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We model the impact of agricultural droughts with a new multi-parameter index (using both cli-
matic and non-climatic parameters) and propose a new risk transfer solution for crop insurance,
called Climate Cost of Cultivation (CCC). We used 1979/80 to 2012/13 data relevant for wheat in
Bihar, India to test the variation in the CCC values. The variance (risk to farmer) increased sig-
nificantly in the second half of the period (two-tailed F-test, p=0.00045). We examine the effi-
ciency of CCC by comparing it to typical index insurance (TII), and both indices to wheat yield
data (2000/01 to 2012/13). The correlation of CCC index payouts with actual yield losses is
improved by a factor of ~3.9 over TII results (76.0 per cent, compared with 19.6 per cent).
The pure risk premium of the CCC index is lower by around 90 per cent than the premium of the
TII. We also elaborate a method to quantify the premium’s climate change cost component.
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Introduction

Years of experience with index-based crop insurance1 show that uptake has remained very
low relative to the target population2 or arable land,3 mainly credit-linked,4 and with only
minimal voluntary uptake by farmers.5 India has the largest agriculture insurance scheme in
the world today in terms of the number of policyholders.6 The Government of India (GoI)
has been promoting index-based crop insurance schemes for years.7 However, voluntary
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journal's normal peer review process.

1 Dercon (2005); Miranda and Farrin (2012).
2 Da Costa (2013); Gehrke (2014); Zant (2008); McIntosh et al. (2013).
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uptake of crop insurance by farmers in India is very low.8 Such low uptake suggests that the
hopes of both managing risks better and enhancing farmers’ livelihoods via crop insurance
are, for the time being, frustrated.
Several explanations for this low uptake have been offered. One major reason is high basis

risk,9 namely the risk that payouts do not match farmers’ actual incurred losses. Alternatively,
this issue can be expressed by the very low correlation between actual losses and payouts.10

Another reason is that, typically, index-insurance models do not cover all relevant
production costs/risks.11 This may be linked to the practice (in India and elsewhere) to limit
index insurance to the amount loaned for inputs, but not to include all production costs in the
insurance, and require borrowers to buy it as collateral.7,12

Most index insurance models are structured around a single weather parameter, for
example, rainfall or temperature,13 while disregarding other subordinate yet relevant
parameters which also impact crop yield.14 We note that impact assessment studies,
hydrological studies and vulnerability mappings have been using both climatic and non-
climatic parameters15 but agricultural index insurance design has so far ignored non-climatic
parameters. Including additional weather and non-climatic parameters in the index insurance
design can reflect better the agricultural risk profile of farmers.16

Moreover, climate change is increasing climate variability and farming risk, which is
already observable in many geographies.17 It is increasingly recognised that the “polluter
pays” principle18 should apply; as smallholder farmers are not the polluters, they should not
be required to pay for the climate change-related costs. In reality, farmers do pay the
incremental risk due to climate change probably because nobody has developed a method to
quantify the climate change-related cost of cultivation. We show in this article one way of
calculating this, making it possible to remove that share of the cost from the premium of
index insurance, thereby applying of the “polluter pays” principle.
There is general agreement that higher uptake of index insurance is desirable. The review

of the literature suggests that certain issues related to index insurance have been identified
and solved (e.g. dealing with certain production risks); others have been identified but not yet
resolved (e.g. reducing basis risk significantly). The challenge is to put the various pieces
together. The purpose of this article is to address this gap. We submit that achieving this

8 Nair (2010); Giné et al. (2010); Mahul et al. (2012); Cole et al. (2013).
9 Dercon et al. (2014); Jensen et al. (2014); Miranda and Farrin (2012); Binswanger-Mkhize (2012); Clarke et al.
(2012); Woodard and Garcia (2008); Osgood et al. (2007); Barnett (2004).

10 Clarke et al. (2012).
11 Smith and Watts (2009); Wright and Hewitt (1994); Gardner and Kramer (1986).
12 Raju and Chand (2008); Vyas and Singh (2006); Glauber (2004); Ifft (2001).
13 Daron and Stainforth (2014); Kellner and Musshoff (2011); Berg and Schmitz (2008); Barnett and Mahul

(2007); Martin et al. (2001).
14 Carter et al. (2014).
15 Ruiz et al. (2010); Knijff et al. (2010); Berg et al. (2009); Faramarzi et al. (2009); Bondeau et al. (2007);

Ritchie (1985).
16 Turvey (2001); Gómez and Blanco (2012); Turvey and Mclaurin (2012); Osgood et al. (2007); Khalil et al.

(2007).
17 Kurukulasuriya and Rosenthal (2013); Morton (2007); Fischer et al. (2005); Parry et al. (1999); Rosenzweig

and Parry (1994).
18 Stevens (1994).
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objective would require revisiting the design of index insurance to make it context-relevant.
Specifically, a better understanding of location-specific crop production risks19 requires
higher resolution of climate data and the inclusion of certain non-climatic parameters.
We propose a new model that describes production risks better, namely through an improved
modelling of the financial impact of drought. By combining climatic and non-climatic
parameters, our model addresses the question of the correlation between losses and payouts
differently, and contains a formula to calculate the added cost of climate change. We call this
the “Climate Cost of Cultivation” (CCC) method.
Readers might be familiar with crop models (that simulate the crop yield based on crop

type, weather, soil, pest and disease, and nutrient supply parameters and conditions, as well
as farming practices).20 Unlike crop models, the CCC method estimates the risks to farmers
based on the interaction between adverse climatic and non-climatic conditions (the influence
of which is recognised in agronomic and soil-water balance models21). Consider a simple
example: farmers can decide to irrigate (where irrigation facilities are available) when
rainfall is insufficient, rather than suffer crop yield loss; the trade-off is better yield with an
increased input cost (irrigation) vs yield loss. Hence, our definition of cost of cultivation
combines both increase in irrigation costs, if rainfall patterns are unfavourable, and yield
losses, if losses cannot be mitigated easily, for example, in the case of high temperatures.
The CCC method aims to quantify the financial implications for farmers of certain climatic
conditions by considering the combined effect of increased input costs and yield loss with the
severity of these factors, which depends notably on non-climatic parameters.
We demonstrate the improved modelling of the impact of agricultural droughts (hereafter

