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The Pricing of Non-Independent Risks
Under Constant Absolute Risk Aversion

by Emilio C. Venezian and Dongsae Cho*

1. Introduction

This paper analyses the conditions under which an insurer will undertake to write policies
for risks that are interdependent. The two areas will be of special interest:

the relation between the number of risks assumed and the premium that will be
charged, and

the effect of interdependence on this relation.

In essence we are trying to establish the insurance company's supply function for cover-
age of interdependent risks. Similar considerations are used to describe the demand function.
The existence of a competitive market equilibrium, even under conditions of perfect know-
ledge, has not been established.

Most of the analyses dealing with the setting of premium have dealt with risks which are
independent from each other. Financial models based on the capital asset pricing model, such
as those of Fairley [3], Hill [5], and Urrutia [8], or on arbitrage pricing theory, such as those of
Kraus and Ross [7] and Urrutia [9] are sensitive to interdependence only to the extent that
such interdependence is correlated with the performance of the economy as a whole or with
the performance of specific segments of the economy. From a broader economic context,
however, the interdependence of risks may have a substantial influence on the decision of
whether to assume the specific risks or how many risks of a given type (or in a given area)
should be underwritten.

This paper explores interdependence from the perspective of an insurer that is assumed
to be averse to risk. Much of the economic and financial literature is founded on the assump-
tion that firms, and particularly insurance companies, are risk neutral and reach decisions on
the basis of the expected value of the profit of the possible outcomes. Such a perspective may
be appropriate in the context of independent risks, a context in which the profits associated
with possible outcomes for a large portfolio of risks are in a relatively small neighborhood
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around the expected value of that profit. With positively correlated risks, however, the proba-
bility distribution of the outcomes may be much more dispersed and much less symmetrical.
The probability of insolvency will generally be much larger. In this context it appears reason-
able to assume that insurers are averse to risk. Indeed, if insurers were not averse to risk, regu-
latory authorities charged with the safeguarding of the solvency of insurers might intervene
and force a price that reflects the riskiness of the coverage under examination. We will assume
that the insurer's risk aversion can be characterized by constant absolute risk aversion. This
form of risk aversion, leading to an exponential utility function, has the virtue that as the risk
aversion coefficient becomes closer to zero the utility curve approachs linearity; in the limit
the results are applicable to the case of risk neutrality. The function also is convenient from
the analytical point of view since it leads to explicit results.1

The model developed in this paper will deal with a form of interdependence which leads
to positive correlation among the losses. Other forms of interdependence could be postulated
and forms that lead to negative correlation might also be of interest. Positive correlation
appears the more important because it will increase the probability of insolvency and provides
an example of a situation in which the usual assumption of risk neutrality and of no costs asso-
ciated with insolvency may provide a poor approximation.

It is also worth noting that the model presented here is one in which all risks are identical,
except the possibility that the risk aversion coefficient varies among the economic agents. The
model also assumes that the losses are neither predictable nor preventable, so there are no
issues of self-selection or moral hazard.

It would be interesting to determine the effect of reinsurance on the supply of insurance.
The existing literature on reinsurance, along with that of primary insurance, however, has not
devoted much attention to pricing in the presence of interdependent losses. The major results
regarding diversification through reinsurance and optimal reinsurance contracts all depend
on the assumption that losses are independent and are, accordingly, not applicable to the
situation being considered here. The analysis of the effect of reinsurance is outside the scope
of this paper.

2. Relation between premiums and demand

Consider a situation in which a potential purchaser of insurance faces a probability
p1 of losses from "non-catastrophic" events whose occurrences are independent of each other,
and a probability p2 of losses from "catastrophic" events which, when they occur, affect all
units within a defined group such as a geographic area.2 As a guide to visualising the model
one might think in terms of insurance of physical structures, such as houses. These are subject

Utility functions with constant proportional risk aversion, the logarithmic and power functions,
have been advocated by Copeland and Weston [1], Friend and Blume [4], Kenney and Raifa [6] among
others. These functions approach minus infinity as wealth approaches zero and yield complex numbers
for negative wealth. They are not useful when there is a non-zero probability of insolvency.

2 Although the model is equally valid when non-independence of losses is caused by characteristics
other than geography, such as exposure to different hazardous materials or different legal systems, this
paper will use the geographic example throughout.
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to loss through events which are essentially independent, such as through fire. They are also
subject to losses which tend to affect all structures in a geographical area in the same way, such
as floods earthquakes, hurricanes, and other large-scale phenomena.

