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We introduce a catastrophic risk model that captures the cumulative impact of climate change
on future expected losses from hurricane risk. The annual growth rates of expected losses due
to change in climate patterns (or “climate change factor”) are estimated based upon historical
storm activities in the Atlantic Basin and catastrophe modelling. The percentiles of the climate
change factor are then used to measure expected hurricane losses in the Caribbean Island of
St. Lucia. We also undertake benefit-cost analyses on four adaptation measures for homes in
St. Lucia and determine when those are cost-effective for different time horizons and discount
rates with and without climate change. Adaptation makes an enormous difference and can
offset additional losses even with a high climate change factor by making houses much more
resilient. Enforcing these protection measures will be critical.
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Introduction

The losses caused by great natural disasters have increased dramatically in recent
years, especially after 1990, largely explained by higher population density and
increasing development in hazard-prone areas.1

Climate change may also amplify weather-related natural disasters by raising the
magnitude and/or frequency of these extreme events.2 Recent studies indicate that
increasing concentrations of greenhouse gases are the major cause of warming in the
atmosphere and oceans.3,4 The number, track, rainfall quantity and intensity of

1 Changnon (2003); Muir-Wood et al. (2006); Miller et al. (2008); Cromption and McAneney (2008);

Kunreuther and Michel-Kerjan (2011).
2 Hawker (2007).
3 Human behaviours, including the burning of fossil fuels, deforestation and other land use changes,

contribute to the emission of carbon dioxide and other greenhouse gases, such as methane, which have

accumulated in the atmosphere since late 19th century. Greenhouse gases trap heat more easily, resulting

in higher surface air temperature. IPCC predicts that global average surface temperatures will increase

1.11CB2.91C under a low emission scenario and 2.41CB6.41C under a high emission scenario. Stern

(2006) also suggests that positive feedback mechanisms of climate change, such as releases of methane

resulting from melting of permafrost and a reduced uptake of carbon that caused by shrinking Amazon
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tropical cyclones might also change with global warming, causing more intense and/or
frequent climate disasters, such as storms, floods and droughts. Sea level rise and
potentially stronger storms also pose a more intensive threat to the economy,
particularly in coastal areas.5,6

At the same time, several climate models indicate a possible decrease in hurricane
activity in certain regions of the world. Controlling for socio-economic influences,
such as increasing population and assets in risk-prone areas, most studies cannot
attribute the recent trend of hurricane damages to climate change.7 But if climate
change does impact on the frequency and/or severity of extreme climate events in the
future, a crucial feature will lie in its irreversibility.8

This paper proposes a simple model that captures this irreversibility element. We use
a growth model ((1þ a)t model) to integrate the cumulative effect of a changing
climate on expected losses from climate hazards. This effect will of course vary for
different geographic regions, hazards and over time. The parameter a can be estimated
from observational data and catastrophe modelling of hurricanes and reflects the
impact of climate change on physical house damage due to greenhouse gas (GHG)
emissions that impacts on global average temperature changes.

The use of a growth model (1þ a)t is consistent with the Dynamic Integrated
Climate-Economy model (DICE model).9 It extends neoclassical economic growth
theory by including the natural capital of the climate system as another kind of capital
stock with the damages due to climate change proportional to world output and
changing with global mean temperature. This property implies that the damages will
depend on climate-related factors and will accumulate over time. This assumption is
consistent with our growth model where we focus on the damages to individual houses
from local climate hazards in a specific region rather than estimating its impact on
world output.

In this paper, we focus on hurricane risks in the Atlantic Basin and run a series of
simulations to calibrate our model. More specifically, we estimate the parameter a that
most closely captures the impact of climate change on expected future hurricane losses
using historical storm activities and a hurricane risk model provided by Risk
Management Solutions (RMS). We then analyse the impacts of future hurricane risk
to residential houses in St. Lucia, an island in the Caribbean.

forest, may amplify greenhouse gas concentrations and lead to global warming that is more severe than

anticipated by climate models.
4 Stern (2006); Intergovernmental Panel on Climate Change (IPCC) (2007).
5 Over the next 100 years, higher sea level provides an elevated base for storm surges to build upon and

diminishes the rate at which low-lying areas drain, thereby extending coastal inundation from

rainstorms. Greater flood damages are also driven by increases in shore erosion, removing protective

dunes, beaches, and wetlands and thus leaving previous protected properties closer to the water’s edge

(U.S. Climate Change Science Program, 2009).
6 Rapley (2006); Stern (2006); Wood et al. (2006); IPCC (2007); U.S. Climate Change Science Program

(2009).
7 Bouwer and Botzen (2011).
8 Heal and Kristrom (2002).
9 Nordhaus (2008).
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We are also interested in possible adaptation measures undertaken by residents
to lower their expected loss. In recent years, there has been increasing interest in
undertaking adaptation measures that can cost-effectively reduce the potential damage
against future natural disasters and maintain insurability, protecting lives and
properties.10,11 For example, houses’ roof and windows can be retrofitted or reinforced
to withstand hurricanes. However, these measures can have high up-front costs and
there is evidence from the literature that many homeowners are unlikely to invest in
them because they underestimate the likelihood of future disasters and only consider
the expected benefits of these measures over the next few years.12 It might also
be the case that individuals do not know what measures are cost-effective over a given
period of time.

This paper also evaluates the relative attractiveness of four alternative adaptation
measures through benefit-cost analyses using scenarios based on empirical loss data and
estimates of climate change impact by climate scientists. We select St. Lucia as the
illustrative example because it is located in the Caribbean’s, one of the world’s most active
hurricane regions. The Caribbean is at risk from hurricanes that are expected to change in
intensity (upper or lower) under different climate scenarios. We also have access to
catastrophe modelling capacity by RMS. This allows us to quantify the expected benefits
of these adaptation measures on specific types of constructions in St. Lucia. Although the
results of benefit-cost analyses provide quantitative estimates, they serve more as an
illustrative example rather than a quantitative justification for investment today.