“droughts”) with the CCC method by reference to winter wheat in Bihar, India. In Bihar, the
rainfall in the winter season is usually very low (on average around 30 mm), providing
roughly 10 per cent of the winter wheat water requirement. Therefore, winter wheat is
irrigated. Most smallholder farmers in Bihar usually irrigate well below the water required
for optimal wheat yield to save the cost and effort involved. The cost comprises the rental
charges of tube-well pumps and the diesel fuel to operate the pumps, as most farmers use
groundwater for irrigation. Average (or higher) seasonal rainfall can save one to two
irrigations in Bihar. Higher soil moisture at the time of sowing, because of above-average
precipitation during the preceding monsoon months, can also make a difference.
Typical index insurance (TII) for winter wheat in India, used here as the reference to

which we compare the CCC method (“CCC index”), covers yield losses due to high
temperature (mean and maximum temperature for different time periods respectively) or
excess rainfall, but does not compensate for insufficient rainfall. The CCC method, in
addition to losses due to high temperature and excess/untimely rainfall (following a slightly
different method), also covers the risk of above-average irrigation costs. In the CCC method
we determine the initial seasonal soil moisture as a function of the aggregated pre-season
(monsoon) rainfall, to capture the risk of lower soil moisture in the winter (post-rainy) season
due to low rainfall during the preceding monsoon. Additionally, daily rainfall during the

19 Giné et al. (2010); Gómez and Blanco (2012); Patankar (2011); Carriquiry and Osgood (2012).
20 Aggarwal et al. (2006); Krishnan et al. (2007); Stockle et al. (1994); Mo et al. (2005); Steduto et al. (2009).
21 Smith M. (1992); Neitsch et al. (2011); Galle et al. (2001); Ritchie (1998); Soltani and Sinclair (2012); Brisson

et al. (1992).
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winter season is incorporated into the daily soil moisture modelling. Incorporating
aggregated pre-season and daily seasonal rainfall and non-climatic parameters improves the
accuracy of the modelling of droughts and their financial impacts (increased irrigation costs).
Stated simply, the CCC method models the random shock of below-average soil moisture for
the season (due to unseasonal/insufficient rainfall, high temperatures etc.). This random risk
is ignored by TII.
The article is organised as follows: in the next two sections we provide details on the study

area, data sources and methods used. The results are presented in the fourth section,
discussion in the fifth and conclusions are presented as the last section.

Study area

The study was conducted in Bihar, the third most populous Indian state (>100 million
persons) and the 12th largest in terms of area (94,200 km2) located in the eastern part of
India.22 The river Ganges divides Bihar into North Bihar (53,300 km2) and South Bihar
(40,900 km2) and contributes significantly to its bio-physical and socio-economic settings.23

Bihar is prone to waterlogging, floods and droughts.24

Nearly 81 per cent of the Bihari population is employed in agricultural production. Wheat,
paddy, maize and pulses are the principal crops.

Data and methods

In this study, CCC is tested with wheat, a major post-rainy season (Rabi) crop that is largely
irrigated. The rabi lasts from November to March. The growth duration of wheat lasts 120
days.

Data used

The relevant parameters we used are described in Table 1.

Methods

The CCC estimation combines the effect of four climatic situations, three with negative
implications on crop ((i) water deficit leading to additional irrigation cost; (ii) excess water
leading to drainage cost; and (iii) high temperatures leading to yield loss) and one situation
with a positive impact on crop yield (increasing concentration of atmospheric CO2). The
CCC method does not consider other cultivation costs/risks that we assume to be, by and
large, independent of climate. Although waterlogging situations are captured in the CCC
method, floods are not, as they are often triggered by heavy rainfall upstream or breaches of
river embankments outside the study area. A schematic representation of the method is
shown in Figure 1.

22 GoI (2015).
23 Government of Bihar (2015).
24 GoI (2008).
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Method to calculate costs due to additional irrigation
The calculations for water deficiency necessitating irrigation cost are informed by the difference
between the daily soil moisture available at root zone and the daily crop water requirement.
The crop water requirement is interpreted as the potential crop evapotranspiration ETC. ETC
is calculated using the reference evapotranspiration ET0 and the crop coefficient KC

25:

ETC ¼ ET0�KC; (1)

where ET0 is the reference evapotranspiration calculated using the FAO Penman-Monteith
method and KC is the crop coefficient factor; see Table 2.
The crop water requirements are satisfied in the study area by rainfall and groundwater.

The soil moisture in the root zone is modelled on a daily basis using the water balance
equation.26,27 This model for soil moisture resembles FAO’s CROPWAT model,25 with a
few notable differences: customisation of crop factor, modelling runoff using the Soil
Conservation Service (SCS) curve number method, setting initial soil moisture conditions

Table 1 Data requirement for Climate Cost of Cultivation modelling

Category Parameter Data type Range Source

Climatic Precipitation Gridded data (0.25°×0.25°), daily 1979/80–
2012/13

Indian Meteorological
Department

Maximum
temperature

Gridded data (1°×1°), daily 1979/80–
2012/13

Indian Meteorological
Department

Minimum temperature Gridded data (1°×1°), daily 1979/80–
2012/13

Indian Meteorological
Department

Relative humidity Satellite gridded data
(approx. 1.9°×1.9°), daily

1979/80–
2012/13

NCEP Reanalysis II

Wind speed Satellite gridded data
(approx. 1.9°×1.9°), daily

1979/80–
2012/13

NCEP Reanalysis II

Solar radiation Satellite gridded data
(approx. 1.9°×1.9°), daily

1979/80–
2012/13

NCEP Reanalysis II

CO2 concentration CO2 concentration data at the
Mauna Loa Observatory, annual

1979/80–
2012/13

NOAA-ESRL, ftp://ftp.cmdl.
noaa.gov/ccc/co2/trends/
co2_annmeaa_mlo.txt

Non-
climatic

Soil type Raster image 2013 National Bureau of Soil
Survey and Land Use
Planning, India

Groundwater depth Groundwater tables, post-monsoon 2005–
2013

Central Groundwater Board,
India

Data for
result
validation

Cost of cultivation
data

Crop yield and irrigation costs,
seasonal

2000/01–
2012/13

Directorate of Economics and
Statistics, Dept. of Agriculture
and Cooperation, Ministry of
Agriculture, Govt. of India

25 Allen et al. (1998).
26 Neitsch et al. (2005).
27 Smith et al. (1996).
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depending on rainfall before crop season, introduction of controlled irrigation in the last few
days prior to harvest. The model has been calculated with Microsoft Excel 2010 and allows
for daily modelling over decades.

