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The purpose of this article is to value participating life insurance contracts when the
linked portfolio is modeled by a jump-diffusion. More precisely, this process has a
Brownian component and a compound Poisson one, where the jump size is driven
by a double exponential distribution. Specifically here, the bankruptcy risk of the
insurance company is considered. Thus, market and credit risks are taken into
account. A quasi-closed-form formula is obtained in fair value for the price of the
considered life insurance contract. This allows us to investigate the impact of
strategic parameters as well as structural ones, as is shown in the numerical section
of this paper. In particular, we study the impact on the contract of the volatility,
jump intensity, jump asymmetry, company leverage, guaranteed rate, participation
rate and level of the default barrier, and comment on how they are likely to increase
the probability of early default of the issuer.
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Introduction

The valuation of life insurance contracts at market value is the basis on which
rests the principle of fair value. This market-oriented approach has been
promoted by international organizations such as the International Accounting
Standard Board (IASB), the Financial Accounting Standard Board (FASB) or
the Accounting Regulatory Committee of the European Union. Directives
given in the International Financial Reporting Standards (IFRS 4) and in the
forthcoming Solvency II, for instance, require life insurance companies to
present their accounting information at fair value. The valuation of insurance
contracts using option theory is then particularly relevant both for academics
and practitioners.

The Geneva Risk and Insurance Review, 2008, 33, (106–136)
r 2008 The International Association for the Study of Insurance Economics 1554-964X/08
www.palgrave-journals.com/grir/



Life insurance policies with profits and with guaranteed rates are well known
and can be found in most of industrial countries. Many contributions have
been devoted to their pricing. Brennan and Schwartz (1976) is the first paper to
use the contingent claim analysis in this area. Nielsen and Sandmann (1995)
extend this analysis by taking into account stochastic interest rates in the
pricing of products with periodic premia. Seminal articles are the ones by Briys
and de Varenne (1994, 1997), which have been extended in many directions, in
particular with a series of papers by Grosen and J�rgensen (1997, 2002) who
considered early default in a Gaussian framework. Some of the now classical
articles are those of Bacinello (2001, 2003), Ballotta et al. (2003) and
Tanskanen and Lukkarinen (2003), to name only a few.

The above-mentioned papers all assume normal returns for the asset
portfolio. However, this hypothesis is more and more rejected in financial
markets. Indeed, many return distributions display asymmetry and fat tails.
Cont (2001) gives a nice survey of the stylized features that are empirically
observed in financial markets, and that include the existence of non-null
skewness and excess kurtosis coefficients for asset return distributions.
Bouchaud (2001) gives additional evidence in the same direction. In a seminal
article, Carr et al. (2002) introduce a new type of jump process well suited to
represent the dynamics of securities. In this article, an empirical study is also
conducted and confirms the presence of skewness and excess kurtosis in asset
return distributions. Interestingly, their paper also justifies the use of jump
processes, the systematic relevance of jumps, and, at times, the possibility to
neglect the diffusion component and to replace it by small jumps, which then
arrive at a high – or infinite – rate. Another interesting paper in this strand of
the literature is the one by Aı̈t-Sahalia (2004), which gives tools to disentangle
jump and diffusive components (and to measure the probability that jumps
really occur in a particular dynamics).

Because the biggest part of an insurance company’s assets is made of public
securities, using the convenient but not very realistic hypothesis of Gaussian
returns can lead to mispricing life insurance contracts. Indeed, both from a
static viewpoint (presence of skewness and excess kurtosis) and a dynamic one
(presence of jumps), the Gaussian model does not match reality, as illustrated
in the literature cited above. The order of magnitude of this mismatch is one of
the objects of study of the present article. We rely on an alternative approach
to the Gaussian model, which appeared in the late 1990s and aims at
representing financial price movements by geometric Lévy processes. In life
insurance, this modeling is more and more adopted. Ballotta (2005) was the
first author to analyze the impact of jumps for valuing life insurance contracts.
Recently, Riesner (2006) analyzed the hedging of these contracts in a Lévy
financial market. Kassberger et al. (2005) price various similar policies with
Meixner and NIG processes.
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This paper uses a jump-diffusion process introduced by Kou (2002) which
offers great flexibility and is well suited for our purpose. This process allows
for the presence of skewness, kurtosis and jumps. Contrary to other Lévy
processes (like NIG, Variance Gamma or CGMY ones), it can be used in most
types of path-dependent problems where a crossing time (or a condition on the
supremum/infimum of the process) is involved to yield semi-closed-form
formulas, so to avoid the use of simulations.

In this article, we take into account the possibility that the issuer of the
considered participating contracts goes bankrupt. Default can occur at
maturity or at any time during the contract life, as in Grosen and J�rgensen
(2002). However, because under our hypothesis jumps are admissible, the
problem changes from the one of a hitting time to the one of a crossing time. In
the case of a hitting time, the investors recover all that is left from the assets,
upon default. In our opinion, this is not viable from an economic viewpoint.
On the contrary, under our approach, which makes use of a crossing time, the
assets remaining to the investors upon bankruptcy are typically inferior to the
triggering barrier, due to the downward jump impacting the assets. Note in
passing that this approach is not incompatible with the addition of bankruptcy
costs, which constitute a distinct cause affecting negatively a firm’s assets. In
the considered jump-diffusion context, we obtain quasi-closed-form formulas
for the fair value of a participating life insurance contract with guaranteed rate.
Thanks to this approach, it is now possible to investigate the impact of
strategic parameters such as the participation rate, the guaranteed rate and the
financial leverage, or structural market parameters such as the volatility and
the default intensity.

The paper is organized as follows. In the next section, we present the
contracts, the default mechanism and generic pricing formulas. In the
subsequent section, we give specific formulas within the considered particular
Lévy market. The penultimate section gives a general numerical analysis, and
the last section concludes the paper.