Table 1: Loss prospects

Event Combination Probability Contingent
Independent Catastrophe Loss

No No (l-p1)(l-p2) L'

Yes No p1(l-p2)

No Yes p2(l-p1) L2

Yes Yes p1 p2 L3

* Note that the loss in this case is zero; the use of a subscripted variable does, however, simplify some of
the equations.

The loss prospects for a given potential purchaser are displayed inTable 1. Using the sym-
bols defined in this table, the actuarial value of the loss is p1L1 + p2L2 + p1 p2 (L3 - L1 - L2).
If L3, the loss when both independent and catastrophic events occur, were the maximum of
those under the single contingencies; that is, L3 is the maximum of L1 and L2, the actuarial
value of the loss would be p1 L1 + p2 L2 - p1 p2 min(L1, L2).

A potential purchaser with constant absolute risk aversion coefficient TA and initial wealth
WA has a utility function:

1-e
TA

If insolvency of the insurer does not play a role in the individual's decision processes, then the
individual will purchase full insurance against the contingent losses provided that it is avail-
able at a premium no greater than I:

PA=
1 ln(l+p1Z1+p2Z2+p1p2(Z3-Z1-Z2)),

TA

TA L.

whereZ1=e -1.
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Taken together with the distribution of risk aversion coefficients in the population, this
equation establishes the relation between premium and demand for insurance.

3. Relation between premiums and supply

As a counterpart, the utility functions of the insurers, takenjointly, will establish the rela-
tion between premium and supply of insurance. This relation can be developed by determin-
ing whether the insurer's expected utility given that it assumes a number of risks at a given
price is higher than its utility if it assumes no insurance. The derivation of the relation for the
potential supplier of insurance is somewhat more complicated than that relating to the poten-
tial purchaser of insurance because the interdependence of event combinations must be taken
into account. The framework presented here can be used to handle quite complex situations,
but the results may not be expressible in simple analytic terms.

This paper examines the case in which the insurer writes the same number of policies,
NR, in each of K areas, each of which has a probability p2 of suffering a catastrophic loss, this
loss being independent of the occurrence of catastrophies in other areas. The probabilities of
all event combinations can then be expressed readily if they are made conditional on k, the
number of areas affected by catastrophic events.

The number of units which are not affected by a catastrophic event is (K-k)NR. The con-
ditional probability that exactly n1 units which were not affected by a catastrophic event will
suffer a loss due to a non-catastrophic event is:

((K- k)NR) ! (K- k)NR -
(3) p(n1Ik) -

n1 I ((K - k)NR - n1)!
p1 (1 - p1)

The number of units which are affected by a catastrophic event is kNR. The conditional
probability that exactly n3 of these will suffer a loss due to a non-catastrophic event is:

If instead of being binomially-distributed the number of independent losses were Poisson-distri-
buted with expected frequency Pi per unit, then the number of losses would be:

r
Li NR (K - k)] - p1 (K - k)NR

(3a) p(n1 / k) - e
n I

The range of n1 would be all positive integers.

With a Poisson distribution for independent losses this expression would take the form:

n3

(p kNR) -p1 kNR
(4a) p(n3/k) - e

n3

The range of n3 would be all positive integers.
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(kNR) ! n3 kNR -
p(n3/k) p1 (1 - p1)

n3!(kNR-nS)!

The number of units affected by a catastrophic event which do not suffer a non-catas-
trophic loss is NR -

The probability that exactly k areas are affected by catastrophic events is simply:

p(k)= k !(K- k)! 2(1 _p2)
K!

Since n1 and n3 are independent, on the condition that the number of affected areas is k,
the probability of the combined event can then be written as:

p(n1, n3, k) = p(k)p(n1, n3 / k) = p(k)p(n1 / k)p(n3 / k).

Hence the expected utility, E(U), of an insurer with initial wealth which writes
NR policies in each of K areas at a premium per policy of P8 is given by:

K (K-k)NR kNR

E(U) = p(n, n3, k) U(W(n1, n3, k)),
k=O =0 3O

where W(n1, n3, k) = WB + KN8P8 - n1 L1 - (kNR - n3)L2 - n3 L3 is the wealth of the insurer forthe
realization n1, n3, k. After some algebra this reduces to:5

-rB(WB+KNRPB) NR NR
1 - e ((l-p2)Q0 + p2Q2 ))

where r is the risk aversion coefficient of the insurance company and

r8L, rBL+l
Q=(1-p)e +p1e

The insurer will assume those risks only if the expected value of its utility after their
assumption is at least as large as its utility at the initial wealth W8. This condition imposes a
restriction on the premium and, if the market is reasonably competitive the restriction
becomes the equation:

If the number of independent losses were Poisson-distributed, the summations over n1 and
n3 would be over all positive integers. The corresponding relation is identical to Equation 8 but with:

r8(L11 -L1)
rBLI+pl e -1

Q1=e
Subsequent equations still hold provided the appropriate values of Q, are used.
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(9)

where N = KNR

This expression defines the relationship between premium and supply for the individual
insurance company. Taken together with the distribution of the aversion coefficient among
insurers and with the dynamics of competition, this expression would define the premium-
supply relation for the insurance market.