RD0 ¼ r0 � AWC � ID ¼ r0 � ðθFC - θWPÞ � ID; (2)

RDi ¼ RDi - 1 + ri - ri- 1ð Þ � AWC � ID +ETc;i - ðPi -ROiÞ - Ii - 1 +DPi (3)

for i=1, 2, 3, …,where

RDi root zone depletion at the end of day i
(before any irrigation) [mm]

AWC available water capacity [m3/m3]
θFC water content at field capacity [m3/m3]
θWP water content at wilting point [m3/m3]
ID initial depletion at day 0 [per cent]
ri rooting depth on day i [mm]
ETc,i crop evapotranspiration on day i [mm]
Pi precipitation over day i [mm]
Ii net irrigation on day i (water from irrigation

that infiltrates the soil) [mm]
ROi water loss by runoff from the soil surface on

day i [mm]

Rainfall

Min Temp
Rel Humidity
Wind Speed

Solar Radiation

Max Temp

Daily Soil
Water Balance

Modelling

Crop Water
Requirement

Modelling

Max Temp -
Crop Yield
Loss Factor

Analysis

Irrigation
Requirement

Drainage
Requirement

Irrigation
Cost (A)

Drainage
Cost (B)

Groundwater
Depth

Topography
(Waterlogged

Areas)

Soil
Properties

Max Temp
Yield Loss

(C)

Climate Cost of
Cultivation
(A+B+C-D)

CO2

Increasing
CO2 - Crop
Yield Gain

Factor
Analysis

Increasing
CO2 Yield
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Climatic
 Parameters

Non-Climatic
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Figure 1. Schematic depiction of Climate Cost of Cultivation (CCC) method.
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DPi water loss out of root zone by deep percola-
tion on day i [mm].

Standard values for the available water capacity (AWC) for each soil type were
considered.28,29 We set the initial depletion ID at the onset of a crop season as crop, season
and year specific (see Table 2). In years with ample rainfall in the off-season preceding the
crop season, the initial soil moisture would be higher, and farmers would spend less on
irrigation than in years with lower rainfall.
The runoff is calculated using the SCS runoff curve number method.30,31,32 Following a

method developed by Choi et al.33 the curve numbers are interpolated based on the daily soil
moisture computed:

ROi ¼
Pi - 0:2�Si - 1ð Þ2
Pi + 0:8�Si - 1 for Pi⩾0:2 � Si - 1
0 for Pi<0:2 � Si - 1

(
(6)

with the potential retention parameter Si given as

Si ¼ 25400

CNadj
i

- 254 (7)

Table 2 Crop-specific model parameters

Crop growth stage Days KC value
Rooting
depth

Critical
soil

depletion
(%) Initial soil depletion

Initial (Start: 15th

November)
15 0.35 Linearly

interpolated
from 300 mm
to 1,500 mm

55 25%+3% * rainfall in
preceding off-season/100
mm (Off-season=end of
previous Rabi season until
beginning of next Rabi
season)

Development 25 Linearly interpolated from 0.35
to 1.15

55

Mid-season 50 1.15 1,500 mm 55

Late season 30 Linearly interpolated from 1.15
to 0.39 within the first 20% of
the time, that is, 6 days, and
then kept constant

1,500 mm 90

28 Saxton et al. (1986).
29 Pedosphere.ca (2013).
30 Boughton (1989).
31 Bosznay (1989).
32 Mockus (1964).
33 Choi et al. (2002).
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and interpolated SCS runoff curve number

CNadj
i ¼ 2 � 1 - RDi

AWC

� � � CNII -CNIð Þ +CNI for RDi
AWC>

1
2

2 � RDi
AWC � CNII -CNIIIð Þ +CNIII for RDi

AWC⩽
1
2

�
; (8)

where CNI, CNII, CNIII are the curve numbers for three antecedent moisture conditions,
namely dry, average condition of moisture and upper limit of moisture. Depending on cover
type (here we chose “small grain”), treatment (here “straight row”), hydrological condition
(here “good”) and hydrologic soil group (soil type dependent) the CNII value is set.34 The
curve numbers CNI, CNIII are derived from CNII 35:

CNI ¼ CNII -
20 � 100 -CNIIð Þ

100 -CNII + e 2:533 - 0:0636� 100 -CNIIð Þ½ � ; (9)

CNIII ¼ CNII � e0:00673� 100 -CNIIð Þ: (10)

In this model any additional water from precipitation after runoff in excess of the amount
of water necessary to reduce the root depletion RDi to zero, that is, to reach maximum soil
moisture, will be percolating below root zone:

DPi ¼ -min 0; RDi - 1 + ri - ri - 1ð Þ � AWC � ID +ETc;i - ðPi -ROiÞ
� �

: (11)

We assume that farmers will irrigate the crop rather than incur crop yield loss, but do so as
late as they can. The field will be irrigated if the depletion rate (i.e. root zone depletion
divided by the maximum soil moisture available to the plant, RDi /(ri*AWC*ID)), reaches or
exceeds the critical soil depletion threshold (see Table 2). Though usually the net irrigation
amount is the previous day’s root zone depletion, during the late stage of the crop cycle, the
net irrigation amount is the previous day’s root zone depletion times the remaining days until
harvest, divided by the length of the late stage in days. This additional rule obviates intensive
irrigations just a few days before harvest, which we assume that no farmer would do.
For 1⩽ i⩽ 90 we thus set

Ii ¼
RDi for RDi

ri�AWC�ID⩾0:55

0 otherwise

(
(12)

and for 91⩽ i⩽ 120 we set

Ii ¼
120 - i
30 � RDi for RDi

ri�AWC�ID⩾0:90

0 otherwise:

(
(13)

Furthermore, we assume that farmers in Bihar apply flood irrigation with field efficiency
of 70 per cent, that is, only 70 per cent of the gross irrigation will percolate to the root zone of
the plant.25 The gross irrigation amounts were aggregated, Itotal, for the entire period of 120

34 USDA (1986).
35 USDA (1972).
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days for wheat for every year from 1979/80 to 2012/13.

Itotal ¼ 100
70

�
X120
i¼1

Ii: (14)

In Bihar, irrigation is sourced from groundwater that is pumped up with diesel-operated
tube-wells (most commonly the 5 horsepower (HP) diesel pumps of 80 per cent efficiency).
The irrigation costs depend on two variables: the groundwater depth (assumed to be time
constant but spatially variable) and gross irrigation quantum (which varies in space and time).
The cost of irrigation is obtained by multiplying the diesel consumption (1.2 liters per

hour for 5 HP (= 5*746 W) pump) by the time the pump needs to draw the gross
groundwater amount required, adding a total dynamic head of 15 m to surface level (i.e.
15 m is the equivalent height the water has to be pumped to reflect friction loss and the
height reached by the pipe after the pump; the exact value of the total dynamic pump
head is specific to each location, and a change in this parameter can lead to changes in the
costs). We use a constant diesel price for the entire period under consideration (1979/80
to 2012/13) to reduce confounders, as our study focuses on climate-related variations of
cultivation costs only. The assumed diesel price is PPP$3.09 per liter (INR51.69 per
liter36 and at an INR–PPP$ exchange rate of 16.72 in 201337,38). The cost of irrigation in
PPP$ per hectare is then:

Irrigation cost
PPP $
ha

� �

¼ Itotal � 1ha � ρwater � g � dGW + 15mð Þ
80% � 5 � 746W � 1:2 liter

ha � hour � 3:09
PPP $
liter

; ð15Þ

where ρwater is the density of water, ρwater=1000 kg/m
3, g is the standard gravity, g=9.81

m/s2, and dGW is the groundwater depth.