This paper is organised as follows: The next section introduces our simple
catastrophic risk model with potential cumulative climate change impact. The
subsequent section presents the approach to estimate the climate change factor a using
historical storm activities in the Atlantic Basin and RMS Caribbean Hurricane Risk
Model. In the latter section, we simulate hurricane risk in St. Lucia using our model,
the estimates of climate change factor, and loss data with four adaptation measures.
Based on the simulations, we show the interplay of climate change and adaptations on
hurricane losses for different timescales. In the penultimate section, we conduct
benefit-cost analysis on the four adaptation measures to determine which one would
be most cost-effective as a function of the time horizon, discount rate and degree of
climate change. The final section concludes.

10 According to IFRC (2001), worldwide investments of US$40bn in disaster preparedness, prevention and

adaptation have reduced global economic losses by US$280bn during the 1990s. Kreibich et al. (2005)

analysed the impact of building precautionary measures for the Elbe flood of Germany in 2002. They

found that use of buildings and interior fitting adapted to flooding reduced damage to buildings by 46

and 53 per cent, and damage to contents by 48 and 53 per cent, respectively. Moreover, Kunreuther and

Michel-Kerjan (2011) model hurricane damage in Florida, New York, South Carolina and Texas in

situations with and without adaptations according to recent building code standards. The results for

a 100-year hurricane indicate that adaptation could reduce potential losses by 61 per cent in Florida,

44 per cent in South Carolina, 39 per cent in New York and 34 per cent in Texas. Saving in Florida alone

due to adaptation would be US$51bn for a 100-year event and US$83bn for a 500-year event.
11 IFRC (2001); Kreibich et al. (2005).
12 Kunreuther et al. (2013).
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A catastrophic risk model with potential climate change impact

Climate change could play a critical role in estimating future catastrophic risk since it
will modify the distribution of expected losses upward or downward. We assume that a
climate disaster (e.g. a hurricane) could impact St. Lucia with an annual probability p13

over the next T years. Timing of the climate change state is uncertain and follows a
discrete uniform distribution14 during the T years. That is, climate change will impact
economic losses in each year with possibility 1/T. If climate change starts to impact
economic losses in year t (1ptpT), the potential catastrophic loss increases gradually
with an annual growth rate, a, until year T. The occurrence of a catastrophe and
the occurrence of climate change are mutually independent. If there is no climate change
effect, the economic loss resulting from a disaster is assumed to be a constant, L. Table 1
defines the notations used in this section.

The annual growth rate, or what we call here the “climate change factor” a, can
reflect an external index, such as the average wind speed of all storms and hurricanes
occurring in a specific region of the globe in a given year. The higher the average
wind speed, the greater the loss caused by a hurricane making landfall in a populated
area. If climate change starts to impact economic losses in year t and a storm hits
the area in year t>t, the expected loss caused by the storm becomes (1þ a)t�tL. The
loss is L if tpt.

The parameter a can be estimated for a specific geographic region and period of
time depending on the available historical climate data. For simplicity, we begin here
with a certain value of a to illustrate the cumulative impact of climate change on
economic losses. In the next section, we will relax this assumption and quantify a
distribution of values for the parameter a for hurricane risks in St. Lucia from
historical storm activity in the Atlantic Basin coupled with estimates from the
proprietary RMS Caribbean Hurricane Risk Model.15

Table 1 Definitions of notations

p: Annual probability of a climate disaster

L: Economic losses from a climate disaster with no climate change impact

T: Total observed years

t: The time before climate change starts to impact economic losses

a: Annual growth rate of economic losses once climate change impact starts

13 The assumption that only one disaster may occur each year will also be relaxed in the Section “Climate

change, adaptation measures and timescales” once we have the empirical loss distribution, but in this

section we make a simplified assumption to highlight the cumulative impact of climate change on

economic losses.
14 Based on the results of our simulation, if the climate change time follows exponential distribution with

the parameter 1/T, the tail of the simulated distribution is very close to the worst case scenario, where

climate change occurs in the first year. In addition, the mean losses are greater if climate change time is a

uniform distribution than if it is an exponential distribution for all scenarios. Thus, the setting of uniform

climate change time is practical and closer to the real scenario.
15 We used the latest release of the RMS Caribbean Hurricane Risk Model in 2011 to assess hurricane risk

from the medium-term perspective (5-year forward-looking period) in 25 Caribbean islands and

The Geneva Papers on Risk and Insurance—Issues and Practice

524



The cumulative growth effect plays a very important role in capturing the impact of
climate change even if this impact is uncertain. For more than a one-year timescale, the
aggregate distribution of catastrophic losses with climate change will show a fatter
tail compared with the case with no climate change. For example, if we consider a
two-year timescale and assume that climate change increases or decreases the loss by b
(b>0) per year with an equal probability (1/2), the two-year aggregate distribution
of losses will have a fatter tail with climate change since the cumulative impact of
the positive value will dominate that of the negative value ((1/2)*(1þ b)2þ
(1/2)*(1�b)2>1).16

The simulation based on this simple model is executed in three steps that are
summarised in Figure 1: First, assume that climate change occurs in year t, tA[1,
2,y,T]. The potential loss caused by a catastrophe is specified as L(s), s¼1,y,T,
where L(s)¼L for spt and L(s)¼(1þ a)s�tL for s>t. Next, the occurrence of a
catastrophe is randomly simulated with an annual probability p during the T years for
n simulations. Given that climate change occurs in year t, if a catastrophe occurs in a
year s, a catastrophic loss L(s) specified above is assigned; if no catastrophe occurs,
then L¼0. Finally, t is supposed to follow discrete uniform distribution with
parameters [1,T].

