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Underinsurance on a Portfolio of Property Exposures
in an Inflationary Environment *

by Gerard M. Dickinson ** and Leigh A. Roberts

1. Introduction

Underinsurance is generally recognised as being a serious problem for property
insurance companies, often resulting in adverse underwriting results. Underinsurance
can be broadly defined as a situation where the insurance cover on an exposure is less
than the value of the property in the event of total loss. In property insurance, where
premiums are commonly set proportional to sums insured, premium rates charged can
be the same for property exposures, within a given risk class, whether these exposures
are underinsured or not. Because small claims are for the most part more frequent
than large claims, underinsurance can lead to inadequate pricing. In an inflationary
environment, there is a tendency for underinsurance to increase in extent and degree
within a property portfolio.

With respect to commercial and industrial property insurances, it is common for
the insurance policy to allow the insurance company to reduce partial losses by some
proportion in the event of underinsurance Such a proportion tends to be that between
the sum insured and the value of the property at the time of loss; sometimes this
reduction is applied only when the sum insured falls below a specified percentage, such
as 80 %, of the value of the insured property.2 This practice of reducing claim
payments to policyholders with respect to partial losses when underinsurance exists is
referred to in the insurance parlance as average. In this paper we shall assume that the
scaling down factor when applying this principle of average in the event of under-
insurance will be a ratio of the sum insured to the total value of the property at the
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time of settling the claim ; for ease of exposition, no distinction is made between the
reporting and the settlement of a claim.

It is clear that the application of average is intimately related to the question of
pricing and equity among policyholders within a given risk class. We shall concentrate
more on the effectiveness of the practice of applying average as an ex-post adjustment
for inadequate pricing. It is clear that if an insurance company were to anticipate the
degree of underinsurance caused by inflation or otherwise at the outset of the policy
and include an adequate allowance for this in determining their pure premiums, then
there would be no need to apply average, other than for reasons of equity. In practice
the right to apply average to partial losses is not always exercised by the insurer and
there is not always a clear cut distinction between building in a loading for an expected
incidence of underinsurance and applying this ex-post adjustment for inadequate pricing.

For ease of exposition, we shall assume a rather simplified model. It will be a one
period model and not dynamic; we shall concentrate on the claims payments by an
insurance company on a portfolio of property exposures; we shall implicitly ignore
expenses and underwriting profit loadings. It will be assumed that at the outset the
property exposures are fully insured and only become underinsured over time due to
to the impact of inflation.

2. Differential effects of Inflation on claim amounts
Before looking at the more general case of a portfolio of property exposures, let

us first consider an individual exposure. For example such an exposure might be a
building which is insured against fire loss over a period of time. We represent the
distribution of the amount z that an insurance company would be required to pay in
the event of a claim at time t as P(z t). The corresponding density function, dP(z t)/dz,
denoted by P'(z t), might be expected to exhibit one of the two following shapes.

Figure 1(a) Figure 1(b)
Prob. Prob.
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There is both empirical evidence and theoretical justification for assuming that such
density functions would reveal decreasing probabilities as the size of claim increases



over most of the range of possible claims. However, it would seem likely that the
probabilities would tend to increase as the size of claim approached a total loss.3 With
respect to a fire exposure, the point at which the probabilities begin to rise might be
a point at which a fire would get increasingly out of control, therefore resulting in a
total loss. But more generally with respect to property exposures, this could be expected
to arise due to the comparatively high cost of repairs. With respect to very small
claims, Figure lb differs from Figure la in that it assumes that policyholders would
be less disposed to make such claims either because the amounts involved would not
warrant the administrative costs of doing so or because they might feel that small
claims might adversely affect their future premium costs.

In the following, z will denote the amount that an insurance company pays on a
claim at time t, but if a claim occurs at exactly time t=O, we shall denote this by y.
Hence P(z t) is the distribution function of a claim, conditional on there being a claim
at time t, with the distribution function with respect to a claim at time t = 0 being
written as P(,y 0). The distinction between y and z is made because we are concerned
with the changing character of claims over time, so that z can be written as some
function of y.