The contracts

The contracts we consider were first studied by Briys and de Varenne (see for
instance their book (2001) for a comprehensive treatment). Grosen and
Jorgensen extended their studies in a few directions (see for instance their
contribution in the Journal of Risk and Insurance (2002)). In this spirit, let us
consider a life insurance company on the time period [0,T ]. At time 0, the
company acquires an assets portfolio whose value A0 is financed with paid-in
equity E0, and with a life insurance policy for an amount of L0. The assets
portfolio is totally invested in risky assets: stocks and bonds. The capital
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structure is such that E0¼(1�a)A0 and L0¼aA0 with aA[0, 1] The variable a is a
decision variable for the management. It is linked to the financial leverage
b¼L0/E0. The life insurance contract is a participating one and matures at T.
Policyholders are guaranteed a minimum rate rg for the period [0,T ] and if
financial earnings are sufficient, they receive a bonus or supplementary fraction
d of these, up to their contribution a to the funding of the portfolio. More
formally, policyholders will receive at maturity LT

g ¼ L0e
rgT , augmented if the

company performed well by the amount d[aAT�Lg
T]. The coefficients a and d

are strategic parameters. The guaranteed rate a is typically set to less than the
return of a risk-free asset of the same maturity. The participating rate d can be
seen associated with the required risk premium by policyholders. The state
regulator requires this participating coefficient to be greater than a specified
level, and the guaranteed rate must obey some restrictions (in continental
Europe, such minimum levels are often imposed; for instance, the minimum
participation rate has long been set at 85 percent by the French regulator).
These contracts are quite widespread. In this article, we assume that insurance
and financial markets are competitive and our aim is to value the contract on a
market value basis. So we have to carefully examine the payoff associated with
this contract, which is dependent on a possible bankruptcy. We examine two
cases: when default occurs only at maturity, and when this event can occur at
any time between inception and maturity, called here early default.

Default at maturity

At maturity, there are three possible situations for the company: insolvency,
solvency and solvencyþ good performance. In the first case: AToLg

T, the
company cannot fulfill its commitments and the firm is declared bankrupt.
Policyholders receive AT and equityholders nothing. In the second case the
assets generate enough value to match the guaranteed payment but are unable
to serve the participating bonus to policyholders. In this case, LT

gpATpLT
g /a.

Finally, in the third case, the company performed well and policyholders can
receive a bonus. This is the situation where AT>Lg

T/a. To recapitulate,
policyholders receive at maturity T

YLðTÞ ¼
AT if AToLg

T ;

Lg
T if Lg

TpATp
Lg
T

a ;

Lg
T þ dðaAT � Lg

TÞ if AT4
L
g
T

a :

8><>:
This can be rewritten in a more compact form

YLðTÞ ¼ Lg
T þ dðaAT � Lg

TÞ
þ � ðLg

T � ATÞþ: ð1Þ
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The cashflow at maturity can be seen as the sum of three terms. The first is
the promised payment; the second, a bonus option, is associated with the
participating clause and the third one is a put option linked to the default risk.
Written this way, it is clear that the two last payoffs are exactly similar to usual
European options.

Early default

We assume that the company is continuously monitored and is allowed to
pursue its activity till the assets value is greater than a multiple of the initial
policy holders premia accumulated at the rate rg, that is

8t 2 ½0;T � At4gL0e
rgtð¼ BtÞ: ð2Þ

So the default is exactly defined as in the so-called structural approach of
bankruptcy (see the seminal work of Black and Cox (1976)). In our paper we
have an activating default barrier of exponential type, denoted by B. As soon
as condition (2) is not satisfied, the company is declared bankrupt. The default
time t is then defined as the first time A hits or crosses the barrier B.

t ¼ infft 2 ½0;T �=AtpBtg;

where the barrier can be touched upon default due to the diffusive component,
or crossed upon default due to the jump component of the process.

The interpretation of g is the following: when g>1, the managers (or, more
generally, the party filing for bankruptcy) are conservative and file for default
as soon as the assets become inferior or equal to the amount gL0 e

rgt which is
superior to the nominal amount due. On the contrary, go1 means that the
managers are optimistic: they believe that even though the assets become
smaller than L0 e

rgt, it is not necessary to file for bankruptcy immediately. In
the case of go1, the managers therefore are monitoring the assets around a
level gL0 e

rgtoL0 e
rgt and file for bankruptcy only when this level is touched or

crossed.
Upon early default, as upon any type of default, the residual value of the

assets is redistributed to the liability holders. In the present situation, we
therefore assume that At, so the amount remaining after the jump causing
default and which can be inferior to gL0 e

rgtoL0 e
rgt, is redistributed to the

insured. In particular, the absence of bankruptcy costs in this assumption can
be noted. Taking into account bankruptcy costs is a straightforward extension:
one could for example assume that d1At�d2 remains after the various
bankruptcy costs are subtracted (d1o1 for variable costs and d2 for the fixed
costs). Let us now turn to the valuation framework.
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The valuation framework

As it is usually done in the many works devoted to the fair valuation of
life insurance contracts, we use the arbitrage pricing methodology. We consider
an economy defined on a filtered probability space ðO;F; ðFtÞ0ptpT ;PÞ. The
insurance and financial markets are embedded in this economy and we assume
them pure and perfect. We assume that the interest rate r in this economy is
constant and that the insurance portfolio value is given by a geometric
Lévy process A such that At ¼ A0e

Xt where X is a Lévy process described in the
next section. Moreover, we assume that an equivalent martingale measure Q,
such that the discounted prices at the rate r are Q martingales has been
chosen. The chosen measure Q is a risk-neutral probability. There are
many ways to choose the risk-neutral measure in a Lévy setting; see for
instance the equivalent martingale measures presented in Fujiwara and
Miyahara (2003). We refer to ðO;F; ðFtÞ0ptpT ;QÞ as the risk-neutral
world. In this context the arbitrage free price of our life insurance contract,
hereafter LIC, can be given through very general expressions. With a particular
choice of the process X, closed-form or quasi-closed-form formulas can be
found as we show in our article both for the default at maturity and for the
early default.