The parameters of the benchmark case are as follows: p¼0.01, L¼1, T¼20, n¼105. If
there is no climate change, a¼0, and the other parameters are the same as in the
benchmark case, the aggregate loss simply follows a binomial distribution with
parameters T¼20, p¼0.01. Since we can identify the exact distribution of the aggregate
loss, the statistics and tail probabilities can be obtained. However, with climate change

If climate change 
occurs at time τ,
L(s) = L(1+a)(s-τ)+

where  

(s-τ)+ = max(s-τ, 0)

Annual probability 
of a catastrophe=p 
for T years 
(Number of 
simulations = n) 

τ ~discrete uniform 
[1, T]

Obtain statistics and 
tail probabilities from 
the simulations 

Figure 1. Steps for simulations of the catastrophic risk model.

territories, including high-resolution storm surge modelling, region-specific building inventory and

component-based vulnerability. The methodology consists of three main steps: stochastic storm-track

generation, adding pressure histories to tracks and importance sampling to obtain a manageable number

of hurricanes (Michel-Kerjan et al., 2012). In the first step, a Monte Carlo set of storm tracks with

associated rates of occurrence is generated using a random-walk technique and calibrated using historical

track data. The hurricane frequency and severity are based on historical storms that have struck the

Atlantic Basin and coastal regions since 1886. In the second step, pressure histories are added to the

tracks using a second random walk technique when the storms are over the ocean. Finally, after

generating around 100,000 years of simulated time, tracks with similar paths and intensities at key

locations are identified and grouped together. Importance sampling is achieved by retaining a greater

proportion of intense storms than weaker storms.
16 This example can be extended to multiple-year timescales. As long as the probability of positive impact

on losses is greater than the probability of negative impact on losses, climate change will lead to a fatter-

tail loss distribution.
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impact, that is aa0, we have to resort to simulations to explore the statistical
properties of the aggregate loss.

After constructing our simple catastrophe risk model, we will examine whether it
captures the cumulative effect of climate change on the loss. We will use an arbitrarily
set positive climate change factor (a¼5 per cent or 0.05) to show its different impacts
on the expected loss and the tail of the loss.

Table 2 reports the statistics of the simulated losses without climate change (a¼0)
and with climate change (a¼0.05). These statistics include the expected value, the
standard deviation, the skewness, the kurtosis, the Value at Risk (VaR) and the
Expected Shortfall (ES) of the loss. For VaR and ES, the values with confidence levels
of 95 per cent, 97.5 per cent and 99 per cent are presented. VaR and ES are indicators
of the tail of loss distributions. The greater the value of VaR or ES for the same
confidence level, the fatter tail the loss distribution. Value at Risk with confidence level
a (VaRa) denotes the a-percentile of the loss distribution. The proportion of the loss
greater than VaRa is at most (1�a). The formal definition of VaR is shown in (1).

VaRaðLÞ ¼inffl:PðL4lÞp1� ag: ð1Þ

Expected Shortfall (ESa) is defined as (2), which is the expected value of the tail of
the loss distribution with the loss threshold VaRa.

ESaðLÞ ¼EðljlXVaRaðLÞÞ: ð2Þ

The advantage of ES over VaR lies in that ES is a coherent risk measure.17

(The axiom of coherence was proposed by Artzner et al. (1997, 1999); VaR violates the

Table 2 Impact of climate change on the statistics of the simulated losses without adaptation

p=0.01, T=20, L=1

Climate change factor (a) 0 5% %change

Expected Value 0.2018 0.2428 20.32

Standard Deviation 0.4482 0.5465 21.93

Skewness 2.2029 2.2903 3.97

Kurtosis 7.7498 8.2858 6.92

VaR (95%) 1 1.442 44.20

VaR (97.5%) 1 1.6533 65.33

VaR (99%) 2 2.3314 16.57

ES (95%) 1.3754 1.8622 35.39

ES (97.5%) 1.7508 2.2166 26.60

ES (99%) 2.107 2.7279 29.47

Prob(Loss>0.5) 0.1831 0.1835 0.22

Prob(Loss>1.0) 0.0177 0.1663 839.55

Prob(Loss>1.5) 0.0177 0.0416 135

Prob(Loss>2.0) 0.001 0.0165 1,550
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axiom of subadditivity, thus is not a coherent risk measure. For completeness, we
provide both measures.)

In the presence of climate change, the simulated expected loss increases 20.32 per
cent while the tail statistics for ESs increase by at least by 26.60 per cent. The
percentage increase in tail probabilities due to climate change is very significant. For
instance, the probability that the 20-year expected loss is greater than the value of the
house increases from 1.77 to 16.63 per cent (a 840 per cent increase) with potential
changing climate. (The 1-year expected loss per year with no climate change is around
20 per cent of the value of the house). The results are also consistent with what most
climate models have shown: It only takes small changes in the mean climate to
generate large changes in extreme weather.18

Figure 2 depicts the exceedance probability curves (EPs)19 with cumulative climate
change (a¼5 per cent) and without it (a¼0) based on our simple catastrophic risk
model. It reveals the importance of integrating climate change when modelling
catastrophic risks to see its impact on the tail of the loss distribution. Climate change
produces higher inter-temporal correlations through its cumulative effect over time,
which in turn leads to a fatter-tail loss distribution. Owing to the uncertainty
associated with climate patterns, there are challenges in estimating the loss
distribution, and this could significantly increase the amount of capital insurers and

Figure 2. EP curves with and without climate change based on a simple catastrophic risk model.