A fundamental assumption in the ensuing analysis is that the claim distribution
for a policy is changing over time only due to inflation. There is no intrinsic change
in the propensity of the insured property to give rise to a claim. Another assumption
is that if the insured property is damaged, it is repaired or replaced instantaneously
and the policy continues in force. Later in the paper, when we consider a portfolio
of policies, this latter assumption will not be important as long as the proportion of
policies on which claims are made is small ; but it is an essential assumption for one
policy.

Formally, these two assumptions mean that:
(1) dP(yJ0)=dP(zt)
where the initial claim, y at time 0, has changed to z at time t. This simply says that
if a claim occurs at time t, the probability of that claim being an amount z is the same
as the probability of a claim at time 0 being an amount y.

Let us assume that the claim amount y grows exponentially over time:

z y e7t

,' could be viewed as a constant, in which case the claims amounts would grow at a
constant rate over time. It is more realistic to adopt a more general form such that y
is a function of y. This permits us to allow for differential rates of inflation on claims
of varying size. Indeed, it would be possible to specify y as also a function of time, viz:

Intuitively one would often expect the distribution of the claim amount to be discon-
tinuous, with the amount claimed in the event of a total loss being an atom of the distribution
and claims just below this maximum loss to have an extremely low or zero probability of
occurrence. We approximate this distribution, for ease of exposition, by using a density
function which increases smoothly but sharply from a very small value just before this point
of maximum loss, as shown in Fig. 1.
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z = y exp [fy(y,)diJ
but this additional complication will not be considered.

At time 0, the total value of the property exposure is scaled to unity. Since we are
dealing with property exposures there will be a upper limit on the size of a claim at
tune 0; this would not necessarily be the case with respect to a liability exposure.
The growth model assumed in the analysis here requires that an upper limit exists for
it to be mathematically viable (see Appendix A).

For ease of exposition, y will be assumed to be simple linear function of y
(2) y(y) = y + y2(ly) for y [0,1]

Yi is the rate at which the total value of the property is growing over this period,
while Y2 permits a differential rate of increase as the size of claim decreases. While y
could in this general form be positive or negative, a positive value is more reasonable
to assume in that partial losses are likely to grow at a faster rate than a total loss,
due to the higher labour content with respect to smaller losses. While little published
empirical data is available, there seems nevertheless to be some evidence to support
the view that partial claims grow faster than total claims over time in respect of
property insurance in an inflationary environment.

If a specific shape for the distribution of a claim with a density function similar
in shape to that in Figure la is assumed, this permits some numerical values to be
generated. More particularly, and for simplicity, let us assume that a time t=0 the
density function has the following quadratic form:

a(y - b)2 + c, with a, c> 0½<b<1
In general, the density function P'(z t) is not quadratic for t j= 0. If y2> 0 the function
will change shape broadly as shown in Figure 2, with a movement in the probability
mass to the right, since smaller claim amounts are increasing more quickly than
larger ones.
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Appendix B indicates that the first two raw moments will increase if 72 increases.
Let us consider the particular density function

2 18(y--)2+-
3 9

The change in the moments over one period is shown below for different values of
y and

3. Underinsurance, average and profit In a portfolio context

Let us now look at a portfolio of N policies on identical, independent exposures.
We shall concentrate on the distribution of claims and for ease of exposition explicitly
ignore expenses and underwriting profit loadings. The simple model advanced can be
viewed as implying the following: 1) that the insurance company sets premiums to
cover its pure premiums and expenses; no specific loading is included for under-
writing profit; 2) all premiums are paid at the beginning of the period and expenses
are immediately incurred; thus the cash flow of premiums less expenses is available
to earn interest prior to claims being paid; 3) there is no allowance for interest made
in determining pure premiums ; 4) all property exposures are considered to be fully
insured at time 0, but all will become underinsured due to the impact of inflation
over the time period.

