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Abstract
The diffusion of electric vehicles suffers from immature and expensive battery

technologies. Repurposing electric vehicle batteries for second-life application
scenarios may lower the vehicles’ total costs of ownership and increases their

ecologic sustainability. However, identifying the best – or even a feasible –

scenario for which to repurpose a battery is a complex and unresolved decision

problem. In this exaptation research, we set out to design, implement, and
evaluate the first decision support system that aids decision-makers in the

automobile industry with repurposing electric vehicle batteries. The exaptation

is done by classifying decisions on repurposing products as bipartite matching
problems and designing two binary integer linear programs that identify (a) all

technical feasible assignments and (b) optimal assignments of products and

scenarios. Based on an empirical study and expert interviews, we parameterize
both binary integer linear programs for repurposing electric vehicle batteries. In

a field experiment, we show that our decision support system considerably

increases the decision quality in terms of hit rate, miss rate, precision, fallout, and

accuracy. While practitioners can use the implemented decision support system
when repurposing electric vehicle batteries, other researchers can build on our

results to design decision support systems for repurposing further products.
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Introduction
Imagine that by the year 2020, electric vehicles are a widespread
technology. Automobile companies manage electric vehicles and their
decisive component – a lithium-based electric vehicle battery (henceforth
battery) that is a complex power storage device for supplying an electric
vehicle with electric current (Burke, 2009) – along their entire lifecycle.

Because of a deterioration of their cell materials (Ebner et al, 2013; Sasaki
et al, 2013), batteries should be removed from electric vehicles once their
capacity has dropped below 80% of their initial capacity (limiting a
vehicle’s range) or their internal resistance has doubled (impeding a
vehicle’s acceleration and charging power) (Burke, 2009; Knowles &
Morris, 2014; Waag et al, 2013). Current battery technology is estimated
to reach this point after having powered an electric vehicle for some
100,000 km or after about eight years of operation (Ahmadi et al, 2014).
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With rising sales figures of electric vehicles (Shahan,
2014), the automobile industry can expect a considerable
number of batteries to be returned soon (Lache et al,
2008; Pillot, 2012). The global market for used batteries is
estimated to grow from $16 million in 2014 to more than
$2 billion in 2022 (EVWorld.com Inc., 2011) and to
around $3 billion in 2035 (PRNewswire, 2014).

BMW’s (evworld.com, 2013), Chevrolet’s (Howard,
2013), and Nissan’s (St. John, 2015) proof-of-concept
projects have shown that batteries can be repurposed as
energy storage solutions. Related research has investi-
gated additional stationary second-life application sce-
narios, including applications as energy storage in a
smart home (Sachenbacher et al, 2012), as uninterrupt-
ible power supply (Cready et al, 2003), as energy grid
stabilization (Patten et al, 2011; Knowles & Morris, 2014),
or as residential load levelling (Burke, 2009; Beer et al,
2012). However, the decision to assign an individual
battery to the most suitable application scenario is so
complex and unexplored that there has been no research
in this area. At the same time, the literature on decision
support systems (DSSs) provides a rich array of methods
that may solve decision problems related to repurposing
batteries.

The purpose of this paper is to design a DSS that aids
decision-makers with matching used batteries to sec-
ond-life application scenarios (henceforth scenarios). In
line with the generic architecture of a model-driven DSS
(Power, 2004; Power & Sharda, 2007), the system
contains a database of batteries and scenarios, provides
decision models for optimal matching, and features a
graphical user interface. The paper is exaptation
research (Gregor & Hevner, 2013) since it seeks to
apply and modify established methods from the DSS
field to solve a new and unexplored decision problem.
In line with research guidelines prescribed in the
literature on design science research (DSR) (Hevner
et al, 2004; Peffers et al, 2008; Gregor & Hevner,
2013), the IT artifact has been designed and evaluated
in a cyclic search process.

This research offers descriptive and prescriptive contri-
butions. First, we characterize the repurposing of used
batteries to scenarios as an unresolved decision task. We
explain how the decision process works and why finding
fitting batteries and scenarios classifies as a bipartite
matching problem. Second, based on adopted methods
and tools for solving bipartite matching problems, we
design two decision models that (a) identify the technical
fit between all products and all scenarios and (b) provide
an optimal solution for matching many products to
many scenarios. These generic decision models inform
decision processes for repurposing any class of products
in physical environments. Third, we design the first DSS
to support the entire decision process, from modeling the
available products and scenarios to assigning each indi-
vidual product to a scenario. Fourth, we parameterize the
decision models for repurposing batteries, based on
natural laws and empirical data. In a field experiment,

we show that the designed IT artifact efficiently solves
the decision problem and that it substantially increases
decision quality. Practitioners can use the designed IT
artifact for repurposing used batteries. Other researchers
can use the artifact and the parametrization process as
blueprints for designing DSS to repurpose products other
than batteries.