17 A risk measure whose domain includes the convex cone is called coherent if it satisfies four axioms:

translation invariance, subadditivity, positive homogeneity and monotonicity; McNeil et al. (2005).
18 Wilkins (2010).
19 For a given portfolio of buildings at risk, the EP is the probability p that a certain level of aggregate loss

US$L will be exceeded in a given year, that is, p¼Prob(Loss>L).
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reinsurers need to set aside to cover average annual losses and extreme losses. This in
turn will depress the supply of insurance.20

Estimating climate change factor using historical storm activities and the RMS
Caribbean hurricane risk model

Hurricanes often form from June to November in the Caribbean Sea, the subtropical
and tropical northern Atlantic Ocean and the Gulf of Mexico, which are collectively
referred to as the Atlantic Basin. The most active months for hurricanes are August
through October when the Atlantic Basin experiences its peak water temperatures,
fuelling storm formation.21 We will use the storm activities in the Atlantic Basin as an
example to illustrate how we calibrated the climate change factor (a) in this area. The
steps to estimate the climate change factor from historical climate activities are
summarised in Figure 3.

Since the trend in losses due to climate change may not often be easily identified
based on historical diagrams, we begin by using a simple 5-year projection model to
estimate the growth rate of storm activities in the Atlantic Basin. Figure 4 shows the
basic concept: The next 5-year mean activity rate is predicted based on the mean over

5-year variability 

from historical 

storm activities 

1950-2008

RMS Caribbean 

Hurricane Model 

(translate the 5-

year variability into 

loss distributions) 

Expected loss and 

standard deviation 

of loss over the 

next 5 years for 5 th,

35th, 50th, 65th, and

95th  percentiles

Estimate climate change 

factor by assuming linear 

growth over 5 years for five
percentile cases 
(a=-8.5%, -1.78%, -0.73%,
3.71%, 11.07%)

Figure 3. Steps for estimating climate change factor, a.

Known 5-year
mean 

Unknown 5-year
mean

Upper

Middle

Lower

Today +5 years-5 years

5-
ye

ar
 M

ea
n 

A
ct

iv
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 R
at

e

Figure 4. A simple model that estimates the probability and level of storm activity rate based on historical

storm activity rate.

20 Charpentier (2008); Herweijer et al. (2009).
21 Michel-Kerjan et al. (2012).
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the past 5 years. This is equivalent to the example that an insurer who issues home
insurance predicts the next 5-year average rate based on the past 5-year average rate
and the historical growth pattern for the 5-year average rate. “Upper”, “Middle” and
“Lower” can reflect different percentiles of future storm activity rate. For example,
“Upper” can be the 95th percentile, “Middle” can be the median and “Lower” can be
the 5th percentile. This model incorporates non-stationarity properties of catastrophic
losses into the “medium-term” (5-year) forward-looking view of risk, as indicated in
Herweijer et al.22

Figure 5 shows the annual number of named storms in the Atlantic Basin from 1950
to 2008. Figure 6 focuses specifically on Category 3 to 5 hurricanes on the Saffir-
Simpson scale over the same time period. We use this historical storm activity to
calculate the average annual storm activities for the previous 5 years. The 5-year
average annual activity rates (AAR) are shown in Figures 7 and 8. Figure 7
(Figure 8) presents the activity rates for named storms (Cat 3–5 storms). For
instance, the 5-year average annual storm activity rate in 1954 is the average number
of storms from 1950 to 1954. According to Figure 5, there are 13, 10, 7, 14, and 11
(12, 8, 8, 10, 11) named storms in the Atlantic Basin from 1950 to 1954 (from 1955
to 1959). Thus, the 5-year AAR in 1954 (1959) is equal to 11 (9.8) named storms in
Figure 7. If we take the year 1954 as the base year, the growth rate over the 5-year
timescale can be calculated by the growth rate of the 5-year AAR from 1954 to 1959
((9.8–11)/11¼�10.91 per cent). Since there are a total of 59-year time series of storm
activities, we have 55-year AARs (from 1954 to 2008) and 50 growth rates of the

Figure 5. Number of named storms in the Atlantic Basin during 1950–2008.

Source: NOAA.

22 Herweijer et al. (2009).
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5-year AAR.23 Based on these growth rates, the statistics of the variability in storm
activity rates can be obtained.

Figure 6. Number of Cat 3–5 storms in the Atlantic Basin during 1950–2008.

Source: NOAA.
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Figure 7. Five-year average annual activity rate based on the number of named storms in the Atlantic Basin

from 1950 to 2008.

23 The first growth rate is from 1954 to 1959 and the last growth rate is from 2003 to 2008, with a total 50

growth rates obtained from the 55-year AARs.
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Table 3 exhibits the statistics of variability in storm activities over successive
5-year periods based on all named storms and Cat 3–5 hurricanes. Take the number of
Cat 3–5 hurricanes as an example. On average, there is a 12 per cent increase in
the number of Cat 3–5 storms between any two successive 5-year periods; 35 per cent
of the time we will see a decrease in storm activities of at least 12 per cent, and
35 per cent of the time we will see an increase in storm activity of at least 22 per cent
and 30 per cent of the time the change in storm activity is between these two
percentages.

These storm AARs are used to adjust the frequencies of individual events in the
RMS Caribbean Hurricane Risk Model. We normalise the frequency of all named
storms and Cat 3–5 storms relative to the present-day’s level in five percentiles.
For example, in the 95th percentile, the frequency of all named storms (Cat 3–5
hurricanes) is 38 per cent (85 per cent) higher than the present-day’s level. Thus,
the frequency of all named storms (Cat 3–5 hurricanes) relative to present day is
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Figure 8. Five-year average annual activity rate in the Atlantic Basin based on the number of Cat 3–5

storms from 1950 to 2008.