4. Characteristics of the supply function of the firm

Equation (9) is, apart from a constant, of the form:

(10) f(x)= In((l -a')b+a'b).

As shown in the Appendix, this represents a monotonic relation with premiumf(x) increasing
as x increases. Since xis identified with NR = N 1K, it follows that if the total number of poli-
cies per area is to be increased, a higher premium must be charged. In this respect, Equation
(9) exhibits the classic characteristics of a supply function for the firm. On the other hand if the
number of areas, K, is increased while holding the total number of policies, N, constant, xis
decreased and this would be accompanied by a decrease in the required premium. Proporti-
onal increases in K and N, so that NR remains constant, do not affect the required premium.
Increases in scale of operation by increasing geographic diversification while decreasing the
number of policies in individual areas are more beneficial than increases in scale at constant
or increasing geographic concentration.

As shown in the Appendix, as the number of risks per area increases without bound the
required premium approaches asymptotically a value B () which is the maximum of
In Q0 and In Q1. As a rule, it could be expected that the occurrence of a catastrophic event
would not reduce the severity of losses from non-catastrophic events that affect the same
insured unit, so that L3> L1. Similarly, units that have not suffered from non-catastrophic
events would have a higher severity if a catastrophe occurred than if it did not, so that
L2> L0. In that case, Q2 is greater than Q0, and a lower bound on can be obtained by assum-
ing that L3 = L2. The corresponding lower bound on P8 () is L2, the value of a non-catastroph-
ic loss.6

At that price insurance demand would be limited to conditions of very high risk aversion
and probabilitities of loss close to unity. The price can be kept lower, and the demand higher,
by limiting the exposure of the insurance company. This characteristics of the market suggests
that when catastrophic losses are possible it is important for insurers to recognize the
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(1 - p2)Q0 + p2 Q2

6When the independent and catastrophic losses do not both have binomial distributions, the lower
bound will have a different functional form.



potential consequences of non-independent losses, limit their exposure to such losses, and
diversify. By these strategies premiums can be kept at a level which will be attractive to a large
segment of potential purchasers.

5. Structure of the premium

Since NR is a discrete variable whereas x is a continuous one, the limit of B as x goes to
zero represents the premium that would be charged by an insurer writing an infinitessimal
share of a single policy. The symbol B (e) will be used to denote this limit. From Equation (9)
and the relations shown in the Appendix, this value is found to be:

PB (e) = L [(1 - p2)ln(Q0) + p2 ln(Q2)

As r approaches zero, the quantities In(Q,)/rB take on the indeterminate form zero over
zero. Applying l'Hopital's rule:

ln(Q1) d(Q,)/dr8
jim = jim =(1-p1)L,+p,L11.

r,3-O r9 TBO
Using this equation, the limit of P8(e) as r approaches zero is found to be:

= jim PB(e) = (1-p1)(l-p2)L0 + p1(l-p2)L1
r 0

+ p2(l-p1)L2 + p1 p2 L3.

In simple words, this represents the actuarial value of the losses. The difference PB(e) -
8 (0) is a function of the risk aversion coefficient, r, the loss probabilities, p1 andp2, and the

loss seventies, L. By definition, it vanishes when the risk aversion coefficient approaches
zero. Moreover, it is a positive and increasing function of the risk aversion coefficient as can
be demonstrated by noting that, apart from positive constant it is the sum of functions of the
form of Equation (10), with x= r. It does not vanish when the probability of a catastrophic
event vanishes. It is appropriate, therefore, to characterize it as a component of premium
which is needed to compensate for risk aversion.

The difference between PB(NR) and PB(e) represents a third component of the premium.
This difference is positive and is a monotonic function of NR, since PB(NR) was proved to be
monotonic increasing with PB(e) as its lower limit. This difference is also a function of the
parameters r8, p, and L,. The fact that this component vanishes when the decision maker is
risk neutral is of interest but does not help to characterize this component. Of greater interest
is the fact that it vanishes identically when p2 is zero and also in the limit as N approaches
zero. Although the last component vanishes whenever the probability of catastrophic events
is zero, it does depend on the probability of independent events and on the number of policies
assumed, so it cannot be characterized as an allowance for contingencies. It can, however, be
characterized as a component of premium which is needed to allow for catastrophies and for
capacity.
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6. Are losses separable?

