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Modelling mortality and longevity risk is critical to assessing risk for insurers issuing
longevity risk products. It has challenged practitioners and academics alike because of first
the existence of common stochastic trends and second the unpredictability of an eventual
mortality improvement in some age groups. When considering cause-of-death mortality
rates, both aforementioned trends are additionally affected by the cause of death.
Longevity trends are usually forecasted using a Lee-Carter model with a single stochastic
time series for period improvements, or using an age-based parametric model with
univariate time series for the parameters. We assess a multivariate time series model for the
parameters of the Heligman-Pollard function, through Vector Error Correction Models
which include the common stochastic long-run trends. The model is applied to circulatory
disease deaths in U.S. over a 50-year period and is shown to be an improvement over both
the Lee-Carter model and the stochastic parameter ARIMA Heligman-Pollard model.
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Introduction

Longevity and mortality improvement has been driven by many factors over the last
century. These factors have impacted different ages to varying extents resulting in
common improvements across age groups. As a result, longevity and mortality risk
across ages is expected to include common stochastic trends. The Lee-Carter model,1

and variants of it, is often used for mortality and longevity risk applications by
industry practitioners and academics. This model is highly parameterized and includes
a single common stochastic trend across ages fitted using a time series model. An
alternative approach2 is to fit a parametric model to the age structure of mortality and
apply time series models to the parameters. This provides for a more parsimonious
model but does not capture common stochastic trends across the age structure of
mortality. Our first attempt to improve these models was to use a Vector
AutoRegression (VAR) for the parameters which captures dependence between the

1 Lee and Carter (1992).
2 McNown and Rogers (1989, 1992).
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parameters. This was further used in an analysis of mortality trends in a number of
developed countries.3 However, VAR models do not include long-run relationships
between the parameters that will be important in maintaining the relative levels of
mortality for different ages. Our second attempt was then to use Vector Error
Correction Models (VECM) that are applied in econometrics to model multivariate
dynamic systems. They include time dependency between economic variables,
common stochastic trends and long-run equilibrium relationships.

Modelling cause-of-death mortality rates is increasingly important in forecasting
trends in aggregate mortality improvement.4 Models that better capture trends and
that can be applied to cause-of-death mortality rates will provide practitioners with an
improved understanding of mortality risks and factors determining future mortality
trends. Indeed, causes of death reflect underlying socio-economic factors and provide
important insights into future trends and volatility for longevity and mortality
modelling.5 Cause elimination models as well as cause-delay models have been
developed6 assuming independent causes of death. Projections of mortality rates by
cause of death have also been considered.7 The Lee-Carter model has been used for
cause of death data.8 In general, models used for mortality at a population level are
not appropriate for cause-specific rates as demonstrated by an analysis of six causes of
death on Italian data.9 Different causes of death have different age patterns, different
time trends and these vary by country.10 New approaches are then needed to model
mortality by cause of death. A flexible model that can capture different age patterns
and maintain consistent patterns while allowing trends to differ by age is required for a
cause of death approach.

This paper models the age structure of cause-specific mortality rates with a
parametric mortality model, the Heligman-Pollard model.11 The parameters for this
model are readily interpreted according to their impact on different age ranges. These
parameters are modelled with a VECM allowing for time dependency and long-run
trends between the parameters. To demonstrate the model performance, it is estimated
over the period 1950–2000 for United States circulatory system deaths. The VECM
approach is shown to be an improvement over the Lee-Carter model and approaches
using an AutoRegressive Integrated Moving Average (ARIMA) process for the
parameters and allows a more realistic quantification of risk.

This paper provides practitioners with new methods for modelling mortality, in
particular, cause-of-death mortality rates. The paper demonstrates the benefits of
incorporating common trends in longevity and mortality risk models to be used by
insurers issuing longevity and mortality risk products. The model assessed in the paper

3 Njenga and Sherris (2009).
4 Gaille (2010); Gutterman and Vanderhoof (1998); Tabeau et al. (1999).
5 Hanewald (2011).
6 Manton et al. (1980) and Olshansky (1987).
7 Tabeau et al. (2001).
8 Wilmoth (1993).
9 Barugola and Maccheroni (2007).

10 Gaille and Sherris (2010).
11 Heligman and Pollard (1980).
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improves existing models and this is demonstrated in the improved forecasting
performance.

The paper begins with a summary of the theoretical background for a VECM
analysis in the next section, following which the data used is described. Long-run
equilibriums between age-based risk factors are estimated and discussed in the later
section. An improved mortality forecasting approach using a stochastic parameter
Heligman-Pollard VECM is provided in the subsequent section. The improved
accuracy of this new forecasting approach over the Lee-Carter model and ARIMA
processes is then demonstrated for United States circulatory system deaths in the
penultimate section. The final section concludes.

VAR and VECM, theoretical background

VAR model dynamic interactions between a set of variables. They capture dependence
through time and between variables. This multivariate time series approach has been
popular among economists for several decades and is often used to model time series
of economic variables. VECM, an extension of VAR, include long-run equilibrium
relationships between variables, also referred to as common stochastic trends, using
the concept of cointegration.

A pth-order VAR, denoted as VAR(p), explains each variable with p lags of itself
and the other variables in the model. Denoting the n variables at time t by the (n� 1)
vector yt, a VAR is written as

yt ¼ cþU1yt�1 þU2yt�2 þ � � � þUpyt�p þ et;

where c is a (n� 1) vector of constants and Ui is a (n� n) matrix of autoregressive
coefficients for i¼1, 2,y, p. The (n� 1) vector et is a vector of white noises, with

EðetÞ ¼ 0;

EðetelÞ ¼
X for t ¼ l

0 for t 6¼ l;

�

where X is a symmetric positive definite covariance matrix.
Estimates of the parameters of a VAR(p) and the associated asymptotic distri-

butions assume stationarity of the process. A VAR(p) is (weakly) stationary if its first
and second moments are constant over time, that is E(yt) and E(yty

0
t�j) are

independent of time t, although they will usually differ with the time lag j. In this
case the process has a constant mean (no trend) and its variance does not change over
time. However, many time series do have a trend so that non-stationarity must be
considered as well.