Valuation for default at maturity: generic formulas
The arbitrage free price of our life insurance contract writes

VLð0Þ ¼ EQ½e�rT ðLg
T þ dðaAT � Lg

TÞ
þ � ðLg

T � ATÞþÞ�

which develops as

VLð0Þ ¼L0e
�ðr�rgÞT þ EQ dae�rT AT � Lg

T

a

� �þ
" #

� EQ½e�rT ðLg
T � ATÞþ�

or more precisely as

VLð0Þ ¼ L0e
�ðr�rgÞT þ daC AT ;

Lg
T

a

� �
� PutðAT ;L

g
TÞ;

where C(XT,K) represents the value at time 0 of a European call with maturity
T, underlying price process X and strike K; a similar meaning can be given to
the Put(XT,K). Now, using the put–call parity relationship

C � Put ¼ A0 � Ke�rT

Olivier Le Courtois and François Quittard-Pinon
Fair Valuation of Participating Life Insurance Contracts

111



which allows to suppress the put expression in the valuation formula, so to
write

VLð0Þ ¼ L0e
�ðr�rgÞT þ daC AT ;

Lg
T

a

� �
� ðCðAT ;L

g
TÞ � A0 þ Lg

Te
�rT Þ

or more simply

VLð0Þ ¼ A0 þ daC AT ;
Lg
T

a

� �
� CðAT ;L

g
T Þ: ð3Þ

This is an important formula which states that the arbitrage price of our
participating contract can be obtained as soon as we are able to compute a
European call. In particular, we do not impose any restriction on X other than
to be a semimartingale.

We define a fair value contract as a contract such that VL(0)¼L0, so in this
case

L0 ¼ A0 þ daC AT ;
Lg
T

a

� �
� CðAT ;L

g
T Þ

and the participating coefficient is given by

d ¼ A0ða� 1Þ þ CðAT ;L
g
TÞ

aC AT ;L
g
T=a

� � : ð4Þ

This formula, already existing in the literature (see, e.g. Briys and de Varenne,
2001 or Ballotta et al., 2006), can be used for example to find feasible couples
(d, rg) for fair value contracts.

Valuation for early default: generic formulas
Again with arbitrage arguments we can write the contract fair value as

dVLð0Þ ¼ EQ½e�rT ½Lg
T þ dðaAT � Lg

T Þ
þ � ðLg

T � ATÞþ�1tXT

þ e�rtAt1toT �
: ð5Þ

This contract can be split up into four simpler subcontracts

dVLð0Þ ¼ cGF þdBO�dPOþ cLR; ð6Þ

where cGF corresponds to the final guarantee, dBO to the bonus option, dPO to
the default put on which policyholders are short and cLR to the rebate paid to
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policyholders in case of early default. Taken individually these four
subcontracts can be written ascGF ¼ EQ½e�rT1tXTL

g
T �;dBO ¼ EQ½e�rT1tXTdðaAT � Lg

TÞ
þ�;dPO ¼ EQ½e�rT1tXTðLg

T � ATÞþ�;cLR ¼ EQ½e�rt1toTAt�:

8>>><>>>: ð7Þ

Now, define dBO0 ¼ EQ½e�rT1tXTðaAT � Lg
TÞ

þ�

such that indeed dBO ¼ ddBO0. ThendVLð0Þ ¼ cGF þ ddBO0 �dPOþ cLR
and finally

d ¼
dVLð0Þ � cGF þdPO � cLRdBO0

ð8Þ

allows to readily compute the participating coefficient.
From these expressions it is clear that the contract valuation mainly consists

of pricing barrier options with a rebate. It is also clear that these formulas do
not impose a particular law for the assets process. In a standard Black and
Scholes economy, it is straightforward to obtain closed-form formulas.
Bernard et al. (2005) proposed semi-closed formulas considering a stochastic
term structure of interest rates, added to a lognormal representation of the
assets. However, the assumption of normal returns, due to its important degree
of approximation, is more and more often rejected for modeling financial
prices (see for instance Bouchaud (2001) or Cont (2001) for a detailed
discussion on the limits of the Gaussian hypothesis). Indeed, using the
convenient but not very realistic hypothesis of Gaussian returns can lead to
mispricing LICs and to an imperfect risk management.

In this article we do take into account jump risk emanating from the assets
process and allow the assets returns to be non-Gaussian. Now, let us turn to
the definition of the assets dynamics and to the pricing of the considered LICs
under these new assumptions.

Fair valuation in a jump-diffusion model

Even with simple LICs it is hard to find closed-form formulas when modeling
the insurance portfolio value with Lévy processes. For example, Kassberger
et al. (2005) use Monte Carlo when dealing with NIG and Meixner processes.
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Numerical methods, especially Fourier transforms can be used for example
with infinite activity jump processes like Variance Gamma or CGMY
processes. However, and as far as we know, there are no instantaneous or
quasi-instantaneous ways of valuing barrier options under these assumptions,
except, of course, in the Gaussian case. The reader can though be referred to
some methods that allow to accelerate simulations, these methods have existed
for a long time in the Gaussian context, see Brotherton-Ratcliffe (1994), and
are now applied in the Lévy context, see for instance the two interesting papers
by Ribeiro and Webber (2003, 2005). The Kou process is a notable exception
where closed-form and semi-closed-form formulas can be obtained. This
process, as we show below, permits to price LICs with quasi-closed-form
formulas when taking into account a possible bankruptcy of the insurance
company. In general, these processes have the advantage, over other Lévy
processes such as NIG or CGMY processes, to allow for the obtention of semi-
closed-form formulas (formulas than can be computed by performing a simple
Laplace inversion). An example of application of these dynamics is the choice
of a risk-neutral measure and of the calibration of ad hoc parameters: the
reader can be referred to Le Courtois and Quittard-Pinon (2006) for the use of
the Esscher measure with Kou processes, and the way Kou process parameters
are changed when going from the historical world to the risk-neutral world, or
conversely. The present section’s contribution is to give the complete
development of the LIC pricing formula. The results are obtained as follows.

Assets dynamics and first passage time

We start our analysis by detailing the chosen representation of the firm assets
value process. We assume that in the risk-neutral world the company assets
value A follows the stochastic differential equation

dA

A�
¼ r dtþ s dzþ d

XNt

k¼1

ðZk � 1Þ � lzt

 !
;

where z is a standard Brownian motion, N is a Poisson process with constant
intensity rate l, Zk are strictly positive i.i.d. random variables and z is here for
compensation purposes.