Table 3 Statistics of variability in storm activities over successive 5-year periods

Statistics All named storms (%) Cat 3–5 Hurricanes (%)

Mean 6 12

95th percentile 38 85

65th percentile 16 22

50th percentile 5 3

35th percentile �2 �12

5th percentile �24 �42
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1.38 (1.85) in the 95th percentile in Table 4. These frequencies are then converted into
hurricane loss distributions by the RMS Caribbean Hurricane Risk Model.

Table 4 shows the expected value and the standard deviation of 5-year losses for
5th, 35th, 50th, 65th and 95th percentiles. (These statistics are derived based on changes
over successive 5-year periods and the RMS Caribbean Hurricane Risk Model.) We
further assume a constant annual growth rate that will be accumulated during 5 years.
In each percentile, we can derive this constant annual growth rate based on the same
procedures: If the future storm activity is much less severe than the present-day’s
level (5th percentile), expected losses from hurricanes for a house with a value of
US$100,000 (which is consistent with real estate prices in St. Lucia) will decrease
from US$3,377 (the present-day expected loss) to US$2,165 in the next 5 years. The
annual growth rate of hurricane losses will be�8.5 per cent (US$3,377*(1þ a)5¼US$2,165,
a¼�8.5 per cent).

We estimate for five cases of frequency of storms by percentile the climate change
factor (or the annual growth rate of expected hurricane losses) in the Atlantic Basin by
using a simple 5-year model, historical storm activities and the RMS Caribbean
Hurricane Risk Model. Table 4 provides the results. For the 5th percentile, the
expected hurricane losses in the Atlantic Basin will decrease by 8.50 per cent. For the
50th percentile, it will increase by 0.73 per cent, and for the 95th percentile, it will
increase by 11.07 per cent over five years. In the next section, we will use these five
percentile cases as inputs to explore the impact of climate change and adaptation
measures on hurricane losses for different timescales.

Climate change, adaptation measures and timescales

St. Lucia is a small Caribbean island close to the Atlantic Basin prone to hurricane
risks. Since it has experienced a number of destructive hurricanes, upgrading building
codes and strengthening the buildings to withstand hurricane exposures is critical to
reducing economic losses.24 St. Lucia thus provides an ideal natural environment to
explore the interplay of climate change and adaptation measures. In this section we

Table 4 Percentiles of frequency of storm activities, expected loss, volatility of loss and estimates of climate

change factor

Present day Percentiles

5th 35th 50th 65th 95th

Frequency of all named storms relative to

present-day

1 0.76 0.98 1.05 1.16 1.38

Frequency of Cat 3–5 storms relative to

present-day

1 0.58 0.88 1.03 1.22 1.85

Expected loss over 5 yearsa 3,377 2,165 3,086 3,501 4,051 5,707

Standard deviation of lossa 9,298 7,326 8,795 9,412 10,117 12,027

Annual growth rate of losses over 5 yearsa 0 �8.50% �1.78% 0.73% 3.71% 11.07%

Annual growth rate of standard deviation

over 5 years

0 �4.66% �1.11% 0.24% 1.70% 5.28%

aThe expected loss and standard deviation of loss is for a house with a value of US$100,000.
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simulate the impact of climate change on economic losses with and without risk
reduction measures using empirical hurricane loss data in St. Lucia and the five
percentiles of climate change factor obtained in the previous section. In the following
section we will undertake a series of benefit-cost analyses for these measures.

IIASA, RMS and the Wharton Risk Center analysed the impact of cost-effective
adaptation measures on the reduction of losses caused by natural disasters.21 Their
study quantitatively estimated the potential losses and undertook benefit-cost
analysis on various adaptation measures in different areas, including hurricane risk
in St. Lucia. We use their data on loss distributions, adaptation costs and the impact of
four adaptation measures on hurricane risks for different building types.

The detailed characterisations of the four adaptation measures with their estimated
costs are summarised as follows.21

� Measure 1: No Adaptation: No adaptation measure is installed. The total cost is
US$0.

� Measure 2: Roof Upgrade: This includes the replacement of the roof material with
thicker sheeting and tighter screw spacing, as well the use of roof anchors. The total
cost of this measure is estimated to be US$9,200.

� Measure 3: Opening Protection: This includes strengthening the resistance of
windows and doors against wind and heavy pressure. The total cost is estimated to
be US$6,720.

� Measure 4: Roof Upgrade and Opening Protection: Options 1 and 2 can be combined
to provide a more comprehensive level of protection for the structure. The cost for
both is estimated at US$15,920.

A wood-frame building in the city of Canaries in St. Lucia is taken as a rep-
resentative structure. We conduct Monte Carlo simulations to randomly generate the
annual EP curve that matches the annual loss to this representative house. The annual
EP curve is then incorporated into our model in the Section “A catastrophic risk
model with potential climate change impact” to obtain the aggregate 20-year loss
distribution for hurricane risk in St. Lucia. We also simulate losses with the four
adaptation measures in place.

We first undertake the empirical-based loss simulations with no climate change
impact, that is a¼0, and then use the median value of a computed in Table 4
(i.e. a¼0.73 per cent) to measure the impact of climate change on economic losses.
Table 5 shows the impact of climate change on hurricane risk in St. Lucia with roof
adaptation measures in place based on these simulations.

