Skip to main content

Australasia: An Overview of Modern Climate and Paleoclimate during the Last Glacial Maximum

  • Chapter
Climate, Science, and Colonization

Abstract

Australasia is a collection of landmasses inclusive of the large Australian continent, the microcontinent of New Zealand, Pacific islands within the Indonesian archipelago, and most islands within Melanesia.1 Australasia encapsulates a wide range of terrestrial climates, with several ecological zones, from the equatorial tropical zone to the temperate middle latitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. Jessica Reeves et al., “Palaeoenvironmental Change in Tropical Australasia over the Last 30,000 Years—a Synthesis by the OZ-INTIMATE Group,” Quaternary Science Reviews 74 (2013): 97–114.

    Article  Google Scholar 

  2. Susan Wijffels et al., “The JADE and WOCE I10/IR6 Throughflow Sections in the Southeast Indian Ocean, Part 1 Water Mass Distribution and Variability,” Deep-Sea Research Part II 49 (2002): 1341–62.

    Article  Google Scholar 

  3. Matthias Tomczak and J. Stuart Godrey, Regional Oceanography: An Introduction (Oxford, Pergamon Press, 1994).

    Google Scholar 

  4. Alejandro Orsi, T. Whitworth III, and W. D. Nowlin Jr. “On the Meridional Extent and Fronts of the Antarctic Circumpolar Current,” Deep Sea Research Part I 42 (1995): 641–73.

    Article  Google Scholar 

  5. John Middleton and John Bye, “A Review of the Shelf-slope Circulation Along Australia’s Southern Shelves: Cape Leeuwin to Portland,” Progress in Oceanography 75 (2007): 1–41.

    Article  Google Scholar 

  6. K. Ridgway and J. R. Dunn, “Mesoscale Structure of the Mean East Australian Current System and Its Relationship with Topography,” Progress in Oceanography 56 (2003): 189–222.

    Article  Google Scholar 

  7. J. C. Andrews and S. Clegg, “Coral Sea Circulation and Transport Deduced from Modal Information Models,” Deep-Sea Research 36 (1989): 957–74.

    Article  Google Scholar 

  8. F. M. Boland and J. A. Church, “The East Australian Current 1978,” Deep Sea Research 28 (1981): 937–57.

    Article  Google Scholar 

  9. J. C. Andrews, M. Lawrence, and C. Nilsson, “Observations of the Tasman Front,” Journal of Physical Oceanography 10 (1980): 1854–69.

    Article  Google Scholar 

  10. K. R. Ridgway and J. S. Godfrey, “Mass and Heat Budgets in the East Australian Current—a Direct Approach,” Journal of Geophysical Research 99 (1994): 3231–48.

    Article  Google Scholar 

  11. S. M. Chiswell, “Mean and Variability in the Wairarapa and Hikurangi Eddies, New Zealand,” New Zealand Journal of Marine and Freshwater Research 39 (2005): 121–34.

    Article  Google Scholar 

  12. M. J. Uddstrom and N. A. Oien, “On the Uses of High-resolution Satellite Data to Describe the Spatial and Temporal Variability of Sea Surface Temperatures in the New Zealand Region,” Journal of Geophysical Research 104 (1999): 720–29.

    Article  Google Scholar 

  13. I. M. Belkin, and A. L. Gordon, “Southern Ocean Fronts from the Greenwich Meridian to Tasmania,” Journal of Geophysical Research 101 (1996): 3675–96.

    Article  Google Scholar 

  14. S. R. Rintoul, J. R. Donguy, and D. H. Roemmich, “Seasonal Evolution of Upper Ocean Thermal Structure Beween Tasmania and Antarctica,” Deep Sea Research Part I 44 (1997): 1185–202.

    Article  Google Scholar 

  15. Robert Smith et al., “Interaction of the Subtropical Front with Topography around Southern New Zealand,” Deep Sea Research Part I 76 (2013): 13–26.