The random variables Yk¼ln(Zk) are i.i.d. and possess a double exponential
density

fY ðyÞ ¼ pZ1e
�Z1y1fyX0g þ qZ2e

Z2y1fyo0g;

where Z1 and Z2 are positive numbers satisfying Z1>1 and Z2>0, and p and q
positive numbers such that pþ q¼1. Note also that all the sources of
randomness, N, z and the Yk’s, are assumed to be independent.
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In this setting, for
PNt

k¼1ðZk � 1Þ � lzt to be a martingale, one should set

z ¼ p
Z1

Z1 � 1
þ q

Z2
Z2 þ 1

1: ð9Þ

Using Ito’s lemma for jump-diffusions, we obtain the alternative representation

At ¼ A0 expfXtg ¼ A0 exp r� lz� 1

2
s2

� �
tþ szt þ

XNt

k¼1

Yk

( )
:

The Lévy–Khintchine formula is given by

GðbÞ ¼ r� lz� 1

2
s2

� �
bþ 1

2
s2b2 þ

Z
R

ðeby � 1ÞnðdyÞ;

nðdyÞ ¼lfYðyÞdy
ð10Þ

with E½ebXt � ¼ etGðbÞ. The function G(b) is usually called the Laplace exponent.
Therefore, under Q, the assets return X becomes

Xt ¼ r� lz� 1

2
s2

� �
tþ szt þ

XNt

k¼1

Yk:

We call X a Kou process. For the valuation of our LICs we need to introduce
the following X* and Z processes.

X*, that will be used as an intermediate dynamics in the coming subsections,
is defined 8t by Xt*¼Xt�rgt. As for Xt*, it satisfies

X�
t ¼ r� rg � lz� 1

2
s2

� �
tþ szt þ

XNt

k¼1

Yk:

Z, that will prove to be very important in the following developments, is
defined 8t by Zt¼�Xt*.

Next, we introduce the measure QA defined by the Radon–Nikodym
derivative (dQA/dQ)FT¼AT/A0e

rT. The new measure QA can be understood as
the measure associated with the numéraire A, although it is not necessary, from
a strict computational viewpoint, to refer to it.

We recall here a result that is needed for our subsequent analysis and that
was proved in Kou and Wang (2004).1 Under QA the process Z is a Kou

1 This proof can be obtained using the Laplace exponent, while the original proof by Kou and

Wang makes use of the Girsanov theorem. The former proof is available from the authors upon

request.
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process. Thus, we can write

Zt ¼ �rþ rg þ lz� 1

2
s2

� �
tþ s~zt þ

X~Nt

k¼1

~Yk;

where z̃ is a QA-BM, Ñ is a simple Poisson process with intensityl̃¼l(1þ z), the
i.i.d. random variables Ỹk have the double exponential distribution with
parametersZ̃1¼Z2þ 1,Z̃2¼Z1�1;Z̃1>1Z̃2>0, and p̃¼(1/1þ z)(qZ2/Z2þ 1).

This ends up the presentation of the assumed dynamics. The next
subsections are dedicated to the plain pricing of the contracts.

Default at maturity

When default is allowed to occur only at maturity, the analytic treatment is
simple. We recall that the arbitrage free price of the contract in the present
context is

VLð0Þ ¼ A0 þ daC AT ;
Lg
T

a

� �
� CðAT ;L

g
TÞ

and this can be priced directly using Kou’s closed-form formula for a European
call option, which we recall below

CðAT ;KÞ ¼ A0U rþ 1

2
s2 � lz; s; �l; �p; �Z1; �Z2; lnðK=A0Þ;T

� �
� Ke�rTU r� 1

2
s2 � lz; s; l; p; Z1; Z2; lnðK=A0Þ;T

� �
;

ð11Þ

where �l¼l(1þ z), �Z1¼�Z1�1, �Z2¼Z2þ 1, and

�p ¼ p

1þ z
Z1

Z1 � 1

and

z ¼ p
Z1

Z1 � 1
þ q

Z2
Z2 þ 1

1:

The function U involves the Hh function, a special function coming from
mathematical physics. For more details, see the appendix that explains how to
compute quickly this function. The case of default at maturity can be therefore
straightforwardly implemented (yet, this is the first time this is done in the
actuarial literature concerning participating contracts). This is clearly not the
case of early default which is technically the main contribution of this paper
and which we address in the coming subsection.
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Remark In case a fixed amount L of bankruptcy costs is incurred upon
default, the payment to policyholders readily becomes AT�L at time T. The
price of the product is therefore diminished by the amount EQðLe�rT1AToLg

T
Þ ¼

Le�rTQðAToL
g
T
Þ which stands as a simple Gaussian cumulative distribution

function.

Early default

The case of early default is much more complicated to deal with than the above
situation. We can prove the following proposition, obtaining a semi-closed-
form formula for the price of a LIC, under early default:

Proposition 1 Defining 8t Xt*¼Xt�rgt, Zt¼�Xt*, QA the A-neutral measure,
and allowing for early default, the life insurance contract admits the following
price:

dVLð0Þ ¼ e�rTL
g
T 1�Q max

t2½0;T �
Zt4 ln

A0

gL0

� �� �� �
þ daA0 1�QAðZT40Þ �QA max

t2½0;T �
ðZtÞ4 ln

A0

gL0

� �� ��
þQA ZT40; max

t2½0;T �
ðZtÞ4 ln

A0

gL0

� �� ��
� e�rTdLg

T 1�QðZT40Þ �Q max
t2½0;T �

ðZtÞ4 ln
A0

gL0

� �� ��
þQ ZT40; max

t2½0;T �
ðZtÞ4 ln

A0

gL0

� �� ��
� e�rTL

g
TQ ZT4 ln

A0

L0

� �� �
þ e�rTL

g
TQ ZT4 ln

A0

L0

� �
; max
t2½0;T �

ðZtÞ4 ln
A0

gL0

� �� �
þ A0QA ZT4 ln

A0

L0

� �� �
� A0QA ZT4 ln

A0

L0

� �
; max
t2½0;T �

ðZtÞ4 ln
A0

gL0

� �� �
þ A0QA max

t2½0;T �
Zt4 ln

A0

gL0

� �� �
:

ð12Þ

Proof This proof gives the closed-form development of (6) and (7) when the
company’s assets returns are modeled by a Lévy process of the Kou type.
Preliminary elements
The risk-neutral no-default condition on the company writes

8t 2 ½0;T � A0e
Xt4gL0e

rgt
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or equivalently

8t 2 ½0;T � eXt�rgt4
gL0

A0

thus, defining 8t Xt*¼Xt�rg
t , the risk-neutral no-default condition writes

8t 2 ½0;T � eX
�
t 4

gL0

A0

or

8t 2 ½0;T � X�
t 4 ln

gL0

A0

� �

To conclude, with the convention b¼ ln(gL0/A0), one has

t4T , min
t2½0;T �

X�
t 4b:

Computation of cGFcGF is defined by cGF ¼ EQ½e�rT1tXTL
g
T �:

One readily writes cGF ¼ e�rTLg
TQðt4TÞ

which, from above, is equivalent to

cGF ¼ e�rTLg
TQ min

t2½0;T �
X�

t 4 ln
gL0

A0

� �� �
now, setting 8t Zt¼�Xt*, one can write

cGF ¼ e�rTLg
TQ max

t2½0;T �
Zto ln

A0

gL0

� �� �
or finally

cGF ¼ e�rTLg
T 1�Q max

t2½0;T �
Zt4 ln

A0

gL0

� �� �� �
:

Computation of cLR
Recall the definition cLR ¼ EQ½e�rt1toTAt�
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which can be straightforwardly rewritten ascLR ¼ A0 EQA
½1toT �

or as cLR ¼ A0 QAðtoTÞ:

Using the previous lines of reasoning, one finally obtains

cLR ¼ A0 QA max
t2½0;T �

Zt4 ln
A0

gL0

� �� �
:

Computation of dPO
From Eq. (7), one has dPO ¼ EQ½e�rT1tXT ðLg

T � AT Þþ�

which becomes dPO ¼ EQ½e�rT ðLg
T � ATÞ1ATpL

g
T
1tXT �

or dPO ¼ e�rTLg
T EQ½1ATpL

g
T
;tXT � � EQ½e�rTAT1ATpL

g
T
;tXT �:

We first compute E1 ¼ EQ½1ATpL
g
T
;tXT �, then E2 ¼ EQ½e�rTAT1ATpL

g
T
;tXT �.

One readily has

E1 ¼ QðATpLg
T ; tXTÞ ¼ QðAToLg

T ; t4TÞ:

Referring to the notations in the preliminaries

E1 ¼ Q X�
To ln

L0

A0

� �
; min
t2½0;T �

ðX�
t Þ4 ln

gL0

A0

� �� �
:

Defining 8t Zt¼�Xt*, one can swap the min for a max according to

E1 ¼ Q ZT4� ln
L0

A0

� �
; max
t2½0;T �

ðZtÞo� ln
gL0

A0

� �� �
or

E1 ¼ Q ZT4 ln
A0

L0

� �
; max
t2½0;T �

ðZtÞo ln
A0

gL0

� �� �
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indeed, it will be more convenient to use

E1 ¼Q ZT4 ln
A0

L0

� �� �
�Q ZT4 ln

A0

L0

� �
; max
t2½0;T �

ðZtÞ4 ln
A0

gL0

� �� �
:

In order to compute E2, we use the well-known change of numéraire technique.
Choosing the assets A as the new numéraire, and denoting by QA the associated
measure (recall that QA is such that (dQA/dQ)FT¼AT/A0e

rT), we obtain

E2 ¼ A0EQA
½1AToL

g
T
;t4T � ¼ A0QAðAToLg

T ; t4TÞ:

Then, obviously

E2 ¼A0QA ZT4 ln
A0

L0

� �� �
� A0QA ZT4 ln

A0

L0

� �
; max
t2½0;T �

ðZtÞ4 ln
A0

gL0

� �� �
and finally

dPO ¼ e�rTLg
TQ ZT4 ln

A0

L0

� �� �
� e�rTLg

TQ ZT4 ln
A0

L0

� �
; max
t2½0;T �

ðZtÞ4 ln
A0

gL0

� �� �
� A0QA ZT4 ln

A0

L0

� �� �
þ A0QA ZT4 ln

A0

L0

� �
; max
t2½0;T �

ðZtÞ4 ln
A0

gL0

� �� �
:

Computation of dBO
From (7), we recall

dBO ¼ EQ½e�rT1tXTdðaAT � Lg
TÞ

þ�:

We simplify this expression as

dBO ¼ daEQ½e�rTAT1ATXL
g
T
=a;tXT � � e�rTdLg

TEQ½1ATXL
g
T
=a;tXT �
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and then as

dBO ¼ daA0QA AT4
Lg
T

a
; t4T

� �
� e�rTdLg

TQ AT4
Lg
T

a
; t4T

� �
:

Introducing the return process X*, we obtain

dBO ¼ daA0QA X�
T4 ln

L0

aA0

� �
; min
t2½0;T �

ðX�
t Þ4 ln

gL0

A0

� �� �
� e�rTdLg

TQ X�
T4 ln

L0

aA0

� �
; min
t2½0;T �

ðX�
t Þ4 ln

gL0

A0

� �� �
or (noting in particular that L0¼aA0)

dBO ¼ daA0QA ZTo0; max
t2½0;T �

ðZtÞo ln
A0

gL0

� �� �
� e�rTdLg

TQ ZTo0; max
t2½0;T �

ðZtÞo ln
A0

gL0

� �� �
:

Finally, it will be more convenient to use the following representation

dBO ¼ daA0 1�QAðZT40Þ �QA max
t2½0;T �

ðZtÞ4 ln
A0

gL0

� �� ��
þQA ZT40; max

t2½0;T �
ðZtÞ4 ln

A0

gL0

� �� ��
� e�rTdLg

T 1�QðZT40Þ �Q max
t2½0;T �

ðZtÞ4 ln
A0

gL0

� �� ��
þQ ZT40; max

t2½0;T �
ðZtÞ4 ln

A0

gL0

� �� ��
which concludes the proof. &

In order to compute Eq. (12), one needs to compute

P max
t2½0;T �

Zt4b

� �
and

PðZT4aÞ
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and the joint term

P ZT4a; max
t2½0;T �

ðZtÞ4b

� �
;

where the measure P will in fact be Q or QA. The process A follows a Kou
process under Q or QA but of course with different parameters as shown in the
previous section.