Method to calculate costs due to excess water
When soil moisture exceeds the field capacity, additional rainfall can lead to waterlogging on
the soil surface. We assume that farmers drain waterlogged precipitation rather than accept
yield loss. The drainage costs depend on rainfall induced runoff. The daily runoff was
aggregated over the cultivation period of the crop to compute the surplus water amount. The
amount of diesel required to drain the surplus water is calculated assuming a total dynamic
head of 10 m. The drainage cost was generated by multiplying diesel amount with the price
of diesel:

drainage cost
PPP $
ha

� �

¼
P120

i¼1 ROi

� �
� 1ha � ρwater � g � 10m

80% � 5 � 746W � 1:2 liter
ha � hour � 3:09

PPP $
liter

: ð16Þ

36 MyPetrolPrice (2015).
37 Year 2013 is taken as the base year as the validation data are available only from 2000/01 to 2012/13.
38 World Bank (2015).
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Method to calculate high temperature losses
The relationship between high temperature and yield loss is complex and only partially
understood.39–41 Open field investigations,42,43 laboratory experiments44,45 and computer
simulations43,46–51 have been conducted to assess the impact of temperature on crop yield.
Based on studies conducted for wheat,41,52–55 we assume a yield loss of 8 per cent
respectively per 1°C above-seasonal-average maximum temperature in the reference period
(1979/80 to 2012/13) plus 1°C. For the calculation, we used crop yield data for Bihar for the
year 2012/13 as a reference. For every season with yield loss, we multiplied the percentage
of loss by the proxy for the market price of wheat, set at the Bihar government minimum
support prices for 2012/13, which was 0.81 PPP$/kg.56

Method to calculate CO2 fertilisation
Long-term experiments have revealed that an increase in atmospheric CO2 has a positive
impact on yield for some crops.57–60 We assume 0.028 per cent increase in wheat yields with
a 1 ppm increase of CO2 in the atmosphere.61 In the time period considered here, the CO2

concentration has increased from 336.78 ppm in 1979 to 393.82 ppm in 2012. The annual
change in yield due to CO2-effect was calculated with reference to 2012 leading to lower
yields in the past, ceteris paribus.

Calculation of the CCC values and the CCC index
The CCC values in each location are calculated as the sum of costs due to deficient rainfall
(irrigation costs), excessive rainfall (drainage costs) and maximum temperature (yield losses)
minus the positive impacts of atmospheric CO2 (fertilisation leading to higher yields).

39 Washington et al. (2012).
40 Moorthy (2012).
41 Khan et al. (2009).
42 Samra and Singh (2004).
43 Pathak et al. (2003).
44 Lobell et al. (2012).
45 Dhillon and Ortiz-Monasterio (1993).
43 Pathak et al. (2003).
46 Kumar et al. (2011).
47 Kalra et al. (2008).
48 Mall et al. (2006).
49 Chaudhari et al. (2009).
50 Aggarwal et al. (1994).
51 Aggarwal and Sinha (1993).
52 Hundal and Kaur (2007).
53 Pandey et al. (2009).
54 Tripathy et al. (2009).
55 Hundal and Kaur (1996).
56 GoI (2013).
57 Kurukulasuriya and Rosenthal (2013).
58 Gornall et al. (2010).
59 Lobell and Burke (2010).
60 Long et al. (2005).
61 McGrath and Lobell (2013).
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Based on the calculated CCC values, for each location the CCC index payout has been
defined as

● 0, if the CCC value was below the average of all years,
● the positive deviation, if the CCC value was above the average.

The average CCC values were calculated location-specific for the years 2000/01 to 2012/
13 (with the exception of 2009/10, for which official cost of cultivation records were
unavailable) for the purpose of this comparison. The CCC index payout is thus defined as the
positive deviation of the CCC values in each location from the temporal average. Although
the CCC values reflect location-specific heterogeneities (soil type, groundwater depth,
micro-climate), which cannot be insured, the CCC index in each location measures the
positive deviation of the CCC values from the temporal average, which can be insured.
The heterogeneities can then be reflected in the pricing and design of the CCC index.
All maps shown in this article were generated using ArcGIS software version 9.3.

Comparing the CCC index to a typical index insurance
To assess the effectiveness of the CCC index in reducing the risk to farmers, we compared
the CCC and TII payouts with cost of cultivation data available for wheat at plot level.62

We have taken all points which are sampled each year by the Government of Bihar for the
purpose of collecting cost of cultivation data at farm level.63

The cost of cultivation data set contains all costs, such as inputs, irrigation and labour, plot
size and crop yield. Irrigation costs constitute the major climate-related costs. Therefore, we
determined the net income subject only to the yield income and irrigation costs with fixed
prices at 2012/13 levels (0.81 PPP$/kg for wheat produce, 2.39 PPP$ per hour of irrigation)
to remove the inflation in costs and to allow for comparison with the CCC values. Other costs
(e.g. human labour, seeds, pesticides, fertiliser) were ignored, because they are either
independent of climatic conditions or negligible.
The yield data were de-trended to remove the effect of technological advancements and to

calibrate the data at 2012/13 levels following the approach of Deng et al.64 and Ye et al.65

The plot level trends were calculated by first determining the slopes of the linear trends of the
average yield on Bihar level through ordinary least squares (OLS) regressions. For each plot
in each sample period the linear trend was calculated through OLS regression under the
constraint that the slope of the trend at plot level was set as the Bihar level one.
The net income was calculated as the difference between de-trended yield income

and irrigation costs. Only plots with at least two years of net income data were considered.
The expected yield was set at the mean value and plots were considered to have zero loss in
years where the actual yield was equal to or larger than the expected yield, while in the other
years, the loss was equal to the shortfall.

62 Collected from sampled plots in sampled villages by the Directorate of Economics and Statistics (DES), Dept.
of Agriculture and Cooperation, Ministry of Agriculture, Govt. of India.

63 Every three years, the DES samples new villages, but within a sampling period, the villages and plots remain the
same. Each year, the cost of cultivation data cover around 40–50 villages across the state of Bihar. In each
village, data on plots of approximately 3-8 farmers are captured.

64 Deng et al. (2007).
65 Ye et al. (2015).
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Decomposition of pure risk premium into “normal” and “climate change increment”
The CCC captures the most important climate-related input parameters and quantifies the
risk to farming holistically. Therefore, statistically significant different CCC values (in mean,
variance or both) in two (non-overlapping) extended time periods indicate climatic changes
from one period to the other. In this case the pure risk premium of the CCC index can be
decomposed into a “normal” pure risk component, PRnormal, and a “climate change
increment” pure risk, PRCC, in the following way for the time periods given by t1<t2⩽ t3<t4:

PR t3; t4ð Þ ¼ PRnormal t1; t2ð Þ +PRCC t1; t2; t3; t4ð Þ; (17)

PRnormal t1; t2ð Þ :¼ PR t1; t2ð Þ; (18)

PRCC t1; t2; t3; t4ð Þ :¼ PR t3; t4ð Þ -PR t1; t2ð Þ; (19)

where PR(ta, tb) is the pure risk premium based on (historic) CCC values in the time period
ta <tb. The time period from t1 to t2 would indicate the base/reference period before climate-
change.