    Article  Google Scholar 

  16. Serguei Sokolov and Stephen Rintoul, “Circumpolar Structure and Distribution of the Antarctic Circumpolar Current Fronts: 1. Mean Circumpolar Paths,” Journal of Geophysical Research 114 (2009a): C11018.

    Article  Google Scholar 

  17. Serguei Sokolov and Stephen Rintoul, “Circumpolar Structure and Distribution of the Antarctic Circumpolar Current Fronts: 2. Variability and Relationship to Sea Surface Height,” Journal of Geophysical Research 114 (2000b): C11019.

    Article  Google Scholar 

  18. D. E. Waliser and C. Gautier, “A Satellite-derived Climatology of the ITCZ,” Journal of Climate 6 (1993): 2162–74.

    Article  Google Scholar 

  19. P. J. Webster, “The Large Scale Structure of the Tropical Atmosphere,” in General Circulation of the Atmosphere, ed. B. Hoskins and R. Pearce (San Diego: Academic Press, 1983): 235–75.

    Google Scholar 

  20. Matthew Widlansky, Peter Webster, and Carlos D. Hoyos, “On the Location and Orientation of the South Pacific Convergence Zone,” Climate Dynamics 36 (2011): 561–78.

    Article  Google Scholar 

  21. Andrew Lorrey et al., “Reconstructing the South Pacific Convergence Zone Position during the Presatellite Era: A La Niña Case Study,” Monthly Weather Review 140 (2012): 3653–68.

    Article  Google Scholar 

  22. Howard Diamond, Andrew Lorrey, and James Renwick, “A Southwest Pacific Tropical Cyclone Climatology and Linkages to the El Niño-Southern Oscillation,” Journal of Climate 26 (2013): 3–25.

    Article  Google Scholar 

  23. Wenju Cai, Peter van Rensch, and Tim Cowan, “Influence of Global-Scale Variability on the Subtropical Ridge over Southeast Australia,” Journal of Climate 24 (2011): 6035–53.

    Article  Google Scholar 

  24. K. Takahashi and D. S. Battisti, “Processes Controlling the Mean Tropical Pacific Precipitation Pattern. Part II: The SPCZ and the Southeast Pacific Dry Zone,” Journal of Climate 20 (2007): 5696–706.

    Article  Google Scholar 

  25. P. J. Webster, “The Elementary Monsoon,” in J. S. Fein and P. L. Stephens, Monsoons (New York: John Wiley, 1987): 3–32.

    Google Scholar 

  26. W. R. Boos and Z. Kuang, “Dominant Control of the South Asian Monsoon by Orographic Insulation Versus Plateau Heating,” Nature 463 (2010): 218–22.

    Article  Google Scholar 

  27. G. A. Meehl and J. M. Arblaster, “The Tropospheric Biennial Oscillation and Asian-Australian Monsoon Rainfall,” Journal of Climate 15 (2002): 722–44.

    Article  Google Scholar 

  28. C. S. Meinen and M. J. McPhaden, “Observations of Warm Water Volume Changes in the Equatorial Pacific and Their Relationship to El Nino and La Nina,” Journal of Climate 15 (2002): 3551–59.

    Google Scholar 

  29. C. K. Folland et al., “Relative Influences of the Interdecadal Pacific Oscillation and ENSO on the South Pacific Convergence Zone.” Geophysical Research Letters 29 (2002): 4.

    Article  Google Scholar 

  30. R. A. Madden and P. R. Julian, “Observations of the 40–50-day Tropical Oscillation—A Review,” Monthly Weather Review 122 (1994): 814–37.

    Article  Google Scholar 

  31. Adrian Matthews, “A Multiscale Framework for the Origin and Variability of the South Pacific Convergence Zone,” Quarterly Journal of the Royal Meteorological Society 138 (2012): 1165–78.

    Article  Google Scholar 

  32. James Risbey et al., “Characteristics and Variability of Synoptic Features Associated with Cool Season Rainfall in Southeastern Australia,” International Journal of Climatology 29 (2009): 1595–613.