If a variable (xt) is non-stationary and becomes stationary by taking first differences

rxt ¼ xt � xt�1

then the variable is referred to as integrated of order one, denoted I(1). If the process is
integrated of order one, differencing removes the non-stationarity and a VAR(p) can
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then be fitted. However, differencing will lose any information about long-run trends
in the levels of the data. Even if the variables are non-stationary, they may move
together with common stochastic trends. These common trends can be captured by a
long-run equilibrium relationship. A linear combination of these variables will then
exist such that the relation is stationary even if each variable is not.

Consider the n variables in vector yt, all I(1), and related by

b1y1t þ b2y2t þ � � � þ bnynt ¼ 0:

This relationship holds on average in the long run. At a particular point in time, there
will be deviations from the equilibrium such that

b1y1t þ b2y2t þ � � � þ bnynt ¼ zt;

where zt is a stochastic variable representing that deviation.12 If a long-run equilibrium
exists, then zt will be stationary. In this case these integrated variables are referred to
as cointegrated and the above relation as the cointegration relation.

The cointegration relation can be written in vector and matrix notations as

b0yt ¼ zt;

with

b ¼ ðb1 b2 . . . bnÞ0;
yt ¼ ðy1t y2t . . . yntÞ0:

The vector b is referred to as a cointegrating vector. More than one cointegration
relation may exist, and thus there might be more than one cointegrating vector, each
being linearly independent from the others. For example, if there are five variables, the
first two may be linked by a cointegration relation and the last three by another. In
such a situation, the vector b is a matrix with each of its columns being a cointegrating
vector. Thus

b ¼ðb1 b2 . . . brÞ

¼

b11 b12 � � � b1r
b21 b22 � � � b2r

..

. ..
.

bn1 bn2 � � � bnr

0
BBBB@

1
CCCCA;

with bi the ith cointegration relation, for i¼1, 2,y, r. The stationary vector b0yt
contains the r linearly independent cointegrated relations of the n variables

12 Lütkepohl (2005).
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under study.13 If the columns of b represent all the linearly independent relations, that
is all other cointegrated relations are a linear combination of the columns of b, then
there are exactly r cointegrating relations among the elements of yt and (b1 b2y br)
forms a basis of the space of cointegrating vectors.

The cointegrated relations, given by the matrix b, are not uniquely defined. Each
cointegrating vector could be multiplied by a constant and the relationship will remain
the same. Broadly speaking, for any non-zero vector v with r elements, v0b0yt also
represents the r cointegrated relations. As a result constraints are required for some
values of the matrix b.

The cointegration relations are important in VAR modelling. A VAR(p) can
equivalently be written as

ryt ¼ cþ n1ryt�1 þ n2ryt�2 þ � � �
þ np�1ryt�pþ1 þPyt�1 þ et;

where

P¼ �(In�U1�?�Up);
¼ ab0;
¼ matrix of rank r;

a¼ a (n� r) loading matrix;
b¼ a (n� r) matrix containing the r vectors forming a basis of the space of

cointegration;
ni¼ �(Uiþ 1þ?þUp) for i¼1,y, p�1.

which is known as the VECM of the cointegrated system. Each element is stationary as
the first difference of an I(1) process is stationary as are the cointegration relations.
The loading matrix a indicates which cointegrated relation has an impact on which
variable and to what extent. For example, the element aij measures the effect of the
cointegrated relation j ( j¼1,y, r) on the variable i (i¼1,y, n).

The rank of the matrix P indicates the number of cointegrated relations among the
variables of the process. Three different cases are possible: There is no cointegrated
relation (r¼0). A VAR(p�1) may be applied on the first differences of the variables.
Or all linear combinations are stationary (r¼n). Thus, all the variables in the process
are stationary. Or there are r cointegrated relations (0oron), such that P¼ab0. In this
case, the cointegrated relations are included in the error correction term.

Johansen’s approach is used to estimate the number of cointegrated relations in
a process as well as the parameters in the matrices a, b, c and ni for i¼1, 2,y, (p�1). As
a summary, the following steps are used to estimate a VECM:

1. Lag order of the VAR, p: Use selection criteria, such as Akaike’s Information
Criteria (AIC), Hannan-Quinn Criterion (HQ), Schwarz Criterion (SC), Final
Prediction Error (FPE), to select the lag order of the VAR.

13 In this paper, we consider variables that are integrated of order one, in which case, cointegrated relations

are necessarily stationary. The general framework is given in Hamilton (1994) and Lütkepohl (2005).
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2. Unit root tests on the variables: For a process to be stationary, the characteristic
polynomial of its VAR should have all its roots outside the complex unit circle.14

Therefore, if this polynomial has a root equal to unity, some or all the variables are
integrated of order one and there might be cointegrated relations among them.
Unit root tests, such as the Kwiatkowski-Phillips-Schmidt-Shin test (KPSS), the
Augmented Dickey-Fuller test (ADF) or the Phillips-Perron test (PP), are useful
tools to check for the stationarity of the variables. KPSS tests the null hypothesis
that the variable is level or trend stationary, while ADF and PP test the null
hypothesis of a unit root, and thus, the null hypothesis of non-stationarity.

3. If the variables are stationary, denoted I(0), a VAR(p) is suitable. If the variables
are I(1), the Johansen’s procedure is applied in order to find the number of
cointegrated relations. Two test statistics are commonly used in order to find the
number of cointegrated relations: the trace test and the maximum-eigenvalue test.

4. If the variables are I(1) and if there is no cointegration, a VAR(p�1) on the first
difference is fitted. Otherwise, the appropriate VECM should be found.