Results

We compute the CCC by considering its four climatic components (deficient rainfall,
excessive rainfall, maximum temperature and atmospheric CO2) from 1979/80 to 2012/13
(for which data were available). Moreover, for each year from 2000/01 to 2012/13 (where
wheat data were available), we calculated the average loss and the correlation between
average loss and average CCC index payout for all plots representing the sample for Bihar
state. The risks of farming without insurance are reflected by standard deviations of the
average losses, and the risks of farming with insurance are reflected by the differences of
average losses after considering average CCC index payouts.
The benchmark for comparison of the performance of the CCC index is a typical weather

index insurance product (TII) which was sold for winter (Rabi) wheat season 2013 in Bihar;
we compare the correlation between losses and payout, and risk reduction properties.

Climatic and non-climatic parameters affecting farm losses

For all 12 Rabi wheat seasons where crop data were available, we calculated plot-level farm
net income losses. The results are shown in Table 3: We regress the farm net income loss
against climatic (seasonal rainfall, pre-season rainfall and average maximum temperature)
and non-climatic parameters (groundwater depth and soil type that inform available water
capacity and infiltration rate).
The regression illustrates that the influence of seasonal rainfall, pre-season rainfall,

seasonal maximum temperature and the infiltration rate of the soil is statistically significant,
while the R2 value is still very low (0.006967). As expected, farmers incur lower losses when
seasonal and pre-season rainfall are adequate and atmospheric CO2 increases, and more
losses when average maximum temperatures are high. One would expect that losses increase
as irrigation water is fetched from greater depth, but the regression did not confirm
significant losses due to groundwater depth increases.
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CCC calculation: Temporal and spatial variation

We use data for 34 years (from 1979/80 to 2012/13) and 45 locations where the Government
of Bihar collected crop yield and irrigation data. The CCC in each of the 1,530 points
(34×45) is the sum of costs due to deficient rainfall, excessive rainfall and maximum
temperature minus the positive impacts of atmospheric CO2. The total CCC and each of its
components and the CCC index payouts are shown in Table 4. The CCC index payouts are
determined for each location as the positive deviation from the temporal average of the CCC
values and thus the index insures against one or several of the following weather-related
adverse events on crops: high maximum temperatures, higher than average irrigation costs
due to insufficient rainfall (during the season and before the season) and/or due to higher
evapotranspiration (e.g. because of higher temperature), and excess rainfall costs.
Table 4 informs firstly the relative contribution of the various components of the CCC

towards its results. The irrigation costs comprise 91.8 per cent of the total costs for rabi
wheat in Bihar, which is understandable, as rainfall is minimal during that season and wheat
requires well-defined quantities of water. The second highest contribution to CCC comes
from excessive heat (contribution of only 1.8 per cent to the overall CCC), but its standard
deviation is comparatively high (17.9 PPP$/ha vs 35.0 PPP$/ha for total CCC); this
parameter leads to losses in 7 of the 34 years analysed, with a significant impact in 2005
(96.2 PPP$/ha) and in 2008 (48.1 PPP$/ha). The impact of excess rainfall is negligible. And,
the CO2 fertilisation effect increased from −31.3 to 0 PPP$/ha in the study area, as CO2

concentration increased by 57.04 ppm from 1979 to 2012. The large contribution of
irrigation costs to the CCC does not imply that the CCC index payouts are dominated by
the variations in irrigation costs. Consider that the correlation of CCC index payouts with
irrigation costs is 70.2 per cent, while it is 89.2 per cent with high temperature losses.
The CCC would display an increasing and statistically significant trend over the period,

which, however, disappears due to the effect of increasing CO2. This is shown in Figure 2.
Figure 2 also illustrates the temporal variations. We divided the period of 34 years into two

equal phases (1979/80 to 1995/96 and 1996/97 to 2012/13). Although the mean CCC value
for all 45 locations was essentially similar in the two phases (265.3 vs 269.8 PPP$/ha),

Table 3 Regression of farm net income loss against climatic and non-climatic parameters (2000/01
to 2012/13)

Dependent variable: Plot level net farm income loss R2 0.0091

Independent variables Coefficients Standard error t Stat P-value

Intercept 393.15 119.97 3.28 0.001052
Seasonal rainfall (mm) −0.10 0.03 −3.27 0.001087
Pre-season rainfall (mm) −0.02 0.00 −4.58 0.000005
Seasonal max temp. (°C) 8.40 2.33 3.61 0.000311
Groundwater depth (m) −1.53 1.72 −0.89 0.373857
AWC (m3/m3) 0.08 0.07 1.15 0.250319
Infiltration (mm) −6.99 1.91 −3.65 0.000259
CO2 (ppm) −0.93 0.25 −3.68 0.000236
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the standard deviation (which is a measure for the farmers’ risk) increased from 19.3 to 47.1
PPP$/ha (two-tailed F-test, p=0.00045) and this difference is statistically significant and
material (Table 4). As we assume that non-climatic parameters remain constant during the
study period, this result clearly indicates that climatic parameters (e.g. untimely rainfall, heat
waves) have caused that increase in farmers’ risk exposure. The increase in risk is also
reflected in higher average CCC index payouts: 15.1 PPP$/ha in phase I compared with 23.7
PPP$/ha in phase II (+56.7 per cent) (Table 4). This temporal comparison makes it possible
to quantify the increase in farmers’ climate change-related risks (the longer the studied
time period, and inclusion of the pre-climate change scenario period, should provide a more
robust analysis of the impact of climate change). In this example, the climate change-related
increase was 8.6 PPP$/ha, that is, 36.2 per cent of the current risk premium of 23.7 PPP$/ha.
This calculation makes it possible, for the first time, to identify the share of costs that should
be reduced from premiums payable by farmers if the “polluter pays” principle is applied.
In Table 4 we show the temporal variation in CCC, and in Figure 3 we show the spatial

variation, for the entire time-period and the two partial phases. As can be seen,
notwithstanding the slight changes in rainfall and temperatures over the 34 years
across Bihar, North and South Bihar represent low and high CCC values respectively.