    Article  Google Scholar 

  33. Caroline Ummenhofer et al., “What Causes Southeast Australia’s Worst Droughts?” Geophysical Research Letters 36 (2009): L04706.

    Article  Google Scholar 

  34. N. J. Abram et al., “Oscillations in the Southern Extent of the Indo-Pacific Warm Pool during the Mid- Holocene,” Quaternary Science Reviews 28 (2009): 2794–803.

    Article  Google Scholar 

  35. A. J. Clarke and Z. Liu, “Interannual Sea Level in the Northern and Eastern Indian Ocean,” Journal of Physical Oceanography 24 (1994): 1224–35.

    Article  Google Scholar 

  36. M. McPhaden et al., “The Response of the Western Equatorial Pacific Ocean to Westerly Wind Bursts during November 1989 to January 1990,” Journal of Geophysical Research 97 (1992): 14289–303.

    Article  Google Scholar 

  37. J. Kidston, J. Renwick, and J. McGregor, “Hemispheric-Scale Seasonality of the Southern Annular Mode and Impacts on the Climate of New Zealand,” Journal of Climate 22 (2009): 4759–70.

    Article  Google Scholar 

  38. Harry Hendon, David Thompson, and Matthew Wheeler, “Australian Rainfall and Surface Temperature Variations Associated with the Southern Hemisphere Annular Mode,” Journal of Climate 20 (2007): 2452–67.

    Article  Google Scholar 

  39. A. Sturman and N. J. Tapper, The Weather and Climate of Australia and New Zealand, 2nd ed. (Melbourne: Oxford University Press, 2006).

    Google Scholar 

  40. Y. Kuleshov et al., “Trends in Tropical Cyclones in the South Indian Ocean and the South Pacific Ocean,” Journal of Geophysical Research 115 (2010): D01101.

    Article  Google Scholar 

  41. Ramasamy Suppiah and Kevin Hennessy, “Trends in Total Rainfall, Heavy Rain Events and Number of Dry Days in Australia, 1910–1990,” International Journal of Climatology 18 (1998): 1141–64.

    Article  Google Scholar 

  42. E. Brenstrum, The New Zealand Weather Book (Nelson: Craig Potton Publishing, 1998).

    Google Scholar 

  43. Andrew Lorrey, Anthony Fowler, and Jim Salinger, “Regional Climate Regime Classification as a Qualitative Tool for Interpreting Multiproxy Palaeoclimate Data Spatial Patterns: A New Zealand Case Study,” Palaeogeography, Palaeoclimatology, Palaeoecology 253 (2007): 407–33.

    Article  Google Scholar 

  44. Caroline Ummenhofer, Alexander Sen Gupta, and Matthew England, “Causes of Late Twentieth-Century Trends in New Zealand Precipitation,” Journal of Climate 22 (2009): 3–19.

    Article  Google Scholar 

  45. J. Toggweiler et al., “Midlatitude Westerlies, Atmospheric CO2 and Climate Change during the Ice Ages,” Paleoceanography 21 (2006): PA2005;

    Article  Google Scholar 

  46. N. Shackleton, “The 100,000-year Ice Age Cycle Identified and Found to Lag Temperature, Carbon Dioxide, and Orbital Eccentricity,” Science 289 (2000): 1897–902.

    Article  Google Scholar 

  47. Peter Clark and Alan Mix, “Ice Sheets and Sea Level of the Last Glacial Maximum,” Quaternary Science Reviews 21 (2002): 1–7.

    Article  Google Scholar 

  48. B. Alloway et al., “Towards a Climate Event Stratigraphy for New Zealand over the Past 30,000 Years (NZ-INTIMATE Project),” Journal of Quaternary Science 22 (2007): 9–35; Reeves et al., “Palaeoenvironmental Change.”