Climate change has a greater impact on the tail of the loss than the expected loss
even with roof adaptation. In Table 5, the expected loss increases only 1.75 per cent,
while the VaRs and ESs increase by 2.04–2.28 per cent. All the tail probabilities
increase by over 4 per cent except for the most extreme tail probability, because roof
adaptations eliminate the extreme tail of the hurricane loss. The empirical-based loss
simulation results are similar to those based on our catastrophic risk model.

24 Kairi Consultants Limited (2007).
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Figures 9–12 depict the EP curves for the wood-frame building in Canaries in
20 years for five climate change factors with the four adaptation measures. The
values of the climate change factor are from the five percentiles in the previous
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Figure 9. EP curves for a wood-frame building in Canaries, St. Lucia with different climate change factors,

no adaptation, T¼20, d¼5 per cent.

Table 5 Statistics of simulated losses with roof adaptation with and without climate change (d=5 per cent,

T=20)

a= 0 0.73% % change

Expected Value 0.3819 0.3886 1.75

Standard Deviation 0.253 0.2583 2.09

Skewness 1.0692 1.0834 1.33

Kurtosis 4.3525 4.4267 1.70

VaR(95%) 0.8658 0.8796 1.59

VaR(97.5%) 0.9901 1.0123 2.24

VaR(99%) 1.152 1.1755 2.04

ES(95%) 1.0406 1.0623 2.09

ES(97.5%) 1.1602 1.1866 2.28

ES(99%) 1.3092 1.3389 2.27

Prob(Loss>0.5) 0.2763 0.2902 5.03

Prob(Loss>1.0) 0.0245 0.0266 8.57

Prob(Loss>1.5) 0.0011 0.0013 18.18

Prob(Loss>2.0) 0 0 0.00

Note: Here we apply a discount rate (d) of 5 per cent and look at a time period (T ) of 20 years.
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factors, roof adaptation, T¼20, d¼5 per cent.
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section: a5%¼�8.5 per cent, a35%¼�1.78 per cent, a50%¼0.73 per cent, a65%¼3.71 per cent,
a95%¼11.07 per cent. As one can see, the higher the value of a, the greater the
probability of the expected loss.

For example, in the case of no adaptation (Figure 9), the tail probability with
threshold 1 (the 20-year expected loss is greater than the value of the house, i.e.
Prob(Loss>1)) increases from 9 to 13 per cent and further to 59 per cent as a increases
from 0.73 to 3.71 per cent and further to 11.07 per cent. Similar patterns can be
observed in other figures.

Investing in adaptation measures reduces the variability of the expected loss.
For example, with roof adaptation, the range of the EPs with threshold 1 (i.e.
Prob(Loss>1)) is reduced from 57 per cent (Figure 9) to 13 per cent (Figure 10). This
range will be further reduced to 9 per cent with opening adaptation (Figure 11) and to
3 per cent with roof and opening adaptation (Figure 12).

Figures 13 and 14 show the EP curves for the wood-frame building in Canaries
for different adaptation measures with a¼0.73 per cent (a¼11.07 per cent)
for the 20-year hurricane losses. The tails of the EP curves are thinner with
roof and opening adaptations combined than with opening adaptation, which
in turn are thinner with roof adaptation and thinnest with no adaptation.
For example, in Figure 14 (a¼11.07 per cent), the tail probability with threshold 1
(i.e. Prob(Loss>1)) declines from 27 to 14 per cent, to 9 per cent and further to
3 per cent for no adaptation, roof adaptation, opening adaptation and roof and
opening adaptation, respectively. Moreover, for a higher climate change factor
(a¼11.07 per cent), the difference between EPs with and without adaptation is
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Figure 12. EP curves for a wood-frame building in Canaries, St. Lucia with different climate change

factors, roof and opening adaptation, T¼20, d¼5 per cent.

The Geneva Papers on Risk and Insurance—Issues and Practice

536



more significant than that for a lower one (a¼0.73 per cent), as one would
anticipate.

In Figure 13, the tail probability with threshold 1 (i.e. Prob(Loss>1)) with roof and
opening adaptation measures in place declines around 8 per cent from that with no
adaptation in the median case (a¼0.73 per cent). In contrast, in Figure 14, the tail
probability with the same threshold with roof and opening adaptation declines around
24 per cent in the 95th percentile case (a¼11.07 per cent). These indicate that if climate
change has more impact on expected losses, adaptation measures are more important
in reducing total risk. Moreover, by comparing the EP curves with timescales of 10
and 20 years, we also observed that the longer timescale, the greater the risk exposure,
and thus the fatter tail the loss.25

Our results suggest that adaptation will lower expected losses significantly should
climate change lead to more devastating hurricanes in the Atlantic Basin in the coming
years. To illustrate this point, investing in roof and opening adaptation measures can
reduce the tail probability of the hurricane loss three times more in the worst climate
scenario (a 24 per cent decline in tail probability loss) compared with the median
climate scenario (an 8 per cent decrease due to adaptation). We now turn to whether
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Figure 13. EP curves for a representative wood-frame building in Canaries, St. Lucia with different

adaptation measures in place, a¼0.73 per cent, T¼20, d¼5 per cent.

25 The EP curves for 10 years are not shown here but are available from the authors on request.

Ou-Yang, Kunreuther and Michel-Kerjan
An Economic Analysis of Climate Adaptation to Hurricane Risk: Application to St. Lucia

537



investing in such adaptation measures is cost-effective and, if so, under which
conditions.

Quantifying the benefit-cost ratio of risk reduction measures

In this section, we will conduct a benefit-cost analysis on four adaptation measures for a
representative wood-frame building in Canaries using simulated hurricane losses in St.
Lucia. The benefit from adaptation is defined as the reduction in the expected economic
loss with a specific adaptation measure compared with the expected direct physical loss
with no adaptation. A standard wood-frame building in Canaries of St. Lucia has a
value of US$100,000. Roof upgrade costs US$9,200, opening protection costs US$6,720,
and roof and opening adaptation costs US$15,920. These adaptation costs are the cost
estimates for adjustments to existing buildings. The costs will be much less for new
buildings. With this information and our simulation results for different timescales,
Benefit/Cost (B/C) ratios for different adaptation measures can be derived.