The particular issue that we shall focus attention on is the efficiency of the practice
of average as an ex-post adjustment for inadequate pricing in the period of inflation.
To put the analysis in a clearer perspective, let us consider two insurance companies,
company A and company B, that underwrite identical portfolios of property exposures
as outlined above. Company A is myopic and sets its pure premiums without regard
for the impact of inflation on claims over time. It does, however, apply average and
scales down claims when they occur, total and partial, by the ratio of the value of
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property at time 0 to the value of the property at time t. If the value of property at
= 0 is one, then the scaling down factor in the event of a claim at time t will be

e_rit.
On the other hand, company B is forward-looking and has perfect foresight. It is

aware of the inflation on claims over the period and builds these inflationary effects
into the pure premiums that it charges. It loads into premiums ex-ante the effects of
inflation and hence underinsurance and pays claims in full without applying average;
indeed, it pays the full amount in the event of a total loss. Thus the pure premiums
that it charges are equal to the expected monetary (undiscounted) value of the claim
payments. In determining pure premiums, it is assumed that both companies have
accurate estimates of the expected number of claims that will occur in their respective
portfolios during the time period.

Let us now consider the distribution of claim payments on the portfolio of the N
identical, independent exposures. We shall consider the distribution of claims as
discounted to time 0. The discount rate 6 is the rate of interest that the insurance
company earns on the pre-payment of premiums, which we have implicitly assumed
as the only source of profit from underwriting the portfolio. The moments of this
distribution are derived in Appendix B. Here we shall only concern ourselves with the
first moment and the particular case where the probability of an individual exposure
suffering a claim is constant over the period.

The expected value of the discounted total claims paid on the portfolio by the
insurance company over the period, assuming no average is applied, is:

1pp1 ff zetdP(zIt)dt
00

1 1
e'12 e)1t1.

+ p2 fff f (z1e_öti + z2e-Sts) dP(z1 Iti) dP(z2 I t2) dt1 dt2
0 00 0

+
The first term p1 is the probability that there will be exactly one claim on the total
portfolio over the period; this one claim occurs at time t with the probability dt, and
the probability that the claim will be of size z is dP(z It). In the second term, p2 is
the probability that there are exactly two claims over the year occurring at times t1
and t. There are similar terms for three claims, four claims, etc.

In Appendix B, it is shown that this infinite series can be simplified to:

I
4u=E(n) ff ze_otdP(zlf)dt00

where E(n) = p1 + 2p2 + 3p8
E(n) represents the expected number of claims on the portfolio over the period. If the
stronger assumption that the distribution of claims follows a Poisson process is made
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then E(n) = N2, where #% is the parameter for the Poisson process of claims on one
policy and N the number of policies. Hence transforming the above from variable z
to y and deploying the simplifying assumption (2) we get:

11
E(n) ff y efri + 12(1y)lt et dP(y 0) dt.00

If the insurance company reduces claim payments due to underinsurance by applying
average in the way discussed, this is equivalent to multiplying a claim at time t by the
factor e - This gives

11
= E(n) Jf y ev2(l-Y)t -öt dP(y 0)dt.

00
Let us now consider these two insurance companies, company A and company B under
two scenarios: a) where high and low claims increase at the same rate of inflation;
and b) where the claims increase at different rates of inflation. The pure premiums
charged by company A will be denoted as A and the expected value of its discounted
total claims payments as ptA. Similarly the pure premiums charged by company B
will be denoted by P and the expected value of its discounted total claim payments
as 1tB

(a) Scenario 1 Vi > 0; = 0.
i) Consider first the case where ô = 0

"A IA = E(n) fly dP(y 0) dt
"B = IB = E(n) fly e?lt dP(y 0) dt.

Here it can be seen that the application of average by company A provides adequate
compensation for the effects of inflation.

ii) Now consider the more realistic case where 6 > 0 i.e. where a rate of interest
can be earned on the pre-payment of premiums.

PA> /2A = E(n)ffye-ötdP(yjO)dt
I'B> 12B = E(n)ffye7ite.ôtdP(y0)dt.