5. Model validation: test for residual autocorrelations and non-normality.

Figure 1 provides a summary diagram of the estimation process.

Data

The data used are for five-year age group cause-specific mortality rates collected from
the Mortality Database administered by the WHO.15 Mortality rates were determined
as the number of persons for each age group and sex who die in a particular year of a
specified cause, divided by the number of persons of that age group and sex alive at the
beginning of the year. Mid-year population provided by the WHO database is used as
an approximation for the beginning-of-the-year population. Indeed, as the population
increases over time, mid-year population is an appropriate approximation, partly
including migrations. Besides, diseases of the circulatory system for females in the
United States over the period 1950–2005 are used and are known to be reliable.
Circulatory diseases are recognised as the most important cause of death in developed
economies, especially for ages above 30–50.10 They are important in modelling future
aggregate mortality rates as well as capturing the most recent trends in mortality
improvement. This cause represented around 40 per cent of total deaths in United
States in 1955, 56 per cent in 1970, 50 per cent in 1985 and 41 per cent in 2000.

Causes of death are defined by the International Classification of Diseases (ICD),
which ensures consistencies between countries. The ICD changed three times between
1950 and 2006, from ICD-7 to ICD-10, in order to take into account progresses in
science and technology and to refine the classification. In the Unites States, the ICD
changed in 1968, 1979 and 1999. The raw data is then not directly comparable for
different periods. To make it comparable, comparability ratios are computed. The aim
is to smooth mortality rates across the classifications. The average of the mortality

14 Hamilton (1994) and Lütkepohl (2005).
15 World Health Organization (2009).
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rates over the last two years of a classification is required to coincide with the average
of mortality rates over the first two years of the next classification. A comparability
ratio is defined as the sum of the probabilities of dying in the first two years of a new
classification divided by the sum of the probabilities of dying in the last two years of
the previous classification.

In order to obtain data comparable over the complete period under observation, the
number of deaths in a new classification is divided by the comparability ratio linking
this classification with the previous one and previous comparability ratios where
appropriate. Discontinuities in the mortality rates at the junction points between two
classifications have been adjusted by these comparability ratios. The data used are the
adjusted mortality rates.

Long-run equilibrium among age-based risk factors

The Heligman-Pollard (H-P) model has been used to model mortality rates in the
United States over the period 1900–198516 and the multi-exponential model for

Figure 1. Process for estimating a VECM.

16 McNown and Rogers (1989).
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cause-specific mortality rates in the United States over the period 1960–1985.17 In
previous research, the resulting time series of the parameters have been modelled with
ARIMA processes and these models are used to forecast the value of the parameters
and hence the complete age profile of mortality. Although univariate models are
assumed for the parameters, the authors recognise the potential improvement from
incorporating the covariation between the parameters.

We extend this approach, using multivariate time series allowing for time
dependency and long-run trends between the parameters. The H-P model is used for
cause-specific mortality rates and a VECM is used to model the parameters as
stochastic factors. The H-P model is a concise representation of mortality by age, each
parameter having a demographic meaning and is given by

qx; t ¼ A
ðxþBtÞCt
t þDte

�EtðlnðxÞ�lnðFtÞÞ2 þ GtH
x
t

1þ KtGtHx
t

;

where

qx; t ¼ probability of dying at age x; in year t;

px; t ¼ 1� qx;t;

Zt ¼ value of the parameterZ at time t;

forZ 2 ðA; B; C; D; E; F; G; H; KÞ:

This model is a sum of three terms: the first represents mortality rates during
childhood; the second, mortality at middle ages (the accident hump); and the last,
mortality rates at older ages. The parameters have interpretation as factors impacting
differing age ranges. Although the H-P model has nine parameters, which means the
model has nine stochastic factors, these are required in order to capture the shape of
the mortality curve for the whole age range. Table 1 summarises the demographic
meaning of the nine parameters and the range of values they may have.

The model estimation process in Figure 1 is applied to the mortality rates due to
diseases of the circulatory system for females in the United States. The parameters of
the H-P function are first estimated by weighted least squares, the weights used
implying a minimisation of the relative error as suggested by Heligman and Pollard.11

Because of issues regarding multicollinearity, irregular changes of the parameter
estimates from one year to another may occur even if the mortality rates of adjoining
years are similar.18 This multicollinearity makes it more difficult to fit the H-P
function to any given data set. Without setting constraints on the parameters,
convergence problems occur during the non-linear minimisation, as parameter B tends
to increase to values greater than ten, even if it was expected to be smaller than one
based on previous studies,19 and parameter F tends to reach the upper bound of 150.

17 McNown and Rogers (1992).
18 Bell (1997) and Tabeau et al. (1999).
19 Gaille (2010); Heligman and Pollard (1980); McNown and Rogers (1989).

The Geneva Papers on Risk and Insurance—Issues and Practice

602



Fixing the value of some of the parameters, either a priori or estimated from the
data, has been proposed as a solution,20 thus reducing the number of stochastic factors
in the model. Since parameter B converges to an optimum value of one for a few years,
without setting any constraints during the minimisation process, we fixed it to be equal
to one. This assumption does not have an important effect on the fit of the H-P
function on mortality as parameter B has a negligible impact at ages other than zero.
Parameter F is also fixed at its median value of 33.85. By fixing these two parameters,
the non-linear minimisation converges without any difficulties to an optimum value.
Only seven parameters are then required in the VECM and forecasted to give the
complete age profile of mortality rates.

Lag order selection

A lag order of one was found to provide a best fit to the parameters for the mortality
rates, which is consistent with the autoregressive nature of mortality. This is
determined based on AIC, HQ, SC and FPE tests performed on the data. These four
criteria have the smallest value at a lag order of one, even with a constant or a trend
included in the VAR for the parameters.