    Article  Google Scholar 

  49. J. Reeves et al., “Climate Variability over the Last 35,000 Years Recorded in Marine and Terrestrial Archives in the Australian Region: An OZ-INTIMATE Compilation,” Quaternary Science Reviews 74 (2013): 21–34;

    Article  Google Scholar 

  50. Maja Zuvela-Aloise, “Modelling of the Indonesian Throughflow on Glacial-interglacial Time-scales” (PhD diss., University of Kiel, 2005);

    Google Scholar 

  51. P. de Deckker, N. J. Tapper, and S. van der Kaars, “The Status of the Indo-Pacific Warm Pool and Adjacent Land During the Last Glacial Maximum,” Global and Planetary Change 35 (2002): 25–35.

    Article  Google Scholar 

  52. Michelle Spooner et al., “The Behaviour of the Leeuwin Current Offshore NW Australia during the Last Five Glacial-Interglacial Cycles,” Global and Planetary Change 75 (2011): 119–32.

    Article  Google Scholar 

  53. Barrows and Juggins, “Sea-surface Temperatures”; De Deckker, M. Moros, K. Perner, and E. Jansen, “Influence of the Tropics and Southern Westerlies on Glacial Interhemispheric Asymmetry,” Nature Geoscience 5 (2012): 266–69.

    Article  Google Scholar 

  54. Y. Yokoyama et al., “Sea-level During the Early Deglaciation Period in the Great Barrier Reef, Australia,” Global and Planetary Change 53 (2006): 147–53.

    Article  Google Scholar 

  55. R. J. Beaman, J. M. Webster, and R. A. J. Wust, “New Evidence for Drowned Shelf Edge Reefs in the Great Barrier Reef, Australia,” Marine Geology 247 (2008): 17–34.

    Article  Google Scholar 

  56. G. B. Dunbar and G. R. Dickens, “A Late Quaternary Shedding of Shallow Marine Carbonate along a Tropical Mixed Siliciclastic-carbonate Shelf: Great Barrier Reef, Australia,” Sedimentology 50 (2003): 1365–3091.

    Article  Google Scholar 

  57. D. M. Anderson, W. L. Prell, and N. J. Barratt, “Estimates of Sea Surface Temperature in the Coral Sea at the Last Glacial Maximum,” Paleoceanography 4 (1989): 615–27.

    Article  Google Scholar 

  58. H. C. Bostock et al., “Glacial/interglacial Changes in the East Australian Current,” Climate Dynamics 26 (2006): 645–59.

    Article  Google Scholar 

  59. L. Petherick et al., “Climatic Records over the Past 30 Ka from Temperate Australia—a Synthesis from the Oz-INTIMATE Workgroup,” Quaternary Science Reviews 74 (2013): 58–77.

    Article  Google Scholar 

  60. I. C. Wright et al., “An Integrated Latest Quaternary (Stage 3 to Present) Palaeoclimatic and Palaeoceanographic Record from Offshore Northern New Zealand,” Quaternary Research 44 (1995): 283–93.

    Article  Google Scholar 

  61. B. W. Hayward et al., “The Effect of Submerged Plateaux on Pleistocene Gyral Circulation and Sea-surface Temperatures in the Southwest Pacific,” Global and Planetary Change 63 (2008): 309–16.

    Article  Google Scholar 

  62. Julene Marr et al., “Southwest Pacific Ocean Response to a Warming World: Using Mg/Ca, Zn/Ca, and Mn/Ca in Foraminifera to Track Surface Ocean Water Masses During the Last Deglaciation,” Paleoceanography 28 (2013): 347–62.

    Article  Google Scholar 

  63. B. W. Hayward et al., “Planktic Foraminifera-based Sea-surface Temperature Record in the Tasman Sea and History of the Subtropical Front Around New Zealand, over the Last One Million Years,” Marine Micropaleontology 82–83 (2012): 13–27; E. L. Sikes et al., “Glacial-interglacial Sea Surface Temperature Changes across the Subtropical Front East of New Zealand Based on Alkenone Unsaturation Ratios and Foraminiferal Assemblages,” Paleoceanography 17 (2002): doi:10.1029/2000PA000640.

    Article  Google Scholar 

  64. Helen Neil, Lionel Carter, and Michele Morris, “Thermal Isolation of Campbell Plateau, New Zealand, by the Antarctic Circumpolar Current over the Past 130 Kyr,” Paleoceanography 19 (2004): PA4008.