The remainder of the paper is structured in line with
the DSR publication schema proposed by Gregor &
Hevner (2013). In ‘‘Research background’’, we character-
ize repurposing batteries as an unresolved decision
problem, identify the underlying class of decision prob-
lems, and identify suitable artifacts for the exaptation. In
‘‘Research method’’, we describe and justify the research
process. In ‘‘Artifact description’’, we present the designed
and implemented DSS. In ‘‘Model parametrization,
demonstration, and evaluation’’, we parameterize the
decision models for repurposing used batteries and
evaluate the system’s effectiveness and efficiency. ‘‘Dis-
cussion’’ provides a discussion of the paper’s contribu-
tions and limitations, and ‘‘Conclusions’’ concludes the
paper.

Research background

Repurposing electric vehicle batteries
An electric vehicle battery is an energy storage system
that mainly consists of a modular battery pack (including
cells that provide electric power), a battery management
system for monitoring and controlling the pack, a
thermal management system, and a battery case (Schlick
et al, 2011; Klör et al, 2015b). Currently, the battery
accounts for about 20–40% of an electric vehicle’s costs
(e.g., Nykvist & Nilsson, 2015).

Driving and charging the vehicle cause the battery to
age. After about eight to ten years of operation or around
100,000 km driven, battery aging noticeably limits a
vehicle’s range (capacity fade) (Ahmadi et al, 2017),
acceleration, and fast charging capability (both power
fade) so that car manufacturers offer a battery replace-
ment. Different driving patterns, operating temperatures,
and charging rates (Price et al, 2012; Knowles & Morris,
2014; The Electropedia, 2015) let each battery age
individually, such that it is hard to predict a battery’s
aging behavior.

Even if removed from cars, repurposing the batteries for
less demanding scenarios is a promising strategy (Cready
et al, 2003; Narula et al, 2011; Ahmadi et al, 2017) to
generate additional revenues and to reduce the total costs
of electric vehicles (Elkind, 2014; Knowles & Morris,
2014). In stationary applications, the battery system is
permanently installed, e.g., for storing energy in a smart
home, as a buffer storage for wind parks, or for stabilizing
off-grid systems (Patten et al, 2011; Knowles & Morris,
2014). In mobile applications, the battery propels devices
with lower demands than cars, such as forklifts or
wheelchairs.
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Whereas early proof-of-concept projects have demon-
strated that repurposing batteries is feasible from a
technical point of view (Sachenbacher et al, 2012;
Gohla-Neudecker et al, 2015), business models are only
beginning to emerge (St. John, 2015). However, the
market for used batteries will likely be intermediary-based
(Klör et al, 2015a). Acting on behalf of a car manufac-
turer, the intermediary will collect, repurpose, and sell
used batteries to second-life customers.

For three reasons, matching batteries and scenarios is a
complex decision problem. First, each battery is unique
regarding its electric properties, usage history, and con-
dition. Second, the importance of technical properties
varies greatly among scenarios; for instance, the weight
of a battery is far more constraining in mobile than it is in
stationary applications. Third, batteries can be repur-
posed en bloc, decomposed into their subsystems, or
combined with other batteries.

Repurposing products as a class of decision problems
Implementing end-of-life strategies for products, such as
remanufacturing, reuse, repurposing, and recycling, is
motivated by producers’ environmental responsibility,
environmental legislation, and economic considerations
(Seitz, 2007). Previous research has discussed these
strategies as product recovery management (Thierry
et al, 1995), closed-loop supply chain management
(Guide et al, 2003), or reverse logistics (Fleischmann
et al, 1997). Recurring research topics include selecting
optimal end-of-life strategies (Staikos & Rahimifard,
2007; Wadhwa et al, 2009), implementing reverse logis-
tics for used products (Chouinard et al, 2005), and
informing product recovery activities (Rahimifard et al,
2004). However, no research has been conducted on
making decisions on repurposing complex and valuable
products – such as electric vehicle batteries – and using
them in second-life application scenarios.