Remark In case a fixed amount L of bankruptcy costs is incurred upon
default, the payment to policyholders becomes At�L at time t. The price of the
product is therefore diminished by the amount EQ(Le

�rt1toT). This amount
can also be written as L

R
0
Te�rtdQ(tox). It can be computed by performing a

quadrature on Q(to.), which can be itself computed as the inverse Laplace
transform of a known function (see Kou and Wang, 2003).

Numerical analysis

The goal of this section is to give an overview of the effect of jump parameters
on the contract value and on the choice of both the fair guaranteed rate and the
fair participation rate.

Simulation data

We start by giving in Tables 1 and 2 the chosen parameter values. These values
hold in all the sections, except otherwise indicated.

We recall that A0 is the initial assets value and that s is the volatility of the
diffusive component of these assets. p is the probability of positive jumps w.r.t.
negative ones: it is the probability that, given a jump occurred, this jump is
positive. Z1 and Z2 are the parameters driving the exponential laws underlying
the positive and negative jumps. One shows readily by integration that the
average size of positive jumps is Z1

�1 while the average size of negative jumps is
Z2
�1. l is the jump intensity; it describes the arrival rate of jumps, independently

of their size and sign (it just says how many jumps occur over a given time lag).
So, the jumps of the considered process are fully described by the parameters p,
Z1, Z2 and l.

The parameter a is the leverage coefficient, r the unique constant interest rate
prevailing on the market; rg is the guaranteed rate offered by the contract while
d is the participation coefficient. Finally T is the maturity, and g is the default
barrier multiplier used in the early default case.
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Default at maturity

This part of the analysis is devoted to the simple case where default can only
occur at the contract maturity.

In Figure 1 the contract value is graphed with respect to the jump process
intensity. Each curve represents a different level of the diffusive component
volatility. First, one can note the existence of optima: there are levels of jump
intensity where the contract value is maximized. Then, comparing these graphs
for different levels of s, we remark that the optima are shifted to the left when
s increases: for a high value of s, the optimum is for a small value of l – when
for a small value of s, the optimum is for a high value of l. This is not a
surprise if one considers that l and s are two faces of the same coin. Indeed, the
quadratic variation of the assets process, which is a description of its overall
dispersion, is made of two components: one for the diffusion, one for the
jumps. So this graph illustrates that the quadratic variation of the jumps is
compensated by the quadratic variation of the diffusion. In other terms, when
there is an important dispersion that is achieved through the diffusion (through
s), a small amount of additional dispersion coming from the jumps (so, from l)
is required in order to attain the optimum. The converse holds true. So, we
observe in the default at maturity case, where the paths are by definition not
important, an interesting compensation feature between diffusion and jump
components.

Figure 1 also shows that the contract value does not admit large variations,
both in terms of l (consider two values of a same curve, at different abscissas)
and in terms of s (consider two values of two different curves, but at the same
abscissa). So, big variations of s and l imply small variations of the contract
value. Then, in terms of parameter estimation, we refer the reader to the article
of Aı̈t-Sahalia (2004), which concentrates on the relative estimation of the
continuous and discontinuous parts of the quadratic variation of a stochastic

Table 1 Assets dynamics parameters

A0 s p Z1 Z2 l

100 0.1 0.5 5 5 0.1

Table 2 Contract parameters

a r rg d T g

0.85 0.035 0.025 0.9 5 0.7
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process. See also the recent paper of Aı̈t-Sahalia and Jacod (2008), which gives
a general test of the presence of jumps in a dynamics. To sum up, the impact of
replacing erroneously l by s, or conversely, can have an impact on the kurtosis
of the assets at the maturity, and can therefore induce a misprice of the
contract. As appears from the previous observations, though, the contract’s
value is quite stable. As the coming subsection will show, the impact of
mistaking jumps for diffusion can be a real concern in the case where default
can happen early.

Figure 2, where s is set at 10 percent, represents the curves linking rg and d,
the guaranteed and bonus rates given to the policyholders, for fair contracts
(contracts whose initial book value is equal to their initial market value). These
curves are computed for a given level of s, given in the above table, but for
varying levels of l. On this graph, choose a given high level of rg: let l increase,
then for the contract to remain fair, d should increase. This situation is the one
when the contract is risky (in the sense of a possible default) and an increase in
jump rate should be compensated by a higher participation of the insured. For
a given, but now low value of rg, when l increases, the participation coefficient
of a fair contract decreases. In this situation, adding some jumps is not too
risky in terms of probability of company bankruptcy: the increase in l
intervenes as an overall increase of the process quadratic variation, and the
call-option effect dominates.
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Figure 1. Contract value w.r.t. l for different levels of s.
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Figure 3 also plots curves linking the rg and d of fair contracts, but for a s set
at 15 percent. We observe that in this situation, we nearly always have the
monotonous situation where, for a given rg, an increase of l corresponds to an
increase of the participation level. In other terms, for a high degree of overall
dispersion or risk, an increase in the jump intensity should be compensated
economically by a higher participation rate granted to policyholders.

Finally, in Figure 4, we graph the fair participation level as a function of the
leverage parameter a (assuming s¼0.1). Each curve corresponds to a different
value of l. In this example, the interpretations are straightforward. First of all,
when l is fixed, a higher initial leverage means that the insured provided a
higher contribution to the initial liabilities of the company. Accordingly, they
should obtain a higher proportion of the benefits. This proportion should
obviously tend to one when a tends to one: in a company without stocks, the
insured get back all the benefits. Then, because we set ourselves in a situation
where the company is at risk due to jumps, an increase of l, at a fixed level of a,
means an increase of risk for the insured, and they should be compensated by
an increase of their bonus rate.