Unit root tests

KPSS, ADF and PP tests reveal similar results. The only parameter clearly trend
stationary according to the three tests is parameter C, even at a 1 and 10 per cent
significance levels. KPSS test does not reject the null hypothesis of stationarity at a 10 per
cent significance level. ADF and PP tests reject the null hypothesis of non-stationarity at a

Table 1 Parameters of the Heligman-Pollard model

Age range Parameter Demographic meaning

Childhood AA(0, 1) Level of infant mortality

BA(0,N) Mortality change between age zero and age one

(the larger the value, the smaller the change)

CA(0, 1) Speed at which the mortality rates decline at young ages

Middle ages: DA(0, 1) Intensity of the accident hump

Accident hump EA(0,N) Age range at which the accident hump occurs

(varies inversely with the spread of the hump)

FA(0, 150) Age at which the hump is the highest

Older ages GA(0, 1) General level of mortality rates

HA(0,N) Steepness of the curve

KA(�N,N) Curvature at the last ages (a positive value indicates that the age

pattern of mortality on a semi-logarithmic scale is concave

downward; a negative value indicates a concave upward curve)

20 Gaille (2010); McNown and Rogers (1992); Tabeau et al. (1999).
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1 per cent significance level. Results are less conclusive for parameter D. ADF and PP
tests reject the null hypothesis of non-stationarity at a 5 per cent significance level, but do
not reject it at a 1 per cent significance level. KPSS test does not reject the null hypothesis
of stationarity at a 1 per cent significance level but rejects it at the 5 per cent level. All three
tests confirm the five remaining parameters as non-stationary.

In order to allow for this, two models are fitted, one assuming only parameter C is
trend stationary and the other assuming parameters C and D are trend stationary.
Normality tests on the residuals of both models as well as autocorrelations among the
residuals show that the best results are obtained with parameter D modelled as non-
stationary. This model is the one used. Cointegrated relations model then common
stochastic trends in the six non-stationary parameters A, D, E, G, H and K.

Cointegrated relations

Table 2 presents the results for the trace test and the maximum-eigenvalue test of the
Johansen’s procedure. These two tests assess the number of long-run equilibrium
relationships among the stochastic parameters (factors) of the Heligman-Pollard
model (A, D, E, G,H and K). The trace test compares the null hypothesis that there are

Table 2 Tests for the number of cointegrated relations, 1950–2005, Circulatory system, U.S.A., females

(a) Trace test; (b) Maximum-eigenvalue test

r Trace stat Critical values

10% 5% 2.50% 1%

(a)

5 0.66 2.69 3.76 4.95 6.65

4 7.80 13.33 15.41 17.52 20.04

3 25.14 26.79 29.68 32.56 35.65

2 48.59 43.95 47.21 50.35 54.46

1 88.91 64.84 68.52 71.8 76.07

0 142.96 89.48 94.15 98.33 103.18

r Eigen stat Critical values

10% 5% 2.50% 1%

(b)

5 0.66 2.69 3.76 4.95 6.65

4 7.14 12.07 14.07 16.05 18.63

3 17.34 18.6 20.97 23.09 25.52

2 23.45 24.73 27.07 28.98 32.24

1 40.32 30.9 33.46 35.71 38.77

0 54.06 36.76 39.37 41.86 45.1

Notes: A null hypothesis is accepted at a a% significance level when the statistic is lower than the

corresponding critical value. Thus, these tables indicate that two cointegrated relations are accepted at a

2.5% significance level.

These two tests assess the number of long-run equilibrium relationships among the parameters of the

Heligman-Pollard model (A, D, E, G, H and K) that is among age-based risk factors.
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r cointegrated relations against the alternative of n cointegrated relations, where n
corresponds to the number of variables under observation and ron. This test indicates
that we do not reject the null hypothesis of two, three, four or five cointegrated
relations against six cointegrated relations at a 2.5 per cent significance level.

The maximum-eigenvalue statistic tests the null hypothesis of r cointegrated
relations against the hypothesis of rþ 1 cointegrated relations. Table 2(b) shows that
the null hypothesis of two cointegrated relations is not rejected, while the null
hypothesis of one cointegrated relation is rejected indicating that two cointegrated
relations exist. These two long-run equilibrium relationships for the parameters of the
Heligman-Pollard model determine how changes in the age-based risk factors move
relative to each other. They allow for stochastic trends in the mortality curve, while
maintaining long-run relationships between ages.

Fitted VECM

Johansen’s procedure is used to estimate the resulting VECM. The fitted VECM with
B and F fixed is

rAt

rCt

rDt

rEt

rGt

rHt

rKt

2
666666666664

3
777777777775
¼

4:34 � 10�4

0:12

�4:03 � 10�3

5:27 � 102

4:57 � 10�5

�0:91

�6:62 � 102

2
666666666664

3
777777777775
þ

�1:97 � 10�6 8:99 � 10�8

�2:98 � 10�3 �3:03 � 10�4

3:02 � 10�6 �2:89 � 10�6

�0:43 0:37

�2:61 � 10�7 2:24 � 10�9

1:61 � 10�3 �5:26 � 10�4

0:69 �0:45

2
666666666664

3
777777777775

� �1:02 � 104 8:50 � 104 �0:39 �1:73 � 106 �1:41 � 102 0:15

�6:52 � 103 �1:52 � 105 �0:36 2:79 � 106 1:08 � 103 �1:31

� �
�

At�1

Dt�1

Et�1

Gt�1

Ht�1

Kt�1

2
666666664

3
777777775
:

The second term on the right-hand side of this equation gives the effect of the two
cointegrating relationships between the parameters. They can be written as

z1t ¼ �1:02 � 104At þ 8:50 � 104Dt � 0:39Et

� 1:73 � 106Gt � 1:41 � 102Ht þ 0:15Kt;

z2t ¼ �6:52 � 103At � 1:52 � 105Dt � 0:36Et

þ 2:79 � 106Gt þ 1:08 � 103Ht � 1:31Kt;

where z1t and z2t are two stochastic variables representing the deviation from the
equilibrium. These two variables are stationary. The sign associated with each
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parameter is of significance in these relations.21 The first cointegrated relation shows
that as mortality around age zero decreases, that is parameter A decreases, then either
the accident hump will decrease or impact a smaller age range, so that parameter
D will decline or E will increase, or mortality for the elderly will increase, with
parameter K declining, parameter G or parameter H increasing, or a combination of
these impacts. This relationship reflects the historical data and the relative changes
in the mortality curve across all ages. The VECM assumes these estimated long-run
relationships will continue when used for forecasting. The curve changes stochastically
but is constrained by the long-run equilibrium relationships between the parameters
given by the cointegrating vectors.