In line with Simon (1977, p. 41), we conceptualize
repurposing used products as a four-step decision-making
process (Figure 1). First, in an intelligence phase, the
properties of the available products and the requirements
of the scenarios are explored. Second, in a design phase, a
consideration set of scenarios in which each product can
be repurposed is compiled based on assessing the fit (or
misfit) between the products and scenarios in terms of
specific decision criteria. Third, in a choice phase, the
acceptable (‘‘satisficing’’) or the best (‘‘maximizing’’)
(Simon, 1956) scenario for which to repurpose a product
is selected by the decision-maker. In a maximizing

strategy, this allocation is supposed to be optimal for
the entire set of available products. Fourth, in an
implementation phase, repurposing the products might
necessitate additional activities to fit the battery to the
scenario, such as adding technical components or value-
added services that are needed to operate the battery.

The decision problem of matching objects from two
sets classifies, in graph theory, as the bipartite matching
problem (Schrijver, 2003) or, in operations research, as the
assignment problem (Hillier & Lieberman, 2000; Anderson
et al, 2009). This decision problem can be represented by
bipartite graphs (Figure 2). Research on bipartite graphs
and related matching problems has a long history
(Plummer, 1992; Schrijver, 2003) and applies to several
similar problem contexts, e.g., matching employees to
jobs (Taha, 2010).

As every graph, a bipartite graph consists of vertices
and edges. However, a bipartite graph separates its set of
vertices in two disjoint partitions (bipartitions) (Diestel,
2000). Edges in a bipartite graph connect vertices from
two bipartitions only (Figure 2, left). In the spirit of the
bipartite matching problem, a matching in a bipartite
graph is a subset of all edges containing only those edges
that do not share one common vertex in each bipartition
(Figure 2, right).

Businesses that repurpose used products need to iden-
tify optimal assignments between products and second-
life scenarios. Such a matching is required for, e.g.,
incomplete and complete bipartite graphs since not every
vertex from one set (e.g., product) is necessarily eligible
for matching to all vertices of the other set (e.g.,
scenario). Hence, depending on the structure of a bipar-
tite graph (e.g., regular and incomplete bipartite graph),
it is possible to find a maximum cardinality matching
(maximum matching hereafter) or even perfect matching
in weighted (e.g., assignments with the best fit and/or best
revenues) and unweighted (feasible assignments) bipartite
graphs (Schrijver, 2003). Plenty of algorithms have been
proposed for efficiently solving bipartite matching prob-
lems (Schrijver, 2003; Plummer, 1992). In addition, these
problems can be formulated and solved using binary
integer linear programming (Schrijver, 2003; Bondy &
Murty, 2008; Vanderbei, 2008).

Decision support systems
Considering larger quantities in both sets of used prod-
ucts and second-life scenarios, the organizational task of
manually identifying (all) feasible assignments or even a
maximum matching might become cumbersome,
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Figure 1 Decision process for repurposing products in second-life applications.
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expensive, and thus inoperable. Furthermore, it seems to
be impossible to manually identify a weighted maximum
matching that provides a global optimum (e.g., best
technical fit and/or economic performance). Because
such efficient solutions are required to run a business
successfully, the need for information systems, such as
decision support systems (DSSs), arises.

Depending on the specific decision problem, different
types of DSSs apply (Power, 2004), each of which
comprises a ‘‘dominant component driver’’ (p. 161).
Since model-driven DSSs (Power & Sharda, 2007) contain
quantitative and mathematical models (e.g., for binary
integer linear programming) as their main component
driver (Power, 2000, 2004), they can serve for modeling
and solving bipartite matching problems to identify a
maximum matching of used products and scenarios.

The generic architecture of such model-driven DSSs is
comprised of three components (Keen, 1980; Sprague Jr.,
1980; Sprague Jr. & Carlson, 1982; Sen & Biswas, 1985;
Shim et al, 2002; Holsapple, 2008). Required data for
decision-making are stored in the database management
system. Decision models are specified in a model-base
management system. Human decision-makers are guided
through the decision processes and provided with func-
tionalities to input and output decision-related data by
user interfaces.

Research method
Repurposing batteries qualifies as a ‘‘heretofore unsolved
and important business problem’’ (Hevner et al, 2004,
p. 82) and warrants conducting a design science research
project. Whereas the maturity of this application domain
is low, the solution maturity of designing and solving
optimization problems, i.e., assignment problems, is
high. Therefore, we position our paper as exaptation
research (Gregor & Hevner, 2013), an approach focused
on adopting artifacts from one field to solve problems in
another field.