Because claim payments are now discounted, a profit exists for both companies. But
company B will generate a higher profit than A, because it charges a higher pure
premium thus enabling it to earn a higher level of investment income.
(b) Scenario 2: 71>0; 72*°

This is the more general case where claims are allowed to grow at different rates.
The more realistic case of 72 > 0 is assumed.

i) Again assume 6 = 0.
"A < /4 = E(n) If Y ers(1 -lOt dP(y 0) dt
"B = B = E(n)ffye[rj+72(l_Zl)ltdP(ylO)dt.
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In this case company A when applying average, viz reducing claims by e - 71t, does not
adjust for partial losses sufficiently. Hence company A would incur a loss, with com-
pany B again, by definition, breaking even.

ii) Again adopting the more realistic case a> 0, we get
= E(n)ffy er2(i-y)t e-ôt dP(y 10) dt

P13 > /2B = E(n)ffyelri+72(t-Y)lte-otdP(yJO)dt.
Again company B will make a profit. It is difficult to say whether company A will
make a profit or not. This will depend on whether the rate of interest which it earns
on the pre-payments of premiums is sufficient to offset the loss due to the inadequate
downward scaling of partial claims. Even so it is clear that company B will have a
higher profit than company A on two counts: a) it will have a higher investment
income due to the higher level of its pure premiums and b) it will not suffer from
the higher rate of increase on partial claims since it has included these in its premiums
in advance.

Downside risk

It is also illuminating to analyse how the downside risk for companies A and B
behave for differing values of y and y. Downside risk is defined here as the probability
that the discounted value of total claims exceeds the total pure premiums or, in other
words, the probability that the company will incur a financial loss on underwriting the
portfolio over the period. More specifically, we wish to calculate Prob (x > P), where
x represents the discounted value of total claims and P is the relevant total pure
premiums.

It is not possible here to present a rigorous proof, but preliminary analysis strongly
indicates that at least when x has a normal distribution, then the downside risk for com-
pany A will always be greater than that for company B, if either Yi or y, is positive.
To assume that the Central Limit Theorem applies such that the x can be approximated
by a normal distribution is appropriate for a large portfolio, given the earlier assump-
tions that the property exposures are independent and identical.

Moreover, the downside risk for Company A can in general be expected to be
greater when 72> 0 than when yz = 0, for a given Yr

A numerical example

A numerical example will help illustrate the general points raised in the paper so
far. To simplify the exposition, the following further assumptions will be made:
(i) the period of analysis is 1 year;
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at the beginning of the year, individual property exposures have a value of
£10,000 and the density function of claims payments facing the insurance company
for each exposure has the particular quadratic shape postulated in Figure 1 (a)
the portfolio contains 100,000 exposures and the expected number of claims during
the year is 1000;
the annual rate of interest that can be earned on the pre-payment of premiums is
12 % compounded continuously i.e. 6 = .12. Even though from an economic
standpoint one would a priori expect 6 and y to be correlated to some degree
during the year, this is not allowed for specifically;
the discounted value of total claim payments is assumed to be normally distributed;
the two parameters needed to specify this distribution are calculated as outlined
in Appendix B.
Let us now calculate and contrast the level of profit and the downside risk for

company A and company B under the two scenarios for selected values of y and y.
It will be readily apparent that P - represents expected profits earned during the
year discounted to the beginning of the year. It is more appropriate, therefore, to
calculate the value (P - 4u)e which is the profits valued at the end of the year. For
convenience (P - )eâ will be denoted by V.
Scenario I y = 0; 6 = .12
Company A:

Company B:

11

"1

0 .05 .1 .2

VA ('000) 181 181 181 181

Prob (XA > P4) .087 .087 .087 .087

0 .05 .1 .2

VB (&'000) 181 187 193 206

Prob (XB > P) .087 .085 .083 .079



It can be seen from the above that the profit level for company A does not vary
with changing values of y. This is because (i) the pure premiums charged and hence
the investment income generated is the same irrespective of the value of y and
(ii) the application of average to claim payments exactly compensates for the infla-
tionary increase in claims payments. On the other hand, for company B the profit level
increases as increases, since a higher level of investment is produced by the additional
loading in the pure premiums for the expected impact of inflation on claims.