Figure 5 graphs the fair participation level as a function of the leverage
parameter a, but for s¼0.15. We observe the same relationships as in Figure 4:
for a fixed initial capital structure coefficient a, a higher intensity of jumps
should be compensated by a higher participation coefficient d. However, a
comparison of the two figures shows that the participation coefficient d is
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bigger for a higher level of s, everything else kept equal. We also observe in the
two figures, that for a fixed participation rate d, a higher intensity induces a
smaller a. This is a kind of compensation because a small a corresponds to a
small initial input of capital in the company.
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Figure 3. Participation level d w.r.t. rg for different levels of l (s¼0.15).
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Early default

We start by plotting, in Figure 6, the contract value as a function of the jump
intensity l, at different levels of s. We remark that the same types of shapes
emerge as when default could only occur at maturity. Indeed, optima with
respect to the jump intensity exist, and these optima are increasing with the
level of the volatility.

One also observes that the optimal values of the contract are slightly higher
in the early default case than in the default at maturity case. In fact, a
continuously (or discretely but frequently) monitored company sees its value
increased by the fact that very negative outcomes are made unlikely. In the case
of default at maturity only, case of the previous subsection, the assets
remaining upon default can be exceedingly small, whence a negative impact on
firm valuation. One should insist though that in the presence of jumps, early
default can mean a loss, because the assets not only touch but also cross the
barrier – but this negative contribution to the contract value is less important
than the negative contribution of a massive default at maturity.

Then, Figure 7 graphs the contract value with respect to the jump intensity,
for various levels of the critical threshold g. This graph is important because it
shows the dependence of the contract price on the level of the early default
barrier, when the assets are allowed to jump (we recall that the barrier is given
by: Bt ¼ gL0e

rgt). It clearly appears in the graph that the higher the barrier g,
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Figure 5. Participation level d w.r.t. a for different levels of l (s¼0.15).
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the higher the contract value. Imposing a continuous surveillance where default
is declared very easily, in other words when the barrier is high, is clearly
beneficial to the contract value, so to policyholders. On the contrary, when g
becomes smaller, the control is less stringent: for g tending to 0, we get back the
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Figure 6. Contract value w.r.t. l for different levels of s.
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limit case of a default occurring only at maturity. Ultimately, for an
infinitesimal g, we are therefore left with a curve similar to the ones from
Figure 1.

With Figure 8, we observe the dependence of the contract value on main
parameters describing the jump component of the assets process: Z1 and Z2. We
recall that Z1

�1 defines the average size of positive jumps when Z2
�1 gives the

average size of negative ones. In Figure 8, we increase Z2 progressively and
observe that for high levels of this parameter, so for negative jumps that
become smaller and smaller on average, the contract is worth more. This makes
sense because small negative jumps are less amenable to induce bankruptcy
than big ones. Similar results hold (that we do not detail for the sake of brevity)
when studying the impact of Z1. Indeed, a higher Z1 means smaller positive
jumps, so jumps that bring the process less far from the default barrier, so a
smaller contract value.

To conclude on jump parameters, we plot Figure 9 that represents the
evolution of the contract value for various levels of the parameter p. We recall
that p represents the probability that a jump, given it occurred, is positive. So a
higher p means more positive jumps and less negative jumps. Not surprisingly,
we observe that the contract value increases together with p, less negative
jumps meaning a lower probability of getting bankrupt.

Then, to get an analytic pattern of the effects of early bankruptcy, we
compute Table 3 that presents the values of the diverse sub-contracts involved.
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The volatility of the diffusive part of the assets is fixed at 0.1, and the intensity
of the jumps is set to 0.1. We can readily perceive from the table that the early
rebate cLR is a non-negligible component of the contract. When g is high, equal
to 80 percent, it represents more than 13 percent of the overall contract price.
One should therefore not neglect the value of the continuous control of an
insurance company. When g becomes smaller, and not surprisingly, the relative
importance of cLR with regard to the contract value dVLð0Þ decreases to zero.

The preceding study emphasizes the importance of early bankruptcy. Let us
conclude by now observing the effect of jumps. In Table 4 are displayed the
same computations as in Table 3, but with only one parameter changing: the
jump intensity is set to l¼0; said differently we come down to the Gaussian
case without jumps. The same pattern as in Table 3 can be observed, but the
values of cLR and cLR= dVLð0Þ are smaller. Our conclusion at this stage is that the
introduction of jumps (symmetrical in our numerical example with Z1¼Z2)
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Figure 9. Contract value w.r.t. l for different levels of p.

Table 3 Subcontract values w.r.t g (l=0.1)dVLð0Þ cGF dBO dPO cLR cLR= dVLð0Þ (%)

g=0.8 88.0365 65.8947 10.9028 0.5615 11.8007 13.4

g=0.6 87.8568 77.3144 11.0090 2.5047 2.0380 2.32

g=0.4 87.8499 80.2969 11.0138 3.6720 0.2113 0.24

The Geneva Risk and Insurance Review

130



increases the value of the early rebate; therefore continuous, or frequent in
practice, control is even more desirable when the assets process admits a jump
part, which is consistent with common intuition. For the sake of brevity, we do
not include here the graphs representing d as a function of rg or a for fair
contracts, where patterns similar to the ones of Figures 2 and 4 are obtained.

We conclude this study by taking a look at the behavior of one of the
contract components: the so-called default put option. Figure 10 represents the
value of this option as a function of s, and this for various levels of l. The case
l¼0 is interesting because it corresponds to the absence of jumps, so to the
Gaussian model. We observe that in this case, the put option value remains null
when the volatility is inferior to about 5 percent. Then, it increases as s
increases. For l not null, we observe that the put option value is not null, also
when s¼0. So, and not surprisingly, jumps can create bankruptcy by
themselves. This figure is therefore interesting because it gives a price to the

Table 4 Subcontract values w.r.t g (l=0)dVLð0Þ cGF dBO dPO cLR cLR= dVLð0Þ (%)

g=0.8 87.7567 71.8680 9.0652 0.5649 7.3883 8.42

g=0.6 87.6876 80.1270 9.0775 1.9617 0.4448 0.50

g=0.4 87.6877 80.8511 9.0775 2.2424 0.0015 0

0 0.02 0.04 0.06 0.08 0.1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

P
ut

 O
pt

io
n 

V
al

ue

λ=0
λ=0.1
λ=0.2

σ

Figure 10. Put option value w.r.t. s for different levels of l.
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two contributions inducing bankruptcy: the jump (l) and diffusion (s)
components of the assets process.