Table 4 CCC values and their components from 1979/80 to 2012/13

Costs in PPP$/ha (average across all 45 locations)

Year
CCC
total Irrigation

Excess
water

High
temp. CO2

CCC
payout Year

CCC
total Irrigation

Excess
water

High
temp. CO2

CCC
payout

1979 283.7 251.2 1.2 0.0 −31.3 25.6 1996 286.7 269.5 0.1 0.0 −17.1 23.8
1980 240.8 209.8 0.8 0.0 −30.2 5.9 1997 198.9 181.9 0.5 0.0 −16.5 0.6
1981 273.5 243.3 0.7 0.0 −29.5 17.0 1998 282.4 263.5 0.0 4.0 −14.9 21.7
1982 290.0 261.2 0.1 0.0 −28.7 26.6 1999 263.6 249.6 0.1 0.0 −14.0 13.1
1983 248.0 218.0 2.2 0.0 −27.9 9.2 2000 298.3 285.0 0.0 0.0 −13.3 34.3
1984 265.7 238.6 0.1 0.1 −27.0 13.2 2001 237.2 224.6 0.1 0.0 −12.4 5.4
1985 254.4 228.2 0.1 0.0 −26.2 8.8 2002 243.5 231.0 1.2 0.0 −11.3 6.4
1986 252.4 223.0 0.7 3.2 −25.5 7.4 2003 225.7 215.7 0.1 0.0 −9.9 0.6
1987 257.3 225.6 0.7 6.5 −24.5 10.6 2004 260.3 251.2 0.1 0.0 −9.0 13.5
1988 281.4 257.6 0.6 0.0 −23.2 21.6 2005 407.0 303.1 0.0 96.2 −7.7 144.7
1989 266.8 244.1 0.3 0.0 −22.3 11.6 2006 282.1 274.6 0.9 0.0 −6.5 23.6
1990 282.2 258.0 0.3 2.3 −21.6 22.2 2007 235.5 226.7 3.3 0.0 −5.5 1.8
1991 259.9 238.8 0.2 0.0 −21.0 13.5 2008 313.9 261.2 0.0 48.1 −4.5 51.5
1992 295.6 274.8 0.2 0.0 −20.5 30.9 2009 249.5 246.0 0.0 0.0 −3.5 7.7
1993 238.0 216.6 1.2 0.0 −20.2 1.8 2010 255.8 253.0 0.6 0.0 −2.2 8.3
1994 286.9 267.4 0.2 0.0 −19.2 27.3 2011 236.6 234.3 1.1 0.0 −1.2 3.2
1995 233.7 214.1 1.6 0.0 −18.1 3.7 2012 309.4 308.5 0.9 0.0 0.0 42.1
Mean 265.3 239.4 0.7 0.7 −24.5 15.1 Mean 269.8 251.7 0.5 8.7 −8.8 23.7
STD 19.3 20.1 0.6 1.7 4.1 9.0 STD 47.1 32.0 0.8 25.4 5.5 34.6

Mean (1979 to 2012) 267.6 245.6 0.6 4.7 −16.7 19.4
STD (1979 to 2012) 35.0 26.6 0.7 17.9 9.2 24.9
STD=Standard deviation
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Higher average CCC values reflect spatial heterogeneity, but do not per se result in higher
CCC index payouts.
We examine in detail the specific influence on the spatial CCC profile of climatic

(aggregated seasonal and pre-season rainfall and average maximum temperature) and non-
climatic parameters (groundwater depth, available water capacity and infiltration rate of soil)
(Figure 4). The analysis (compare Figures 3 and 4) indicates that the largest influence on the
spatial CCC profile is due to groundwater depth.
When groundwater depth increases uniformly by 1 m, the CCC values increase by 13 PPP

$/ha on average (see the “Methods” section for the calculation model). This result is not
negligible, and justifies the argument that irrigation costs (and groundwater depth, as
irrigation costs increase linearly as groundwater depth increases) should not be ignored in the
design of index insurance of crops that are usually groundwater irrigated.

Performance and sensitivity analysis of the CCC index

The calculation of CCC is based on climatic and non-climatic parameters (most importantly
temperature, seasonal and pre-season precipitation, groundwater depth and soil type).
The CCC captures three climatic situations with negative implications on crops, namely
water deficit leading to additional irrigation cost, excess water leading to drainage
cost and high temperatures leading to yield loss. The CCC index indemnifies against

Figure 2. Average Climate Cost of Cultivation of wheat in Bihar from 1979/80 to 2012/13.

a b c

Figure 3. CCC (a) 1979/80–1995/96; (b) 1996/97–2012/13; (c) 1979/80–2012/13.
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above-average CCC values. In this section we compare the plot-level net income losses
(NIL) with the CCC index and TII payouts. We also analyse how much the incorporation of
non-climatic parameters improves the performance of the CCC, and the impact of ignoring
the climatic conditions leading to additional irrigation costs or high temperature losses. We
will also see how much better than the TII the CCC index captures agricultural droughts. We
consider the following six CCC options (in addition to the CCC index with no changes)
leading to different CCC index payouts:

1. CCC with constant groundwater depth (fixed at the spatial average of 3.75 m), that is,
groundwater depth is not considered as a parameter;

Figure 4. Spatial maps of climatic and non-climatic parameters influencing irrigation costs.
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2. CCC with constant soil type (namely loam, the most prevalent soil type in the study area),
that is, soil type is not considered as a parameter;

3. CCC with constant groundwater depth and soil type, that is, Options 1 and 2 combined;
4. CCC with constant initial soil moisture (fixed at the temporal and spatial average of 59.6

per cent), that is, year-to-year variations in aggregated pre-season rainfall are ignored;
5. CCC with no irrigation cost component, that is, additional irrigation costs due to

insufficient precipitation or higher evapotranspiration are ignored;
6. CCC with no high temperature loss component, that is, yield losses due to above-average

maximum temperatures are ignored, and the CCC is mainly due to additional irrigation
costs. However, high temperature leading to higher evapotranspiration and hence
irrigation costs is still considered.

We did not consider the CCC option that ignores costs due to excess rainfall, as these costs
are negligible in the non-rainy season studied here (see also Table 4).
The comparison of plot-level NIL, CCC index and TII payouts are shown in Table 5.
The CCC index (no change) performed better than any of the partial CCC options

examined, in terms of correlation with NIL and the reduction of risk, estimated by
comparing the standard deviation of loss and loss minus payout for the cases of uninsured
and insured, respectively (correlation: 76.0 per cent; risk reduction: −34.5 per cent).
The largest contribution to the correlation of the CCC index payouts with NIL is the high
temperature loss component; CCC Option 5 (ignoring irrigation costs, i.e. mainly
considering high temperature losses) unveils a correlation of 66.9 per cent. However,
CCC Option 6 (ignoring high temperature losses, i.e. mainly considering above-average
irrigation costs) yields non-negligible correlation of 51.0 per cent. Hence, the combination
of high temperature losses and above-average irrigation costs is required to achieve a
correlation of 76.0 per cent. Compare that with the TII with a correlation of 19.6 per cent
with NIL. It is recalled that TII includes high temperature losses and excess rainfall similar
to the CCC but not the risk of insufficient rainfall (in other words the impacts of
agricultural droughts) and the consequential need for additional irrigation. Including a
simple cover that protects against insufficient rainfall to the TII would most likely not
improve the performance of the TII much; one might hypothesise that a better calibration
of the strikes and notionals of the TII high temperature cover could perhaps improve the
correlation with losses (maybe comparable to CCC Option 5), which would still fall short
of the results we have for the unmodified CCC of 76.0 per cent.