    Article  Google Scholar 

  65. H. C. Bostock et al., “A Review of the Australian-New Zealand Sector of the Southern Ocean over the Last 30 Ka (Aus-INTIMATE Project),” Quaternary Science Reviews 74 (2012): 35–57.

    Article  Google Scholar 

  66. L. K. Armand and A. Leventer, “Palaeo Sea Ice Distribution and Reconstruction Derived from the Geological Record,” In Sea Ice, ed. G. S. Thomas and D. N. Dieckmann (Oxford: Wiley-Blackwell, 2010), 469–530.

    Google Scholar 

  67. L. Carter, H. L. Neil, and L. Northcote, “Late Quaternary Ice-rafting Events in the SW Pacific Ocean, Off Eastern New Zealand,” Marine Geology 191 (2002): 19–35.

    Article  Google Scholar 

  68. A. Mazaud et al., “Variations of the Antarctic Circumpolar Current Intensity during the Past 500 Ka,” Geochemistry, Geophysics, Geosystems 11 (2010): Q08007.

    Article  Google Scholar 

  69. Reeves et al., “Palaeoenvironmental Change”; Petherick et al., “Climatic Records”; Kathryn Fitzsimmons et al., “Late Quaternary Palaeoenviron-mental Change in the Australian Drylands,” Quaternary Science Reviews 74 (October 2012): 78–96.

    Article  Google Scholar 

  70. J. W. Partin et al., “Millennial-scale Trends in West Pacific Warm Pool Hydrology since the Last Glacial Maximum,” Nature 449 (2007): 452–55.

    Article  Google Scholar 

  71. C. S. M. Turney et al., “Millennial and Orbital Variations of El Niño/Southern Oscillation and High-Latitude Climate in the Last Glacial Period,” Nature 428 (2004): 306–10.

    Article  Google Scholar 

  72. Patrick Moss et al., “Late Quaternary Vegetation History of North Stradbroke Island, Queensland, Eastern Australia,” Quaternary Science Reviews 74 (2013): 257–72.

    Article  Google Scholar 

  73. S. D. Mooney et al., “Late Quaternary Fire Regimes of Australasia,” Quaternary Science Reviews 30 (2011): 28–46.

    Article  Google Scholar 

  74. P. P. Hesse, J. W. Magee, and S. van der Kaars, “Late Quaternary Climates of the Australian Arid Zone: a Review,” Quaternary International 118–19 (2004): 87–102.

    Article  Google Scholar 

  75. T. T. Barrows et al., “Late Pleistocene Glaciation of the Mt Giluwe Volcano, Papua New Guinea,” Quaternary Science Reviews 30 (2011): 2676–89.

    Article  Google Scholar 

  76. D. J. A. Barrell, “Late Quaternary of the Southwest Pacific Region,” Encyclopedia of Quaternary Science (Amsterdam: Elsevier, 2013).

    Google Scholar 

  77. R. Newnham et al., “The Vegetation Cover of New Zealand at the Last Glacial Maximum,” Quaternary Science Reviews 74 (2013): 202–14.

    Article  Google Scholar 

  78. M. S. McGlone, “Plant Biogeography and the Late Cenozoic History of New Zealand,” New Zealand Journal of Botany 23 (1985): 723–49.

    Article  Google Scholar 

  79. M. T. Ryan et al., “Vegetation and Climate in Southern Hemisphere Mid-latitudes Since 210 Ka: New Insights from Marine and Terrestrial Pollen Records from New Zealand,” Quaternary Science Reviews 48 (2012): 80–98.