Increases in mortality at older ages will occur in the Heligman-Pollard model if
there is an increase in either or both parameters G and H or a decrease in parameter K.
This is captured in both cointegrating vectors as the coefficients for parameters G
and H have the same sign, while the coefficient of K is of an opposite sign.

In a comparison of mortality for males and females in Switzerland and in the
United States using the Heligman-Pollard model,22 mortality rates at older ages are
shown to be lower, but the age pattern steeper, in Switzerland than in the Unites
States, since parameter G is smaller and parameter H higher in Switzerland. Similarly,
female mortality at older ages is lower and increases at a faster pace than male
mortality in both countries. This link between these two parameters is reflected in the
cointegrations, as a decrease in parameter G may produce an increase in parameter
H for the relation to stay at the equilibrium.

The relation between these parameters that is reflected in the cointegrated relations
can be understood based on recent changes in the leading causes of death. Deaths from
circulatory system have been more important in the past. More recently, cancer is
becoming the major cause of death for middle ages, while the circulatory system still
remains the most important cause for ages above 75.10 Thus, circulatory mortality
at middle ages has decreased more abruptly over the last 50 years than mortality at
older ages, which is reflected through a decrease in parameter G and an increase in
parameter H. The fitted mortality rates using the model are given in Figure 2 along
with the original rates for comparison. The model fits the data well reproducing the
age structure and changes through time.

Model validation

The residuals of the model are tested for normality as well as any remaining
autocorrelation. The test statistics are summarised in Table 3. The Portmanteau test is
a test for the overall significance of the residual autocorrelations up to lag l. The
Portmanteau statistic has an approximate asymptotic Chi-square distribution for large
values of l. The test has a null hypothesis of no-autocorrelation among the residuals up
to l ¼ 15 and l ¼ 25 lags. The statistic used is the Portmanteau statistic adjusted for

21 The size of the coefficients is influenced by the value taken by the parameters. For example, as

parameters A, D and G are small, their associated coefficient is high.
22 Gaille (2010).
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small sample size.23 As shown by the p-values, the null hypothesis is not rejected at
a 5 per cent significance level.

Figure 2. Sample years of the log-mortality rates and the fitted VECM, Circulatory system, U.S.A.,

females. (a) 1955; (b) 1965; (c) 1975; (d) 1985; (e) 1995; (f) 2005.

Note: The dots represent the observed mortality rates, while the fitted model is depicted by the curve.

23 As in Lütkepohl (2005).
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Tests for normality are based on the third and fourth central moments (skewness
and kurtosis) of a normal distribution.24 The test statistic labelled both in Table 3 is a
joint test of skewness and kurtosis. The three tests clearly show that the null hypothesis
of normality is not rejected. The fitted model residuals for the parameters of the
Heligman-Pollard model satisfy the assumption of normally distributed and no-
autocorrelation. The model is a good representation of the data generating process
and thus captures the trends and age dependence of mortality rates for deaths due to
the circulatory system in the United States.

Projections

The fitted VECM provides a good fit to the data with 33 parameters for 19 age groups
over 56 years based on 1,064 observations. Parameters are used to model stochastic
trends and to ensure that long-run relationships between different ages are maintained
through cointegration. These are very important features of the model approach.

To illustrate the model forecasting performance, the model is fitted to a shorter
data period and projections are performed in order to compare the forecasts with the
actual data. At least 50 years of observations are usually needed in order to reliably
estimate a VECM. The model is fitted to data over the period 1950–2000 and then
forecasted for the following 20 years. Parameter B is assumed fixed at a value of one
and parameter F is assumed fixed at the median value over the period 1950–2000 of
25.42. Since actual data is only available until 2005, the first five years of forecasted
mortality rates are compared with actual mortality.

To assess the performance of the VECM approach, two other models are fitted over
the period 1950–2000 and used to forecast mortality rates until 2005. The first is a
variant of the well-known Lee-Carter model, which has been successfully applied at
the population level for United States data in the past. The second model fits the
Heligman-Pollard model for mortality rates and uses univariate time series, traditional
ARIMA processes, to model the parameters.

Table 3 Tests on residuals of the fitted VECM, 1950–2005, Circulatory system, U.S. females

Type of test Name of the test Statistic value p-value

Autocorrelation Portmanteau (15 lags) 776.68 0.07

Portmanteau (25 lags) 1224.33 0.39

Normality Skewness 8.39 0.30

Kurtosis 8.05 0.33

Both 16.44 0.29

Notes: The Portmanteau statistic tests the null hypothesis of no-autocorrelation among the residuals up to 15

or 25 lags.

The normality tests for the residuals are based on the skewness statistic, the kurtosis statistic and a

combination of these.

24 For a detailed description of these tests, see Lütkepohl (2005).
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VECM

The VECM fitting process is applied for the time period 1950–2000. AIC, HQ, SC and
FPE tests confirm a lag order of one. ADF and PP tests reject the null hypothesis
of non-stationarity at a 1 per cent significance level for parameters C, D and E, while
KPSS test does not reject the null hypothesis of trend stationarity at a 10 per cent
significance level only for parameter C and at a 1 per cent significance level for
parameter E. Parameters C, D and E are assumed trend stationary based on support
for this from at least two out of the three tests.