The downside risk facing company A does not change as increases, but the
downside risk facing company B falls slowly as Yi increases. Thus except for the case
where there is no inflation (i.e. y 0), company A will have a lower level of profit
and a higher downside risk than company B.
Scenario 2 72> 0; 6 = .12
Company A:

12

72

0 .05 .1 .2

VA ('000) 181 148 115 47

Prob (x4 > A) .087 .133 .195 .366

Company B:

0

72

.05 .1 .2

VB ('000) 181 183 186 192
0

Prob (xB > "B) .087 .085 .083 .078

VB ('000) 187 189 192 199
.05

Prob (XB > B)71
.085 .083 .081 .077

VB ('00O) 193 196 199 205
.1

Prob (X > B) .083 .081 .078 .076

VB ('000) 206 210 213 219
.2

Prob (xB > 1'B) .079 .078 .076 .072



As in scenario 1, the level of profit and downside risk for company A are inde-
pendent of 7i But the numerical example illustrates how sensitive these financial
characteristics are to increasing values of y for company A. The sharp fall in profits
and the increase in downside risk are directly traceable to the inadequacies of the
averaging procedure as an ex-post pricing adjustment, when partial claims increase at
a faster rate than total claims. In contrast, profits for company B increase as either

or 79 increases due to the higher investment income produced by higher premiums;
moreover, while the downside risk does not change significantly, it does fall slowly
with increasing values of either y or 72

6. Conclusion

In this paper we have sought to look at the impact of inflation on property values
over time and the related claims payments in the event of insured losses. Particular
attention has been focused on the use of average as an ex-post pricing adjustment for
underinsurance caused by inflation. A simple model has been developed which reveals
the inadequacy of the conventional method of applying average when partial claims
increase more quickly than total claims ; that is, unless there is some initial loading in
premiums to allow for this.

The reader will discern that this general point regarding the application of average
could be made without the introduction of company B as a point of contrast. Even so
it is useful to introduce such a contrast, since it makes more explicit the interdependence
between the ex-ante loading of premiums for inflation and the ex-post pricing adjust-
ment of average. The question whether company B could in a competitive market
charge these higher rates than company A and attract some share of the market is a
subject for further analysis. Even without detailed analysis, it is possible to hypothesise
that there would be conditions under which this could be so, since company B is offering
greater protection to policyholders than company A. A key factor in such an analysis
would clearly be the distribution of the degrees of risk aversion among policyholders
in the market. The growth of index-linked policies in recent years, at higher premiums,
is some empirical evidence of this.4

Average is applied by insurance companies also to ensure some equity between
policyholders within a portfolio. The issue of equity has not been addressed here
directly, although the findings of the analysis indicate that the usual adjustment is
unlikely to be adequate when partial claims grow at a faster rate than total claims.
The analysis adopted earlier could be extended to develop this case, but we would need
to permit property exposures to vary by size, for a particular risk class.

4 Company B can be considered to be a company issuing index-linked policies with
perfect foreknowledge of and
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What issues of practical significance are suggested by the paper? Firstly, we stress
the importance to an insurance company of investigating whether claim amounts can
be expected to grow at different rates in an inflationary environment and, if so, of
estimating these rates over time. Secondly, we observe that insurance companies should
recognise more than they appear to do so the interdependence between building loadings
ex-ante into pricing to allow for underinsurance caused by inflation or otherwise and
applying average ex post to compensate for such underinsurance; this implies closer
coordination between underwriting and claims departments. Thirdly, if average is
applied in the interests of achieving equity between policyholders within a particular
risk class, it may be more appropriate to devise and apply a sliding or variable scale of
adjustment to allow for differing degrees of underinsurance, if partial claims are likely
to continue to grow at significantly different rates from total claims.

It will be readily apparent that the simplified model adopted here can be extended.
The portfolio of risk exposures considered could be permitted to vary in size and so
could their propensity to have a claim over time. Specific allowance could be made in
the model for expenses, underwriting profit and an initial stock of capital and free
reserves ; moreover the simple rate of interest which the insurance company is deemed
to earn can be linked to a portfolio of financial assets. It is the intention of the authors
to develop the model further within a stochastic framework in order to explore the
implications of different pricing policies, including the indexing of premiums and sums
insured, on the rate of return on capital and the probability of ruin of an insurance
company in the context of an inflationary environment.