In line with the dual mission of design science research
to design applicable IT artifacts and to develop theories
for design and action (March & Smith, 1995; Nunamaker
Jr. & Chen, 1990; Walls et al, 1992; Hevner et al, 2004;
Gregor & Jones, 2007), our objective was twofold. In
terms of developing theories for design and action, we

exapted concepts, methods, and tools from the fields of
operations research, decision support systems, and deci-
sion science to design a class of DSSs that fosters decision-
making for repurposing any kind of product. In terms of
designing an applicable IT artifact, we instantiated this
class of systems by developing a DSS for repurposing used
batteries. The instantiation involved two steps. First, we
conducted a Delphi study with battery experts to param-
eterize the generic decision models for the specific
problem of repurposing batteries. Second, we surveyed a
panel of battery experts to define which of the identified
technical parameters have hard upper bounds and lower
bounds. These bounds determine if assigning a battery to
a scenario is feasible.

IT artifacts designed in DSR projects must be demon-
strated and/or evaluated to assess their utility and
applicability (Venable et al, 2016). While a demonstra-
tion serves to document the IT artifact’s ability ‘‘to solve
one or more instances of the problem’’ (Peffers et al, 2008,
p. 55), an evaluation documents ‘‘how well the IT artifact
supports a solution to the problem’’ (Peffers et al, 2008,
p. 56). To evaluate our design, we performed a field
experiment, an approach often used for naturalistic
evaluation in DSR (Venable et al, 2016). The field
experiment revealed that the instantiated system
improves the hit rate, miss rate, precision, fallout, and
accuracy of decisions on repurposing used batteries.
Other researchers can use a similar approach to design
and evaluate their own DSSs for repurposing other types
of products, thereby instantiating the proposed class of
DSSs.

In terms of the nominal design science research
methodology (Peffers et al, 2008), we summarize our
research approach in Table 1.

Artifact description
This section provides an outline of the developed IT
artifact in line with the three components of a model-
driven DSS.

Data
The DSS’s database contains records that characterize all
available products and scenarios such that used products
and scenarios can be matched. Product records must
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Figure 2 Regular, incomplete, and unweighted bipartite graph (left) and one of its perfect matching (right).
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include any technical properties that are relevant for
solving the assignment problem. Scenarios must be
described in terms of their lower bounds, target values,
and upper bounds on these technical properties.

Data in the instantiated DSS for repurposing used
batteries are stored in a relational database. Batteries are
described based on a domain-specific modeling language
(Klör et al, 2015b), including the battery’s master data (e.g.,
battery type, size, weight), usage history (e.g., cycles of
(dis)charging, count of deep discharges taken), and con-
dition (e.g., remaining capacity, voltage, amperage, inter-
nal resistance). Scenarios are described in terms of the
(technical) requirements a battery to be used in this
scenario must possess, including its capacity, voltage,
and amperage. For each requirement of each scenario, the
upper bound, target value, and lower bound can be stored
in the database. This is important to account for the
different requirements of mobile and stationary scenarios.

Decision models
We designed two decision models for matching batteries
and scenarios (see their mathematical formulation in the
‘‘Appendix’’). While the first decision model identifies all
technical feasible assignments, the second decision
model identifies a maximum matching regarding the
minimal relative deviation of all decision parameters.
Both models are stored in the DSS’s model-base as binary
integer linear programs. They are solved at runtime by a
mathematical optimization solver.

While the decision models support repurposing any
product, as long as the decision task qualifies as a
bipartite matching problem, the decision models need
to be parameterized for repurposing any individual
product. For instance, repurposing used batteries requires
defining upper bounds and lower bounds for many
technical parameters, which are subject to natural laws
(e.g., Ohm’s law).

Decision model for identifying all feasible assign-
ments Although this decision model does not
correspond to a bipartite matching problem at its heart,
the model defines the decision-maker’s course of action
for making manual assignments. For that to happen, the
decision model maximizes the number of assignments
and results in the set of all feasible assignments. To ensure
technical feasibility, the decision model comprises two
constraints representing upper bounds and lower bounds
on the technical parameters (Table 2).

Decision model for identifying optimal assign-
ments Beyond compiling all feasible assignments,
decision models are required to identify an (optimal)
maximum matching of all products and all scenarios.
Since scenarios specify minimum (lower bounds), ideal
(target values), and maximum (upper bounds)
requirements, products that meet these requirements
best are reasonably the preferred choice. Therefore, we
design a decision model that minimizes the relative
deviation of all products’ parameters and all scenarios’
ideal parameters, identifying the most efficient matching set
of all feasible assignments. In other words, the parameters
of each product should match the requirements of the
scenarios as closely as possible.