The structure of the supply prices suggests that it may be worthwhile to consider insur-
ance policies that cover the independent losses as contracts to be sold separately from those
covering the "catastrophic" losses. There is, in fact, ample evidence that this phenomenon is
seen in the market, at least in the United States. Some examples are:

earthquake and floor exclusions

war and nuclear damage exclusions

riot and civil disturbance exclusions.

Less visible, but along the same lines, are restrictions on the coverage of key corporate
officers to no more than ten deaths occurring from personnel travelling in the same airplane.

Contractual exclusions and limitations, however, do not always succeed in separating the
risks. For example, fire damage to a building must still be indemnified even if the fire resulted
from a gas main ruptured by an earthquake. In other cases, there appears to be no practical way
of framing the contract to achieve a separation. An example would be the exclusion of death
during an epidemic from indemnification under a life insurance policy. The question of how
"an epidemic" might be defined is compounded by the problem of definingjust which causes
of death are to be affected, the criteria that are to be used in establishing the cause of death,
and the exact time and space relations that must apply.

The model developed in this paper suggests that attempts to set exclusions and restric-
tions such as those mentioned above may result from a need to keep insurance for the inde-
pendent losses at an affordable level. When perfect separation of the risks can be achieved it is
of interest to determine whether separation is in the best interests of the parties. A separation
theorem would be attractive because of its analogy to capital asset valuation theory. The
model presented here provides a way of examining this question.

Consider a potential buyer of insurance whose risk aversion coefficient is rA and a poten-
tial seller of insurance whose risk aversion coefficient is r8. If the seller sells NTpolicies evenly
allocated among K areas, the price of full coverage, B, will be that given by Equation (9). If
the only losses to the insurer are those from independent causes, then the price will be
PB*, and can be obtained from Equation (9) by setting p2 to zero:

rBLI
PB*= __ in 1+p1(e -1)

If the consumer purchases coverage for both independent and catastrophic risks he will
have an expected utility:

-rA(WA - 'B)
E1 (U) =

r4

On the other hand, if the consumer purchases coverage for only the independent losses
and decides to be self-insured for the catastrophic losses, his expected utility will be:

I -e
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(l-p2)
E2 (U)

TA

1
e_WA - PB*)

]

The total coverage will be preferable whenever:

rAPB rAPB r TAL2

e <e [ 1 + p2 (e - 1)

Taking logarithms and using the expressions for PB and p8*, this inequality may be
expressed as:

(18) In 1 + p (e2_l)
a

> T

r11 NR

Since Q2> Q0, the theorems in the Appendix guarantee that the inequality will be satis-
fied whenever:

TAL2 1 (rAIrB)
1+p2 [e -ij>

LQOJ

This expression may also be written as

p?>

r8L2 rBL3
(l-p1) e + p1 e

TBL0 TBL1

(1-p1) e + p1 e

rA L2

e -1

For sufficiently large values of r the right hand side of this expression approaches the
value

r8 (L3 - L2)
(l-p1) + p1 e

- L0)
(l-p1) + p1 e

Thus it is clear that for sufficiently large values of r and sufficiently small values of
L3 - L2 there will be values of p2 such that the purchaser will prefer to pay for total coverage
rather than being restricted to having partial coverage. The specific values of p2 at which this

NR

+a aLQ

(rA 'TB)
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occurs will, of course, depend on the exact value of the other parameters of the problem. Thus
market restrictions may not be the most efficient way of dealing with the problem of catas-
trophic losses. Whether the combinations of variables that satisfy this condition are of practi-
cal importance has yet to be determined.

7. Discussion

The assumption that insurers are averse to risk when the scale of variability of underwrit-
ing results encompasses events that would lead to bankruptcy is sufficient to establish the
need for premiums to reflect contingencies. In the case of constant absolute risk aversion, the
premium can be characterized as decomposable into three components: the actuarial value of
the losses, an allowance for risk aversion, and an allowance for capacity and contingencies.
The last component combines capacity and contingencies in such a way that they cannot be
separated; if events are not independent then the premium must reflect both elements but if
only independent events are of concern then the premium should reflect neither element. The
effect of non-independent event probabilities on the supply of insurance is similar to that, des-
cribed by Venezian [11], of parameter uncertainty on the capital.