Conclusion

In this article we study the valuation of participating life policies with
guarantee. We give generic formulas that can prove to be very useful for
subsequent research, especially quasi-closed formulas, in the third section. The
originality of our approach is to consider a possible bankruptcy of the
insurance company before contract maturity in a Lévy financial market
framework. This problem has been analyzed in a Gaussian context and the
results are well known. But there is now enough empirical evidence to admit
that geometric Lévy processes can give good alternative to the classical
geometric Brownian motion to model financial asset prices. The class of Lévy
processes is actually very large. In option pricing many of them have been
studied and in our context jump-diffusions with Gaussian jumps, Normal
Inverse Gaussian, Generalized Hyperbolic Gamma and Meixner processes are
among the more frequent choices. However, except for some jump-diffusion
cases, no explicit formulas are available for European options, and numerical
methods – especially Fast Fourier Transforms and partial integro-differential
equation or Monte Carlo simulations – are needed. Dealing with exotic
options is even more difficult and the pricing of barrier options is rather
difficult.

We use the Kou process: a jump-diffusion with double exponential
distributed jumps. These dynamics have already been used in the literature
to tackle finance issues. For instance, Dao and Jeanblanc (2006) and Chen and
Kou (2008) study the problem of the valuation of credit spreads, and Le
Courtois and Quittard-Pinon (2006) the one of the prediction of default
probabilities in such a context. With Kou processes, quasi-closed-form
formulas are obtained for European options and an efficient procedure can
be implemented for barrier options. It is what we use in our paper considering
the bankruptcy in a so-called structural approach to default. We obtain a
classical behavior in a fair value pricing for the couple participating level,
guaranteed rate. Our modeling stresses the effects of early default on the life
insurance contract considered here. First, to take into account early default is
not innocuous, it really matters as it is illustrated in the previous section.
Second, in our Lévy context we have shown that the impact of early default is
more important than in the Gaussian environment. This framework could be
used to analyze some equity linked contracts now sold in North America (for
instance Equity-Indexed Annuities, see Hardy (2003) for a description). From
a managerial standpoint this article shows the importance of efficient and
frequent controls to make contracts safer.
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process specifications, Ulm University Working paper.

Kou, S.G. (2002) ‘A jump diffusion model for option pricing’, Management Science 48:

1086–1101.

Kou, S.G. and Wang, H. (2003) ‘First passage times of a jump diffusion process’, Advances in

Applied Probability 35(9): 504–531.

Kou, S.G. and Wang, H. (2004) ‘Option pricing under a double exponential jump diffusion model’,

Management Science 50(9): 1178–1192.

Le Courtois, O. and Quittard-Pinon, F. (2006) ‘Risk-neutral and actual default probabilities

with an endogenous bankruptcy jump-diffusion model’, Asia-Pacific Financial Markets 13:

11–39.

Nielsen, J. and Sandmann, K. (1995) ‘Equity-linked life insurance: A model with stochastic interest

rates’, Insurance: Mathematics and Economics 16: 225–253.

Ribeiro, C. and Webber, N.J. (2003) ‘Valuing path dependent options in the variance-

gamma model by Monte Carlo with a gamma bridge’, Journal of Computational Finance

7(2).

Ribeiro, C. and Webber, N.J. (2005) ‘Correcting for simulation bias in Monte Carlo

methods to value exotic options in models driven by Lévy processes’, Applied Mathematical
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Appendix

Computation of the U function

The function U is defined by:

Uðm; s; l; p; Z1; Z2; a;TÞ ¼ PðZðTÞXaÞ;

where ZðtÞ ¼ mtþ szðtÞ þ
PNt

i¼1

Yi, z is a standard Brownian motion, N a Poisson

process with intensity l and Y has a double exponential law with parameters p,
q, Z1, Z2. Kou (2002) develops in his Appendix B an algorithm to compute U.
We give here the main lines of this algorithm.
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With pn:¼P(N(T)¼n)¼e�lT(lT)n/n!, and In defined below, we have the result

PðZðTÞXaÞ ¼eðsZ1Þ
2T=2

s
ffiffiffiffiffiffiffi
2pT

p
X1
n¼1

pn
Xn
k¼1

Pn;kðs
ffiffiffiffi
T

p
Z1Þ

k

�Ik�1 a� mT ;�Z1;�
1

s
ffiffiffiffi
T

p ;�sZ1
ffiffiffiffi
T

p� �
þ eðsZ2Þ

2T=2

s
ffiffiffiffiffiffiffiffiffi
2pT

p
X1
n¼1

pn
Xn
k¼1

Qn;kðs
ffiffiffiffi
T

p
Z2Þ

k

�Ik�1 a� mT ;�Z2;�
1

s
ffiffiffiffi
T

p ;�sZ2
ffiffiffiffi
T

p� �
þ p0F � a� mT

sT

� �
:

The expression F stands for the cdf of the standard normal law. Pn, k and
Qn, k are given by:

Pn;k ¼
Xn�1

i¼k

n� k� 1
i � k

� �
n
i

� �
Z1

Z1 þ Z2

� �i�k Z2
Z1 þ Z2

� �n�i

piqn�i;

Qn;k ¼
Xn�1

i¼k

n� k� 1
i � k

� �
n
i

� �
Z1

Z1 þ Z2

� �n�i Z2
Z1 þ Z2

� �i�k

pn�iqi;

1pkpn� 1; Pn;n ¼ pn Qn;n ¼ qn:

The functions I and Hh are linked as follows:

Inðc; a; b; dÞ:¼
Z1
c

eaxHhnðbx� dÞdx; nX0:

The function Hh (see Abramowitz and Stegun, 1965) can be obtained
recursively:

nHhnðxÞ ¼ Hhn�2ðxÞ � xHhn�1ðxÞ; nX1

with:

Hh1ðxÞ ¼ e�x2=2; Hh0ðxÞ ¼
ffiffiffiffiffiffi
2p

p
Fð�xÞ
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