Two cointegrated relations are estimated for the remaining four parameters, as
shown in Table 4. These tests determine the number of long-run equilibrium
relationships among the parameters of the Heligman-Pollard model (A, G, H and K).

The estimated VECM is

rAt

rCt

rDt

rEt

rGt

rHt

rKt

2
666666666664

3
777777777775
¼
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�6:60 � 102
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0:79
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2
666666666664

3
777777777775
þ
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2
666666666664

3
777777777775

� �8:12 � 103 3:61 � 105 5:50 � 102 �0:65

3:44 � 104 5:44 � 106 1:86 � 103 �2:27

" #
�

At�1

Gt�1

Ht�1

Kt�1

2
6664

3
7775:

Table 4 Tests for the number of cointegrated relations, 1950–2000, Circulatory system, U.S. females

(a) Trace test; (b) Maximum-eigenvalue test

r Trace stat Critical values

10% 5% 2.50% 1%

(a)

3 4.27 2.69 3.76 4.95 6.65

2 12.71 13.33 15.41 17.52 20.04

1 40.04 26.79 29.68 32.56 35.65

0 88.70 43.95 47.21 50.35 54.46

r Eigen stat Critical values

10% 5% 2.50% 1%

(b)

3 4.27 2.69 3.76 4.95 6.65

2 8.44 12.07 14.07 16.05 18.63

1 27.34 18.6 20.97 23.09 25.52

0 48.66 24.73 27.07 28.98 32.24

Notes: A null hypothesis is accepted at a a% significance level when the statistic is lower than the corresponding

critical value. Thus, these tables indicate that two cointegrated relations are accepted at a 2.5% significance level.

These two tests assess the number of long-run equilibrium relationships among the parameters of the

Heligman-Pollard model (A, G, H and K) that is among age-based risk factors.
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The cointegrating relationships are

� 8:12 � 103At þ 3:61 � 105Gt þ 5:50 � 102Ht � 0:65Kt ¼ z1t;

3:44 � 104At þ 5:44 � 106Gt þ 1:86 � 103Ht � 2:27Kt ¼ z2t:

These are similar to the cointegrated relations for the VECM fitted over the full period
1950–2005 with parameters G and H having coefficients with similar signs, while the
coefficient of K is of opposite sign. The middle age parameters D and E are no longer
included.

Normality tests as well as tests on the autocorrelations among the residuals are
shown in Table 5. The normality of the residuals is not rejected at a 5 per cent
significance level. However, the Portmanteau test indicates some autocorrelation
remains in the residuals. A VECM with higher order, such as two or three lags,
may then be better. Since the longer period model fit indicated a VECM with
higher order was not required and since a model with as few parameters as possible is
expected to have a better forecasting performance, a lag of one is used for the shorter
period as well.

Figure 3 displays graphs of the parameters for the fitted model and the projected
values. Figure 4 shows the observed mortality rates in 2000 (dots) along with forecasts
for the VECM.

Lee-Carter model

In order to assess the performance of the VECM a variant of the Lee-Carter model,1

which has become a standard in mortality modelling, is used for comparison. The
model decomposes the logarithm of the force of mortality into two components, one
capturing the age pattern of average mortality rates and the other a common time
trend with differential impacts by age. The model is written as

ln mx; t ¼ ax þ bxkt þ ex; t;

Table 5 Tests on residuals of the fitted VECM, 1950–2000, Circulatory system, U.S. females

Type of test Name of the test Statistic value p-value

Autocorrelation Portmanteau (15 lags) 872.36 8.7� 10�5

Portmanteau (25 lags) 1451.54 2.01� 10�6

Normality Skewness 12.19 0.09

Kurtosis 11.02 0.14

Both 23.21 0.06

Notes: The Portmanteau statistic tests the null hypothesis of no autocorrelation among the residuals up to 15

or 25 lags. Normality tests are performed on the residuals based on the skewness statistic, the kurtosis

statistic and a combination of these.

The Geneva Papers on Risk and Insurance—Issues and Practice

610



with

mx,t force of mortality at age x, and year t;
ax mean value over time, at age x, of the logarithm of the force of mortality;
bx deviation from the mean value ax at age x.

Reflects the impact of the time trend represented by kt on age.
The higher its absolute value, the larger the changes in mortality at that age;

kt mortality rates trend over time;
ex,t random changes including those not captured by the model;

¼ errors assumed to have mean zero and variance s2 (homoscedasticity).

Figure 3. Parameter estimates and forecasts of the Heligman-Pollard model, Circulatory System, U.S.

females. (a) Parameter A; (b) Parameter C; (c) Parameter D; (e) Parameter E; (f) Parameter G; (g) Parameter

H; (h) Parameter K.

Notes: The Heligman-Pollard model is fitted to mortality rates over the period 1950–2000. The dots in the

graphs are the parameters based on the data. The curves are the VECM fitted on the parameters along with

the VECM forecasted values (from 2001 to 2020).
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To ensure this interpretation of the parameter ax, the sum over the estimator k̂t is set
equal to zero,

Xtmax

t¼tmin

k̂t ¼ 0:

Since if N is the number of years of observations,

Ytmax

t¼tmin

mx; t ¼ exp âxNþ b̂x
Xtmax

t¼tmin

k̂t

 !

¼ exp âxNð Þ;

which leads to

âx ¼ 1

N

Xtmax

t¼tmin

ln mx; t; 8 x:

For an identifiable model, another constraint on the parameters is specified, which
usually is

Xxmax

x¼xmin

b̂x ¼ 1:

Figure 4. Forecasted mortality rates over the period 2001–2020, Circulatory System, U.S. females.