The mean of the CCC index payouts is 22 PPP$/ha, while the mean payout under TII is
251 PPP$/ha or about 11.4 times larger than CCC index. Considering that the CCC index
reduces the risk by 34.5 per cent, compared with the almost quadrupled risk effect of the TII
(+300.8 per cent), the TII payout seems incongruous.

Ignoring pre-season rainfall (CCC Option 4) reduces the correlation by 2.2 percentage
points from 76.0 per cent (CCC index, no change) to 73.8 per cent and the risk reduction by
even 9.4 percentage points from −34.5 to −25.1 per cent. This indicates that including the
aggregated pre-season rainfall in the agricultural drought modelling is justified.

CCC Option 3 (with non-climatic parameters constant) reduced the correlation with NIL
by 1.4 percentage points to 74.6 per cent and the risk reduction by 3.0 percentage points to
−31.5 per cent, which shows that including non-climatic parameters improves the correlation
in a modest way for the winter wheat.

The Geneva Papers on Risk and Insurance—Issues and Practice

296



Table 5 Comparison of farm net income losses with CCC index and TII payouts

Year #Plots NILa
CCC options

CCC (no change) Option 1 Option 2 Option 3

POa NIL-PO PO NIL-PO PO NIL-PO PO NIL-PO

2000 610 78 19 58 19 59 34 43 34 44
2001 610 93 5 88 5 88 3 90 3 90
2002 714 123 3 120 3 120 4 119 4 119
2003 818 97 1 96 1 96 0 97 0 97
2004 791 57 3 53 3 53 2 55 2 55
2005 858 199 123 76 123 76 131 68 131 68
2006 893 97 27 70 27 70 19 78 19 78
2007 846 41 1 40 1 40 2 39 2 39
2008 714 61 38 24 38 23 37 24 38 23
2010 714 63 6 57 6 57 7 55 7 55
2011 1,079 100 3 97 3 97 2 98 2 98
2012 1,079 103 34 69 37 66 39 64 41 62

Mean 93 22 71 22 70 23 69 24 69
STDa 41 35 27 35 27 37 28 37 28

Reduction in STD compared with NIL −34.5% −34.3% −31.7% −31.5%
Correlation with NIL 76.0% 75.9% 74.7% 74.6%

Year #Plots NILa
CCC options

Option 4 Option 5 Option 6 Typical Index Insurance (TII)

PO NIL-PO PO NIL-PO PO NIL-PO PO NIL-PO

2000 610 78 55 23 0 78 30 48 90 −12
2001 610 93 1 92 0 93 9 84 167 −74
2002 714 123 0 123 0 123 6 117 207 −84
2003 818 97 0 97 0 97 2 95 100 −2
2004 791 57 4 53 0 57 6 50 510 −453
2005 858 199 151 48 85 114 39 160 434 −235
2006 893 97 22 75 0 97 36 61 482 −385
2007 846 41 2 39 9 32 2 39 101 −60
2008 714 61 30 31 32 29 11 51 138 −77
2010 714 63 0 63 0 63 11 52 466 −403
2011 1,079 100 0 100 1 100 6 94 161 −61
2012 1,079 103 35 68 0 103 43 60 162 −59

Mean 25 68 11 82 17 76 251 −159
STDa 44 31 25 31 15 36 168 165

Reduction in STD compared with NIL −25.1% −25.4% −12.9% 300.8%
Correlation with NIL 73.8% 66.9% 51.0% 19.6%

aNIL=Net income losses; PO=Payout; STD=Standard deviation.
1. CCC (GW depth const., 3.75 m). 2. CCC (soil type const., loam). 3. CCC (GW depth & soil type const.).
4. CCC (const. initial soil moisture, 59.6%). 5. CCC (no irrigation cost). 6. CCC (no high max. temp. loss).
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Discussion

We set out to prove that the inclusion of certain climatic and non-climatic parameters in the
design of index insurance can deliver a better estimate of farmers’ risks, lead to a better
correlation between losses and payouts, and quantify the added cost to farmers of the impact
of climate change. We demonstrated the results by reference to winter wheat in Bihar, India
by comparing a new method (which we call “Climate Cost of Cultivation” or CCC) to the TII
in use in India, and to alternative options of CCC with fewer parameters.
The CCC index provides a more robust modelling of farmers’ risk exposure compared

with TII notably because the CCC refines the estimate of agricultural droughts in the non-
rainy season by considering the residual impact of precipitation in the preceding (rainy)
season on soil moisture and conducting a detailed daily soil moisture modelling (which
incorporates daily seasonal rainfall, temperature data and non-climatic parameters).
This calibration of the index to soil moisture variations rather than to the observation of a
single climatic parameter during the season is novel. It registers a better understanding of
farmers’ risk of agricultural drought even in regions that are otherwise rich with ground-
water, like Bihar. The advantage of such a region is that irrigation is possible and practiced,
and, as irrigation compensates for drought conditions, there is every justification to include
irrigation costs in the CCC, considering that the purpose of index insurance is to compensate
farmers for the adverse impact of unstable or changing patterns of climate on crop yields.
Including irrigation costs is another important innovation of the CCC model.
The basic thought underlying the CCC model is that index insurance should include,

additional to climatic parameters, other parameters that influence the economic results of
farming. The parameters with which we demonstrated the usefulness of the model for a
specific crop (wheat), season (rabi) and location (Bihar) were chosen in order to model the
daily soil moisture at root level, which is the major indicator both for plant growth and for
additional irrigation costs (and for which many of the climatic parameters are essentially
proxy indicators). Obtaining meaningful results on soil moisture necessitates the inclusion of
soil properties (e.g. available water capacity—portion of water that can be absorbed by plant
roots—and infiltration rate) and groundwater depth, in areas relying on groundwater
irrigation for plant growth. TII does not incorporate non-climatic parameters and does not
allow to compensate for additional irrigation costs in the non-rainy season. During low
rainfall periods, farmers replenish low soil moisture levels through irrigation to reduce or
avoid crop yield reduction. In Bihar, as in other parts of the world where groundwater can be
pumped for irrigation, the cost of each water unit pumped is directly linked to the depth from
which the water is fetched, and the cost of the energy required (in Bihar this is mainly diesel,
to operate tube wells). Therefore, we included in the CCC method both groundwater depth
and the estimated cost of diesel, in addition to soil properties.
We show that an increase in groundwater depth increases not only the cost of cultivation,

but also farmers’ risks. Including the cost of irrigation in the CCC index makes it possible to
compensate farmers for that financial loss.