Tables 6 and 7 exhibit expected benefits from lowering expected losses from
hurricanes over time in relation to the costs for undertaking three adaptation
measures. The B/C ratios are computed for time horizons that vary from 5 to 20 years
for the wood-frame building in St. Lucia using climate change factors of a¼0.73 per
cent and a¼11.07 per cent, respectively. These time horizons were chosen to show the
minimal timescale that makes investing in adaptations financially attractive. We use
the same 5 per cent discount rate as before.
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Based on numerical results in these two tables, the findings are summarised as
follows.

� Benefit from roof and opening adaptation is greater than benefit from just opening
adaptation, which in turn is greater than benefit from roof adaptation alone. For
example, in Table 6, when a¼0.73 per cent and T¼10 years, the benefit from roof
and opening adaptation is US$8,300 (¼0.083�US$100,000), the benefit from opening

Table 7 Benefit/cost ratio of different adaptation measures and time horizons for a wood-frame building in

Canaries with a high climate change factor (a=11.07%)

Time horizon (years) 5 6 7 8 9 10 11 12 13 14 15 20

Benefit from adaptation (reduction in expected losses) (unit=US$100,000)

Roof adaptation 0.052 0.062 0.071 0.080 0.090 0.101 0.108 0.119 0.130 0.139 0.145 0.197

Opening adaptation 0.061 0.073 0.084 0.095 0.107 0.120 0.128 0.141 0.153 0.164 0.173 0.234

Roof & opening 0.096 0.114 0.133 0.149 0.168 0.188 0.203 0.222 0.240 0.258 0.276 0.370

Adaptation cost (unit=US$100,000)

Roof adaptation 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092

Opening adaptation 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067

Roof & opening 0.159 0.159 0.159 0.159 0.159 0.159 0.159 0.159 0.159 0.159 0.159 0.159

Benefit/Cost ratio

Roof adaptation 0.561 0.673 0.773 0.868 0.979 1.097 1.171 1.296 1.409 1.507 1.574 2.140

Opening adaptation 0.908 1.085 1.253 1.409 1.586 1.778 1.902 2.101 2.277 2.442 2.568 3.475

Roof & opening 0.601 0.714 0.833 0.933 1.055 1.183 1.276 1.396 1.509 1.619 1.731 2.323

Note: We bolded the B/C ratios higher than one, indicating the years when the adaptation measure becomes

cost-effective.

Table 6 Benefit/cost ratios of different adaptation measures and time horizons for a wood-frame building

in Canaries with a medium climate change factor (a=0.73%)

Time horizon (years) 5 6 7 8 9 10 11 12 13 14 15 20

Benefit from adaptation (reduction in expected losses) (unit=US$100,000)

Roof adaptation 0.047 0.054 0.062 0.070 0.077 0.083 0.092 0.095 0.103 0.108 0.114 0.139

Opening adaptation 0.057 0.065 0.075 0.082 0.091 0.099 0.107 0.114 0.122 0.128 0.134 0.163

Roof & opening 0.088 0.102 0.117 0.130 0.144 0.156 0.169 0.179 0.191 0.201 0.212 0.256

Adaptation cost (unit=US$100,000)

Roof adaptation 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092

Opening adaptation 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067

Roof & opening 0.159 0.159 0.159 0.159 0.159 0.159 0.159 0.159 0.159 0.159 0.159 0.159

Benefit/Cost ratio

Roof adaptation 0.515 0.591 0.678 0.761 0.841 0.900 0.996 1.037 1.115 1.175 1.238 1.505

Opening adaptation 0.842 0.973 1.113 1.223 1.359 1.470 1.591 1.699 1.810 1.902 1.996 2.426

Roof & opening 0.553 0.641 0.734 0.819 0.904 0.979 1.064 1.124 1.201 1.265 1.329 1.611

Note: We bolded the B/C ratios higher than one, indicating when the adaptation measure becomes

cost-effective.
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adaptation is US$9,900 (¼0.099�US$100,000), and benefit from roof adaptation is
US$15,600 (¼0.156�US$100,000).

� The B/C ratio also increases with the time horizon, as expected, indicating that it is
more financially attractive to invest in adaptations if homeowners engage in long-
term thinking. More specifically, the benefit from investing in adaptation accrues
over time, while the costs are incurred upfront.

The minimal timescale that makes the investment in adaptations financially
attractive (i.e. B/C ratio>1) decreases if the climate impact is more severe
(a increases from 0.73 to 11.07 per cent). It is 2 years for roof adaptation (from 12
years to 10 years) and roof and opening adaptation (from 11 years to 9 years), and
1 year for opening adaptation (from 7 years to 6 years).

These timescale thresholds correspond to the B/C ratios that are highlighted in bold
text in Tables 6 and 7. More severe climate change increases the return from
adaptations over a given time horizon and decreases the time horizon to make the
investment financially attractive. Take installing roof adaptation for 10 years as an
example. The adaptation cost is US$9,200. The increase in benefit (reduction in
expected losses) changes from US$8,300 to US$10,100 if median climate (a¼0.73 per
cent) changes to severe climate (a¼11.07 per cent). This will increase B/C ratios as well
as reduce the timescale threshold. Note that we used a 5 per cent discount rate in this
analysis. If we set it at 0 per cent, B/C ratios will be higher than the ratios shown here,
but the patterns are quite similar.