Notes: The actual mortality rates of 2000 are represented by the dots and the forecasts—using the Heligman-

Pollard model and forecasting the parameters with VECM—by the curves.
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The parameters are estimated numerically using maximum likelihood estimation,
assuming that the number of deaths at age x follows a Poisson distribution with
mean lx,t � mx,t, lx,t being the population of age x alive at the beginning of year t.25 The
parameter estimates are shown in Figure 5.

In the Lee-Carter model, a single common factor across ages determines the general
level of mortality improvement over time. This improvement is modelled with a single
time series (kt) that is projected in order to forecast the complete age profile of
mortality. Lee and Carter suggest the use of a simple random walk with drift, that is an
ARIMA(0, 1, 0) model. Our analysis confirms an ARIMA(0, 1, 0) process with a drift
of �0.36 as the best model.26

ARIMA processes

As another alternative for comparison, the parameters of the Heligman-Pollard model
fitted over the period 1950–2000 are modelled with ARIMA processes, instead of a
VECM. We follow the approach applied in previous works,27 that is trends are
removed from the variables by first or second differencing. According to ADF, PP and
KPSS tests, first differencing on each parameter is necessary and sufficient to assure
stationarity. ARIMA(k, 1, (k�1)) models are successively fitted for each parameter of
the Heligman-Pollard model, increasing k by one, as suggested by Pandit and Wu.26

The F-criterion is used to decide which model is the most adequate between an
ARIMA(k, 1, (k�1)) and an ARIMA((kþ 1), 1, k). The F-criterion is a test to check
for improvement in the residual sum of squares of the error et. It tests the assumption
that some of the coefficients in a model are restricted to zero.26

Figure 5. Parameters of the Lee-Carter model, Circulatory System, U.S. females. (a) Parameter a;
(b) Parameter b; (c) Parameter k.
Notes: The parameters are estimated by maximum likelihood. Parameter k is forecasted from 2001 to 2005

(dots) using an ARIMA(0, 1, 0) model with a drift of �0.36.

25 Delwarde and Denuit (2006).
26 Pandit and Wu (2001).
27 Bell (1997); McNown and Rogers (1989); McNown and Rogers (1992).
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Once the appropriate ARIMA(k, 1, (k�1)) process is found, the confidence interval
of the coefficients is checked to ensure parameters are significantly different from zero.
If some intervals include zero, the F-criterion is applied to determine the adequacy of a
model without the corresponding coefficients. To check the adequacy of the model
found using the procedure described by Pandit and Wu, ARIMA(p, 1, q) processes for
all combinations with pp3 and qp2 are fitted and compared through the F-criterion,
resulting in similar choice of the ARIMA model. Finally, residuals of the fitted
model are checked to ensure they are uncorrelated. Table 6 shows the best fitting
ARIMA models resulting from this procedure. Each model has no significant residual
autocorrelation according to the Portmanteau test.

Model comparison

Comparison of the forecasts for the alternative models can be assessed from the plots
given in Figures 6–8. Figure 6 shows the forecasted mortality rates from the fitted
VECM (curve) compared with the actual data (dots). The forecasts from the Lee-
Carter model are shown in Figure 7. Figure 8 shows the forecasted age profiles of
mortality from the fitted ARIMA models.

These figures show that the Lee-Carter model tends to produce relatively poor
forecasts by over-estimating the decline of mortality at young ages. The Heligman-
Pollard model along with ARIMA processes underestimates mortality improvement,
particularly at older ages. The VECM provides better forecasts and does not exhibit
either of these features.

Table 6 Fitted ARIMA(p, 1, q) processes, Circulatory system, U.S. females

A: ARIMA (2, 1, 2) C: ARIMA (2, 1, 1) D: ARIMA (2, 1, 0) E: ARIMA (3, 1, 2)

Values CI 95% Values CI 95% Values CI 95% Values CI 95%

f1 �0.66 �1.01 �0.31 �1.36 �1.58 �1.13 �0.72 �1.00 �0.44 0.37 0.16 0.59

f2 �0.55 �0.82 �0.27 �0.58 �0.81 �0.35 �0.36 �0.63 �0.08 �0.24 �0.46 �0.02

f3 �0.65 �0.86 �0.43

y1 0.76 0.57 0.96 1.00 0.87 1.13 �1.27 �1.42 �1.12

y2 1.00 0.80 1.20 1.00 0.81 1.19P
et
2 6.58 � 10�9 4.15 � 10�3 7.56 � 10�10 713.81

G: ARIMA (2, 1, 1) H: ARIMA (2, 1, 1) K: ARIMA (2, 1, 0)

Values CI 95% Values CI 95% Values CI 95%

f1 0.49 0.21 0.77 �1.48 �1.69 �1.28 �0.71 �0.98 �0.45

f2 0.48 0.22 0.75 �0.64 �0.85 �0.43 �0.29 �0.55 �0.03

y1 �0.84 �1.04 �0.65 1.00 0.88 1.12P
et
2 5.00 � 10�12 1.65 � 10�4 56.71

Notes: All models are identified and estimated using the 50 observations from 1950 to 2000. First

differencing transformation is performed on every parameter.
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The forecasting performance of the three methods is also compared by assessing the
match between the actual and the forecasted mortality rates from 2001 to 2005 using a
mean absolute percentage error statistic (MAPE), the average of the absolute

Figure 6. Sample years of the log-mortality rates and the forecasted values according to VECM,

Circulatory system, U.S. females. (a) 2001; (b) 2002; (c) 2003; (d) 2004; (e) 2005.

Notes: The dots represent the observed mortality rates, while the forecasted values—using the Heligman-

Pollard model and forecasting the parameters with VECM—are depicted by the curve.
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percentage errors between the forecasted and the observed mortality rates computed
over the 19 age groups. The projections are also compared with a no-change forecast.
The no-change forecast takes the mortality of 2000 as the forecasted mortality rates of
the following five years. The ratio of the square root of two mean square errors (MSE)

Figure 7. Sample years of the log-mortality rates and the forecasted values according to the Lee-Carter

model, Circulatory system, U.S. females. (a) 2001; (b) 2002; (c) 2003; (d) 2004; (e) 2005.