In Bihar, groundwater levels are shallow and do not fluctuate much spatially, which
explains the modest contribution of this parameter to the CCC performance and why
groundwater depth did not exhibit a statistically significant impact on net income losses
(Table 3). Nonetheless, inclusion of groundwater depth and soil type improved the
performance of the CCC compared with options which ignored these parameters partially
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(Table 5). And, it stands to reason that the impact of groundwater depth on improving the
CCC will be bigger in regions where groundwater depth varies spatially more than in Bihar.
Table 5 also reveals that neglecting additional irrigation costs (CCC Option 5) or high

temperatures (CCC Option 6) reduces the performance of the CCC more significantly.
We conclude that the first important insight arising from the findings is that both climatic

and non-climatic parameters have to be included in index design to model farming risks more
accurately.
The second essential insight is that the CCC informs the assessment of the risk to farmers

due to climatic changes over time, and by how much. The increase in average CCC index
payout, and hence in the pure risk premium, has been material for winter wheat in Bihar
(+56.7 per cent during 1996/97 to 2012/13 compared with 1979/80 to 1995/96; see Table 4).
However, as already mentioned, the robust analysis of the impact of climate change should
be based on longer time periods and should comprise a pre-climate change scenario.
Respecting this caveat, climate change has already increased the cost of index insurance and
this increase might be ongoing, which in turn could lower the likelihood that smallholder
farmers in developing countries would buy index insurance. The first counter-measure would
be to remove the share of the premium that reflects climate change trends (and the
justification why farmers, whose carbon signature is negligible, should not be required to
pay the climate change-related surcharge is known and self-explanatory). We have shown
how the principle of “polluter-payer” can be applied. Applying this principle would reduce
the cost of the premium significantly and enhance the likelihood that farmers would buy
index insurance that compensates their risks. Considering that the incremental climate
change-related addition to the pure risk premium is specific to each location, crop and
season, our CCC method offers an actionable method to contextualise the quantification of
this cost component, so that its subtraction from premiums could be applied in practice.
The third important insight is that the CCC index offers a much better correlation between

farmers’ net losses and payouts than TII (76.0 vs 19.6 per cent). Applying an index that
offers a much-improved correlation between losses and payouts leads to a significant
reduction in farmers’ risks, measured as the standard deviation of CCC-adjusted net farm
income losses. Not only would that translate into lower premiums, which in the analysed
context was lower by 91 per cent compared with TII, but the lower premiums would suffice
to sustain the index insurance as a business, since the payouts would be lower in years of
little or no loss. The CCC thus points a way to reduce farmers’ basis risk drastically (i.e. the
risk of mismatch between incurred losses and index-triggered payouts) as well as the cost of
crop insurance.
Lastly, we submit that risk exposure cannot be treated as “one size fits all”, even if this is

the prevailing practice now. Within the new CCC method, we incorporated spatial
heterogeneities because of varying groundwater depth, soil type and microclimate.
We suggest that arable areas that represent systemically higher risk should command a
higher premium, just as lower risk areas should command lower premiums. Spatial
heterogeneities would feed into the insurance design, to apply justified differential premiums
and payouts. For example, farmers could choose an insurance package where groundwater
depth and soil type are one of the parameters customised to their conditions.
Although the CCC method seems to be data intensive, all the data are available for all of

India and most of the data are freely accessible to a global extent; regional information
(like soil type, groundwater depth, rainfall and temperature) is available in most countries
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through local authorities. In our study area, we assumed that groundwater depth was constant
over the last decades, as data did not suggest otherwise. However, if groundwater levels
vary, the CCC method can easily be adjusted to accommodate this calibration of the index.
For other regions of investigation, the irrigation cost module in the CCC method would have
to be adapted to the different irrigation sources and facilities used: for instance, in regions
which are entirely rain-fed, water stress would not lead to additional input costs due to
irrigation, but would affect yield losses (which can be incorporated into the CCC). In the
analysis of CCC for wheat in Bihar, we identified that crop losses were associated with
extended periods of high maximum temperatures. Similarly, for other crops, other parameters
might be more relevant, for example, high/low minimum temperature, high wind speeds etc.
The discussion leads to the conclusion that CCC can be applied to other crops, seasons and

locations once the necessary calibration is done; and the method explained in this article
shows the way how to do this. Some crops might require the elaboration of other
permutations of CCC that include other or additional relevant parameters, both climatic and
non-climatic parameters.
The CCC method is subject to some limitations. For one, certain weather-related risks are

not purely local, for example, floods are sometimes caused by weather conditions upstream
(and would not be easily covered through local weather data); pests and diseases may be
associated with certain weather conditions but are not necessarily caused by them.
Agriculture extension services/advisories could reduce certain risks which cannot easily be
covered in an index. Losses against excess rainfall could be better accounted for with the
inclusion of a drainage index based on certain non-climatic parameters, including topogra-
phy (risk to water-logging), land use and soil type. We were unable to use a drainage index in
the study of Bihar as the data were unavailable. Elevation modelling at low vertical gaps is
one of the missing pieces of data and therefore a better reflection of the consequences of
excess rainfall-induced risks is for the time being imperfect.

Conclusions

The CCC method offers a novel way to quantify farmers’ economic risks that can be insured.
We have referred to all the main drivers of climate change parameters impacting the

productivity of agricultural crops as identified by the World Bank,66 namely changes in
precipitation, temperature, CO2 fertilisation (CO2-induced crop yield gain), climate varia-
bility and surface water runoff. We have shown that the nonlinear, multi-parameter CCC
index, which incorporates both climatic and non-climatic parameters, reflects the financial
risks of farmers more accurately than TII. The CCC index has a higher correlation to farm
income losses, better risk reduction properties and much lower pure risk premiums than TII.
The CCC index also provides a method to calculate the percentage of the pure risk premium
which can be attributed to climate change, thus providing the needed tool to deal with this
issue at a policy level, rather than continuing the unfair practice of charging it to farmers.
The CCC thus contains several novelties: one that provides better modelling of agricultural
droughts (influenced in post-rainy season notably by rain in the previous rainy season) and a

66 World Bank (2007).
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new design of an index that is easily contextualised to crop-season-location specificities,
both climatic and non-climatic ones. Researchers, practitioners and policymakers can apply
this CCC method for a wide range of uses, be it the application of policy measures to apply
the “polluter pays” principle, or reducing farmers’ basis risk, or making crop index insurance
more attractive for farmers.
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