Appendix A

Consider two different claim amounts y and y' at time 0, which increase exponen-
tially over time at rates y(y) and y(y*) respectively to amounts z and z at time t:

z = y e(u)t; z = y ev(Y*)t.

Suppose the smaller amount grows more quickly, specifically:
y <y* and y(y) > y(y*)

Let T be the time when both initial amounts accumulate to the same value, which is
given by

y ey(y)T y* er(Y

Then z<z* for t<T
and z>z*fort>T.

It is not possible to state unequivocally what probability to assign to a value of z
occurring at time T, since it could spring from either y increasing at y(.y), in which
case the probability would be dP(y 0) or from y' increasing at y(y*), in which case
the probability would be dP(y* 0).
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Thus unless y(y) is a non-decreasing function of y, there is some time limit to
the validity of this simple growth model: the time when the two different initial amounts
catch up to each other. Before this point in time it is possible to associate a claim z
at time t with a unique pre-image y at time 0.

Consider again,
z = y ev(v)t

Differentiating:
z'(y) = er(Y)t[l + yty'(y)]

Relation (3) is invertible i.e. defines y as a function of z, provided z'(y) z 0. Adopting
the linear form for y(y)

7(Y) = + '(l -
we see that z'(y) 0 if

1yty2=0.
If 72 < 0, this can never be satisfied; while if > 0, the model breaks down

(in the sense that a particular z need not correspond to a unique y) at the first time t
such that

for some y. If y has no upper bound (5) shows that the model is not valid for any
time period; hence it is necessary to assume an upper limit on possible claims y at
time 0. Choosing a monetary unit such that this upper limit is one, the model remains
valid as long as

1

72

For instance, if the smallest claims increase at 10% more than the highest claim, i.e.
72 = .1, the model breaks down after 10 periods.

This can be further elucidated as follows. Consider initial values y and y -
with an infinitesimally small amount. These accumulate to the same value at time r,
where

Y e7(ZOt = (y_E)ev(Y)t.

That is,
y erit eVs(l-Y)t = (y_e)e?it e72(1Y+s)t
y = (ye)eY2t

= (ye) (1 +72et + 0(8))
= ye(1-72yt) + o(E).
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Thus the amount y and the amount infinitesimally less than y catch up to each
other when

1 - yt 0,
which is (4) again. The break down of the model is apparent, since the pre-image at
time 0 of

y eT(Y)t

can be either y or y -
The upper limit of 1 assumed for y in the model means that the model is valid

for up to 10 periods for 72 = .1, up to 5 periods for = .2 etc.
This is not to say that the model is at all sensible over the whole period
1

[0, -1. Let = 72 = .1, and consider the following accumulations:
72

Since lower claims accumulate more quickly than higher claims, as time passes
more and more of the claims have low pre-images. For instance, after 5 periods, the
first 64% of claims (by size) arise from the lower half of the original claims at time 0
after 10 periods this has risen to 82%. Note that 7i influences the accumulated amounts
but the distribution is only distorted by 72' which, since it exceeds zero, is moving the
mass of the distribution to the right. It is unlikely that we would believe in so much
distortion even over a long period, and one must consider the useful life of the model

1
to be less than the mathematically possible - periods for the simple linear case.

72

Appendix B

In this appendix, the moments are derived for the total discounted value of the
claims paid on a portfolio of policies covering N identical, independent exposures.
All integrals are assumed to exist.
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Initial
amount

Accumulated
amount after

5 periods

Percentage
of total

Accumulated
amount after

10 periods

Percentage
of total

0 0 0 0 0

.25 .60 36 1.44 53

.5 1.06 64 2.24 82

.75 1.40 85 2.62 96

1 1.65 100 2.72 100
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Let p denote the probability of i claims occurring over the period Er, r + 1), and
dQ(t) the probability that a claim occurs at time t, conditional on there being exactly
one claim over Er, r + 1). Then the kth raw moment of the total claim payments
(discounted to time 0) for the period Er, r + 1) is:

+i
= p1 f f (zeat)k dP(z t) dQ(t)

T 0

+1 i+i e1t2 1t1

+ p2 f f f f (z1e - M1 + z2e - at2)k dP(zilti)dP(z21t2)dQ(ti)dQ(t2)
T T 0 0

+... etc.
Consider now k 1, the first part of the second term becomes:

T+l +1 e1t2 e71t1

p2 f f f f z1 e - dP(zilti)dP(z2fr2)dQ(ti)dQ(t2)
T t 0 0

+i e"11
= p2 f f z1 e-i dP(zi!ti) dQ(t1).

T 0

The second part of the second term reduces similarly, and so on for higher order
integrals, such that

+i e"1
a1= ("i + 2p2+3p3+ ...) f f ze_otdP(zlt)dQ(t)

T 0

If n denotes the number of claims,

T+l ehlt
alT E(n) f f z e-6 dP(z jt) dQ(t).

T 0

This is just what one would expect, since the double integral is the expected (discounted)
payment on one claim.

For ease of exposition, let us define:

,H-1 e71t

fl, f f (z e-öt)k dP(z jt) dQ(t)
T 0

such that

alT = E(n) flu.



For k = 2, (6) becomes

T+1
= p1 f f (z e-t)2 dP(z It) dQ(t)

0

+1 +i e"12 eultl
+ p2 f f f f (ze - 'i + z2e - ot2)2dp(zIt)dp(zIf)dQ(t)dQ(f)

0 0

+...etc.
The nh term in (8) is

+1 e"11
Pr = f (Ez1e_hi)2 j1dP(zI t2)JJdQ(t).

0

Each crossed term in the expansion of the square contributes the same value to
a2r and so the rth term becomes

Pr (rfl2 + rP2fl2)

where

rpk = r(r-1) ... (rk + 1)
the number of permutations of r objects taken k at time.

Hence from (8)

= Pi fl2 +
r=2

(r fl2 + rp2 fl21)

00
= E(n) j2 + fl21. X r(r 1) p

r=2

= E(n) fl2T + P21T r(r 1) Prr1
= E(n) fl2D + fi21T (E(n2) - E(n)).

Proceeding similarly for the higher moments:

= E(n)
a2 = E(n) flT + fi2 E(P2)

= E(n) /i + flfl E(P2)
+ /i E(P3)
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Consider the definition of IIk:

+1
= f f (z e-öt)k dP(z jt) dQ(t)

0

+1 1
= I I {y eLrl+r2(l-y)It e-öt}k dP(y 10) dQ(t).

r 0

Since (1 y) and t are non-negative over the region of integration,
C2 (1 -

increases with over this region, and so flkT increases with y for all k> 0 and for
all T > 0. Thus, from (9) it can be seen that the first three raw moments of the
discounted payments for period [r,T+ 1) increase with 72 This is the case for all the
raw moments ak for all non-negative k and .

Letting x represent the discounted value of payments:
E(x) =
E(x2) =

So Var(x) = a2 - a2lT.
In general then, it is not possible to state whether Var(x) increases with y, but it

is possible to do so when the distribution of claims over the year has the same expecta-
tion and variance; the Poisson distribution has this property.

If n is now the number of claims in the year [r,T +1),

Var(n) = E(n2) - E(n)2
so that

E(n) = Var(n)
<=> E(n) = E(n2) - E(n)2
<=> E(n2) - E(n) E(n)2
<=> a2 = E(n) fl + fl2lT E(n)2

Now a11, = E(n) fl from (9) and
Var(x) = a21, - a211,.

Hence Var(x) = E(n) fl2.

from (9).

So if claims form a Poisson process in time, Var(x) increases with ?2 Given that
the parameter of Poisson process of claims for one policy is denoted by A, the para-
meter of the Poisson process of claims on a portfolio of size N is NA. The first two
moments of this process are

E(x) = N2fl11,

Var(x) = NAfl2!.
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