Notes: The dots represent the observed mortality rates, while the forecasted values from the Lee-Carter

model are depicted by the curve.
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computed over the 19 age groups is used. The first MSE is computed between
the forecasted and the observed mortality rates. The second MSE is between the
no-change forecast and the observed mortality rates. A statistic with a value
smaller than unity indicates that the model forecasts are more accurate than

Figure 8. Sample years of the log-mortality rates and the forecasted values according to ARIMA models,

Circulatory system, U.S. females. (a) 2001; (b) 2002; (c) 2003; (d) 2004; (e) 2005.

Notes: The dots represent the observed mortality rates, while the forecasted values—using the Heligman-

Pollard function and forecasting the parameters with ARIMA processes—are depicted by the curve.
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the base assumption of no change in mortality. Table 7 shows the model comparison
results.

The forecasts from the VECM are closer to the actual mortality rates than the
forecasts of the Lee-Carter model or the forecasts performed with the Heligman-
Pollard model and ARIMA processes. The forecast error (MAPE) with the VECM is
lower and increases more slowly with time than the other two models. This is expected
to apply for projections over longer time horizons. The VECM performance comes
from its ability to capture relationships between the ages better than these alternative
models.

The main benefit of using the Heligman-Pollard model over the Lee-Carter model is
that it smooths mortality rates across ages and reduces the number of parameters for
the age structure mortality curve. The Heligman-Pollard model has sufficient
flexibility to allow for the full age range of mortality as well as having parameters
that are interpreted for their effect on mortality rates. Treating these parameters as
stochastic factors allows for more general dynamics than in the Lee-Carter model,
even though there is an increase in the number of parameters for the random factors in
the model.

The Lee-Carter model appears to be more accurate at older ages during the early
forecasted years than a stochastic parameter model based on the Heligman-Pollard
model. As mortality rates at older ages are higher than rates at young and middle ages,
the absolute error is higher at older ages. The statistic that compares each model with
the no-change forecast uses the squared error. In Table 7 the statistic comparing the
no-change forecast for the Lee-Carter model is then lower for the first three years than
the statistic of the other two models. For the later years this is reversed with the
VECM Heligman-Pollard model having lower comparative forecast error. For longer
forecast horizons, the age pattern given by the Heligman-Pollard model produces
better fits and relationships between ages are maintained by the VECM taking into
account long-run stochastic trends for the parameters of the model. The VECM

Table 7 Mean absolute percentage error and ratio of mean square error compared to no-change forecast,

Circulatory system, U.S. females

Year VECM Lee-Carter ARIMA

MAPE (%) vs no-change

forecast

MAPE (%) vs no-change

forecast

MAPE (%) vs no-change

forecast

2001 9.56 3.21 13.04 0.44 9.90 3.51

2002 9.33 1.27 14.15 0.30 11.08 1.25

2003 11.71 0.87 17.85 0.40 10.71 0.78

2004 11.84 0.43 19.33 0.55 15.37 0.97

2005 13.46 0.33 24.03 0.57 17.06 0.59

Notes:MAPE is the mean absolute percentage error. The vs no-change forecast is the ratio of the square root

of the mean square error of one of the three considered models with the square root of the mean square error

of the no-change forecast. The no-change forecast takes the mortality of 2000 as fixed and as being the

forecasted mortality rates of the following five years.

All summary statistics are averages over the 19 age groups and describe the situation at a single point in time.
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Heligman-Pollard model is expected to be more accurate for longer forecast periods
than five years because of this.

Conclusion

This paper presents a modelling and forecasting approach for mortality using VECM
concepts for a parametric model for the age structure of mortality rates. Because of its
ability to capture changing age structures and to model long-run trends, it has the
flexibility to model different causes of death as well as aggregate mortality rates. To
demonstrate the application of the model, it is fitted to cause-of-death mortality rates
for the circulatory system in the United States over the period 1950–2000 and
compared with alternative models previously proposed.

The model is a stochastic parameter Heligman-Pollard model, where the time series
of the parameters are modelled with a VECM. The VECM incorporates common
stochastic trends through long-run equilibrium relationships. The model captures the
age dependence of cause-specific mortality rates through dependence between the
parameters. Indeed, the parameters of the Heligman-Pollard model have interpretation
as factors impacting specific age ranges—young, middle and older. The demographic
meaning of the parameters allows for an analysis of the long-run equilibriums or
cointegration relations in the model. The expected relationship between the parameters
at older ages is shown to be reflected in these cointegration relations.

The analysis demonstrates for circulatory diseases mortality that a forecasting
model based on the Heligman-Pollard model with a VECM for the parameters is an
improvement over the well-known Lee-Carter model as well as over a model based on
the Heligman-Pollard model with ARIMA processes for the parameters. As the
forecast horizon is lengthened, the model based on the Heligman-Pollard model, with
a VECM for the parameters, increases in forecasting accuracy. The Heligman-Pollard
model uses a smaller number of parameters to model the age structure of mortality
rates compared with the Lee-Carter model. The stochastic model for the parameters
provides an adequate representation of the randomness of the process and the use of a
VECM ensures consistent future mortality curves are forecasted, which is not the case
if simpler ARIMA time series models are used. A stochastic parameter VECM form
of the Heligman-Pollard model has also been shown to perform well at a national
population level based on Australian mortality data.28 Finally, new theories on time
series models and applications to mortality are being developed.29 Standard unit root
tests are potentially unreliable in the presence of bounded time series, as they tend to
over-reject the null hypothesis of a unit root, even asymptotically. Conventional
cointegration tests may also be misleading in the presence of bounded time series.
These new theories have the potential to improve the forecasting performance of the
Heligman-Pollard model with a VECM for the parameters.

28 Njenga and Sherris (2011).
29 Cavaliere (2005).
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