    Article  Google Scholar 

  80. Thomas Stephens et al., “A Diatom-inferred Record of Reduced Effective Precipitation during the Last Glacial Coldest Phase (28.8–18.0 Cal Kyr BP) and Increasing Holocene Seasonality at Lake Pupuke, Auckland, New Zealand,” Journal of Paleolimnology 48 (2012): 801–17;

    Article  Google Scholar 

  81. R. Newnham, “Environmental Change in Northland, New Zealand during the Last Glacial and Holocene,” Quaternary International 57–58 (1999): 61–70;

    Article  Google Scholar 

  82. A. Sandiford et al., “A High Resolution, Southern Hemisphere Mid-latitude LGM to Holocene Record of Vegetation and Climate Change from Northern New Zealand,” Palaeogeography, Palaeoclimatology, Palaeoecology 201 (2013): 235–47.

    Article  Google Scholar 

  83. Andrew Lorrey et al., “Palaeocirculation across New Zealand during the Last Glacial Maximum at ~21 Ka,” Quaternary Science Reviews 36 (2012): 189–213.

    Article  Google Scholar 

  84. M. Marra and R. A. B. Leschen, “Late Quaternary Paleoecology from Fossil Beetle Communities in the Awatere Valley, South Island, New Zealand,” Journal of Biogeography 31 (2004): 571–86.

    Article  Google Scholar 

  85. Aaron Putnam et al., “The Last Glacial Maximum at 44°S Documented by a 10Be Moraine Chronology at Lake Ohau, Southern Alps of New Zealand,” Quaternary Science Reviews 62 (2013): 114–41.

    Article  Google Scholar 

  86. P. C. Almond et al., “An OSL, Radiocarbon and Tephra Isochron-based Chronology for Birdlings Flat Loess at Ahuriri Quarry, Banks Peninsula, Canterbury, New Zealand,” Quaternary Geochronology 2 (2007): 4–8.

    Article  Google Scholar 

  87. P. N. DiNezio et al., “The Response of the Walker Circulation to Last Glacial Maximum Forcing: Implications for Detection in Proxies,” Paleoceanography 26 (2011): PA3217.

    Article  Google Scholar 

  88. Ping Zhao et al., “Modeling the Tropical Climate and the Impact of the Western Pacific Sea Surface Temperature at the Last Glacial Maximum,” Journal of Geophysical Research 109 (2004): D08105;

    Article  Google Scholar 

  89. A. J. Pitman and P. P. Hesse, “The Significance of Large-scale Land Cover Change on the Australian Palaeomonsoon,” Quaternary Science Reviews 26 (2007): 189–200;

    Article  Google Scholar 

  90. V. Markgraf, “Reply to C. J. Heusser’s ‘Southern Westerlies during the Last Glacial Maximum’,” Quaternary Research 31 (1989): 426–32.

    Article  Google Scholar 

  91. M. Williams et al., “Glacial and Deglacial Climatic Patterns in Australia and Surrounding Regions from 35 000 to 10 000 Years Ago Reconstructed from Terrestrial and Near-shore Proxy Data,” Quaternary Science Reviews 28 (2009): 2398–419.

    Article  Google Scholar 

  92. E. L. Sikes et al., “Southern Ocean Seasonal Temperature and Subtropical Front Movement on the South Tasman Rise in the Late Quaternary,” Paleoceanography 24 (2009): PA2201.

    Article  Google Scholar 

  93. G. H. Denton et al., “The Last Glacial Termination,” Science 328 (2010): 1652–56.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 2014 James Beattie, Emily O’Gorman, and Matthew Henry

About this chapter

Cite this chapter

Lorrey, A.M., Bostock, H.C. (2014). Australasia: An Overview of Modern Climate and Paleoclimate during the Last Glacial Maximum. In: Beattie, J., O’Gorman, E., Henry, M. (eds) Climate, Science, and Colonization. Palgrave Studies in the History of Science and Technology. Palgrave Macmillan, New York. https://doi.org/10.1057/9781137333933_2

Download citation

  • DOI: https://doi.org/10.1057/9781137333933_2

  • Publisher Name: Palgrave Macmillan, New York

  • Print ISBN: 978-1-349-46245-2

  • Online ISBN: 978-1-137-33393-3

  • eBook Packages: Palgrave History CollectionHistory (R0)

Publish with us

Policies and ethics