The results derived in this analysis lead to the conclusion that the premiums are indepen-
dent of the capital of the insurer or of the ratio of premium to capital. This conclusion is simi-
lar to those reached by using capital asset pricing models or arbitrage pricing theory. Models
using mean-variance approaches, such as that of Venezian [10], on the other hand, lead to the
conclusion that premium components are related to the capital of the insurer. In the present
scheme, capital would enter the supply equation if the utility of the insurer were not exponen-
tial, so that under conditions more general than those treated here the capital becomes relev-
ant. It is of interest that even under the assumption of constant absolute risk aversion of the
insurers, capital enters the demand side of the equation if it is admitted that the potential pur-
chaser of insurance is concerned about solvency. This can be seen readily by reformulating
Equation (2) under conditions in which insolvency matters. Similar behavior has been report-
ed by Doherty and Tinic [2] for pricing based on capital asset pricing models when the pur-
chaser has an interest in solvency.

If risks are segregated into areas subject to independent catastrophic events, with an event
in one area affecting all the policies in that area but not those in other areas, the insurer can
achieve an economically satisfactory position by offering a given aggregate coverage at a lower
premium by diversifying its books across different areas rather than by concentrating in one or
more. Note, however, that the model ignores the effect of any operating economies, such as
those of scope, concentration, or scale.

It is important to emphasize that the analysis is based on the concept that the supply
curves are set in a competitive market but the existence of a stable competitive market is not
established. This is not surprising since the structure examined allows for different risk aver-
sion coefficients so firms can be viewed as having different marginal costs of production. The
conditions required to ensure that the market exhibits stable competitive equilibria would
provide insight into the sustainability of an unregulated market.

The problems cannot, unfortunately, be resolved easily. In fact even the case of non-dis-
criminating monopolistic markets is difficult to handle. A monopolist discriminating on the
basis of the risk aversion coefficient of the potential clients will set the price for each insured
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using Equation (2) and would prefer to sell to people with high risk aversion than to those with
low risk aversion. Under such conditions the insurer's utility could be optimized at a unique
point. For a non-discriminating insurer the problem would be to set a single price which maxi-
mizes the expected utility as described by Equation (8), recognizing that the number ofpeople
buying coverage at a given price is limited to those who have a risk aversion coefficient larger
than that obtained by solving Equation (2) when the price faced by the purchaser is equal to
that asked by the insurer. Though the equation to be solved can be set out explicitly in terms of
the distribution of risk aversion coefficients in the population, the uniqueness of the solution
has not been established.

Even if market stability is not established, however; the results presented here are of inte-
rest. They do represent the relation between price and supply that would hold if a monopolist
were faced with imminent entry whenever monopolistic profits are being exacted. As such,
they also represent premium levels that would be adopted by a regulator who desires stable,
non-discriminating, and reasonably competitive premium ratos.

Appendix

Essential properties of the premium function

The minimum premium given in Equation (9) of the text can be expressed in terms of the
function:

(A-i) f(x)= in((1-a')+a')
with 0 < a' < 1.

This appendix sets out the limits of this function as the argument, x, tends to zero and
infinity, and establishes the monotonicity of the function.

We define:

M = max (b1, b2)

m = mm (b1, b2)

g mIM

b1.-M b2-M
a =(1-a') + a'

With these definitions we can write Equation (A-I) as:

f(x) = in M + in [ a + (1_a)gx
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withO<a< landO<g<1.

From Equation (A-6) it is obvious that:

urn f(x) in M.
x -

The limit as x tends to zero is In M plus a fraction of indeterminate form zero over zero.
The limit of this fraction can be found, by l'Hopital's rule, to be (l-a)/n g. Accordingly:

urn f(x) = In M + (1-a) in (rn/M)
x 0

= a in M + (1-a) in m.

It is apparent that the function is larger at very large values of x than it is at zero. In order
to establish that the function is monotonic for all positive x, the first derivative must be proved
to be positive at all positive values of x. This derivative is given by:

f' (x)
xgx(1_a)ing - (a+(l_a)gx)ln(a+(1_a)gx)

x2 (a + (1_a)gx)

The denominator off' (x) is clearly positive. Denoting the numerator of Equation (A-9)
by h(x) it can be seen that h(0) is zero and after some algebra:

(A-b) h(x)=(l_a)gxingin
a+(1-a)g

Since 0< a < 1 and 0 <g< 1 the quantities g and gx/(a + (1-a)g) are both less than unity for
positive values of x; it follows that their logarithms are both negative. The function h' (x) is a
positive constant times the product of these two logarithms and must, accordingly, be positive
for all positive x.

The above derivations establish that the functionf(x) described by Equation (A-i) is
monotonically increasing for positive x and ranges from in M to ainM + (1-a)inm.
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