We also graphically show the B/C ratios for three adaptation measures over
timescales in the median (a¼0.73 per cent) and the severe climate case (a¼11.07 per
cent) in Figures 15 and 16. B/C ratios increase with the timescale in both cases.
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However, they grow faster for the severe case than the median case. This phenomenon
is more significant for longer timescales. For the timescale of 20 years, the B/C ratio of
opening adaptation is around 3.5 for the severe case, while it is slightly below 2.5 for
the median case. The combination effect of the severe climate and a longer timescale
enhances the relative benefits of cost-effective adaptation measures. Thus, home-
owners should be willing to install adaptations if they anticipate future climate
becoming severe and view the benefits of adaptation from a long-term perspective.

Figures 17 and 18 graphically show the synthetic impact of climate change and
adaptations on economic losses for two climate cases (a¼0.73 per cent and a¼11.07 per
cent), when the timescale is 20 years and the discount rate¼5 per cent. When a¼0.73 per
cent (Figure 17), the EP curve with no climate change and no adaptation lies in the most
upper right. This indicates that in the median climate case, all adaptation measures
can offset the impact of climate change. However, when a¼11.07 per cent (Figure 18), the
EP curve with no climate change and no adaptation is very close to the EP curve with
climate change and opening adaptation, while the EP curve with climate change and roof
adaptation (roof and opening adaptation) lies in the upper-most right (lower left). The
impact of climate change (when a¼11.07 per cent) on hurricane losses can be offset by
opening adaptation and roof and opening adaptation, but if only roof adaptation is
installed, the impact of climate change still dominates. In the severe climate case in St.
Lucia, all adaptation measures considered here except roof adaptation can reduce the
expected loss to the state of no climate change.

To summarise, we calculated the B/C ratios for four adaptation measures installed
in a representative wood-frame building in St. Lucia designed to reduce future
hurricane losses. The results indicate that opening adaptation, which strengthens
the resistance of windows and doors against wind and heavy pressure, is the most
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cost-effective risk reduction measure for this house. Homeowners will find adaptations
more financially attractive if they consider hurricane risk for longer timescales, and if
they anticipate more severe climate change triggering intensification of hurricane risks
in the future. In our severe climate case, all adaptations (except for roof adaptation)
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would offset the impact of climate change on the expected loss. This has important
policy implications in terms of building codes and their enforcement.

Conclusions

This paper uses a simple growth model to quantify the impact of climate change on
economic losses from natural hazards. We calibrate this growth model using historical
storm activity and determine five percentiles of our climate change factor parameter.
The paper then undertakes benefit-cost analyses of four adaptation measures using
empirical hurricane risk data in St. Lucia and estimates of climate change impacts on
economic losses from the five percentiles of the climate change factor in the Atlantic
Basin with and without these risk reduction measures in place for a representative
house on the island of St. Lucia. Our results suggest that adaptation measures play a
critical role in reducing exposure from future hurricanes there.

According to the benefit-cost analyses of adaptation measures in St. Lucia we have
undertaken, homeowners will have more economic incentives to install adaptation
measures if they anticipate more extreme climate and consider this investment from
a longer timescale perspective. We also found that opening adaptation is the most cost-
effective adaptation measures for a wood-frame building in St. Lucia. Our approach in
the previous section indicates how to choose among different adaptation measures to
reduce potential property losses for homeowners. Policymakers thus should encourage
the installation of these measures by providing tax deductions and savings on home
insurance premiums to reduce the aggregate loss ex ante instead of paying for
disaster relief ex post. An interesting topic to explore in future research is how to share
the cost of the risk reduction measures among government (taxpayers), homeowners
and insurers.

Future research on the interplay of the impact of adaptation measures and climate
change could address the following issues:

� We have assumed that the impact of climate change on economic losses remains the
same every year for each climate factor in the benefit-cost analyses on adaptation.
However, in reality, this impact may change over time. Uncertain impacts of climate
change may lead to more challenges if the structural parameters, such as standard
deviation, are also unknown.26,27

� Empirical evidence suggests that the proportion of indirect impacts increases in
larger disasters, and thus may constitute a larger fraction of total losses and damage
in large disasters than in smaller disasters.28 Taking account of the indirect losses
from natural disasters, such as business interruption, unemployment and health
expenses stemming from natural hazards may increase the B/C ratio, making
investment in adaptation more attractive.

26 If standard deviation of a loss distribution is unknown, the moment-generating function of the loss may

approach infinity. In this case, we cannot set an upper bound to the expected loss, and the outcomes of

benefit-cost analysis will be misleading, ignoring the extreme tail of the loss.
27 Weitzman (2009).
28 Gordon and Richardson (1995) and Toyoda (1997).

Ou-Yang, Kunreuther and Michel-Kerjan
An Economic Analysis of Climate Adaptation to Hurricane Risk: Application to St. Lucia

543



� Even if we undertake the above analyses with the assumed costs, premium
reductions, and adaptation measures, these improvements may not be implemented.
For example, building codes are not enforced in St. Lucia, making residents
vulnerable to future hurricanes. If we also consider these problems in the analyses,
the economic benefit of implementing adaptation measures will be even greater than
anticipated.

� Future research can also apply similar approaches to the one used by Dawson
et al.29 to evaluate the effectiveness of “non-structural” adaptation measures, such
as changes in existing land-use planning, resilient property construction, building
codes and insurance policies.

The approach we have used in this paper can analyse economic benefits and costs of
adaptation measures in other risk-prone areas if the recent annual loss data and
historical adjacent climate-related activities are available. The analyses based on our
approach can assist homeowners in making decisions among various risk reduction
measures in the face of climate change.
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