the amount of capital per
policy, as expected.

Let us now augment this preliminary set of results to indicate how u depends
on emort and esolv under P1. To this end, we have computed the values displayed
in the next table.

emort=0.5% emort=1% emort=2%

p=92.50% p=93.20% p=93.97%

esolv=0.5%

n=10 15.50 15.50 15.50

n=20 14.60 14.55 14.55

n=30 14.17 14.13 14.10

esolv=1%

n=10 15.20 15.20 15.20

n=20 14.35 14.35 14.30

n=30 13.97 13.93 13.93

esolv=2%

n=10 14.90 14.90 14.90

n=20 14.15 14.10 14.05

n=30 13.77 13.73 13.70
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These values correspond to the capital needed to have a ruin probability of
at most esolv under P1 (when P1 corresponds to emort), divided by the number n
of policies. As expected for fixed esolv, these values decrease as emort increases.
Similarly, for fixed emort, these values decrease as esolv increases. Some values
coincide because of the discrete nature of the underlying distribution. Note that
combining emort¼0.5 percent with esolv¼0.5 percent gives a ruin probability of
at most 1 percent under P2.

Conclusion

In this paper, first-order mortality bases for life annuity contracts, using a
conservative life table corresponding to a high-longevity scenario (determined
by the emort probability level). Assuming that the remaining life times are
mutually independent, the computation of ruin probabilities is then
straightforward from Panjer algorithm. We prove that this approach allows
us to control the ruin probability in the second-order mortality basis.

In this paper, we have disregarded the sampling errors in the Lee–Carter
parameters ax, bx and kt, and in the ARIMA parameters. The two sources of
uncertainty that have to be combined are the sampling fluctuation in the ax, bx,
and kt parameters, and the forecast error in the kt parameters. To this end,
Brouhns et al. (2002a, b) sampled directly from the approximate multivariate
Normal distribution of the maximum likelihood estimators â, b̂, k̂. Brouhns
et al. (2005) sampled from the death counts (under a Poisson error structure).
Specifically, the bootstrapped death counts are obtained by applying a Poisson
noise to the observed numbers of deaths. The bootstrapping procedure can
also be achieved in a number of alternative ways. We refer to Renshaw and
Haberman (2008) for a detailed study.

For individual death rate forecasts, we know from Lee and Carter (1992,
Appendix B) that confidence intervals based on kt alone are a reasonable
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Figure 2. Distribution function of the present values of the annuity payments a
Ti j

(on the left) and

its discretized version (on the right).
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approximation only for forecast horizons greater than 10–25 years. For long-
run forecasts (35 years in the numerical illustration), the error in forecasting the
mortality index clearly dominates the errors in fitting the mortality matrix.
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