In addition to the feasibility constraints included in the
first decision model, two constraints are added to ensure
that one product is assigned to, at most, one scenario and
that one scenario is assigned to, at most, one product.
Regarding the objective for minimizing the relative
deviation of the technical parameters, the solver would
optimally make no assignments, since the zero vector
would contribute best to the defined objective function.
To find an optimal solution anyway, a constraint for
identifying the maximum cardinality (k) of the bipartite
matching problem is included in the decision model
(Table 3).

Table 1 Overview of the DSR project, in line with the DSR methodology (Peffers et al, 2008)

Identify problem and

motivate

Repurposing batteries is an unresolved problem that is central for enabling green mobility solutions based on

electric vehicles. Repurposing batteries refers to a class of decision problems for repurposing any kind of product. It

is classified as a bipartite matching problem

Define objectives of a

solution

A DSS is required to help a decision-maker determine whether and how a product shall be repurposed. Beyond

identifying all technical feasible assignments of products and scenarios, the DSS shall identify an optimal matching

across all products and scenarios

Design and

development

A class of DSSs is designed to aid decision-makers with repurposing products. It includes language constructs and

models to represent products and scenarios in a database, decision models to match products to scenarios, and a

graphical user interface. This class of systems is instantiated with a DSS for repurposing used batteries; this process

includes parametrizing the generic decision models for the specific problem of repurposing batteries, based on

conducting empirical studies with battery experts

Demonstration and

evaluation

A field experiment reveals that – even in artificially easy decision scenarios – the instantiated DSS leads to superior

decision quality compared to decisions made by battery experts without IT support

Communication The core results of this research are the description of a class of DSSs for repurposing used products and an

implemented DSS for repurposing used batteries from electric vehicles. These results are communicated in research

papers and in workshops with automobile companies
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For repurposing used batteries, we argue that the
repurposing of as many batteries as possible identifies
this maximum cardinality, since batteries suffer from
calendar aging effects (Broussely et al, 2005; Barré et al,
2013) diminishing the batteries’ value over time. To
quantify this maximum cardinality mathematically, an
additional optimization problem of maximizing the
number of assignments, subject to the same constraints
applied in the minimization problem, is solved (Table 4).

The result of this optimization strategy identifies the
weighted maximum matching with an optimal technical
fit across all assignments.

User interface
Inspired by Simon’s (1977) decision-making process, the
DSS’s user interface reflects the three steps of intelligence,
design, and choice (Figure 3). In the intelligence phase,
available products and scenarios (the decision objects)
stored in the DSS’s database are selected and a check for
inconsistencies in the decision objects’ data records is
performed. If data required for instantiating the decision
models are missing, three model adaptation strategies are
available: (1) supplementing the incomplete decision
objects by inserting any missing data; (2) removing
decision objects with incomplete data from the deci-
sion-making process; (3) not solving inapplicable deci-
sion models. In the subsequent design phase, the decision
models are instantiated. By solving the instantiated
decision models, the choice phase supplies decision-mak-
ers with feasible and with optimal assignments.

We designed the user interface of our DSS for repur-
posing batteries (Figs. 4, 5, 6) to instantiate the generic
decision process. Based on the available data on the
selected batteries and scenarios, a model check compo-
nent reveals whether the decision models are applicable.
For instance, if some battery data are unavailable because
of battery management system’s data encryption or
insufficient data-recording strategies (Monhof et al,
2015), some decision models may not be applicable.
Subsequently, the DSS solves the decision models to
identify an optimal matching, indicated by the assign-
ments highlighted in green color (Figure 6). The DSS
contains a model-base management system (Figure 7) to
enable users to design and modify the decision models
based on any specific product and scenario properties
that can result in different objectives and constraints.

Model parametrization, demonstration,
and evaluation

Parameter elicitation
We elicited the parameters that govern the decision
process in three steps. First, we performed a literature
search on second-life application scenarios for batteries,
resulting in a categorized list of parameters. Second, we
performed a workshop with seven battery experts to
complement the parameters and evaluate their correct-
ness. Third, we performed a Delphi study to weight the
relevance of the parameters for characterizing a

Table 2 Non-formal description of the decision model for identifying all feasible assignments

Component Description Equation

Objective Create the bipartite graph and find all feasible assignments (3)

Feasibility Ensure product parameters to be greater than or equal to the respective minimum scenario requirements (lower

bound)

(4)

Ensure product parameters to be lower than or equal to the respective maximum scenario requirements (upper

bound)

(5)

Integrality Assign products or scenarios en bloc (6)

Table 3 Non-formal description of the decision model for identifying optimal assignments

Component Description Equation

Objective Create the maximum matching considering the global minimum of the relative

deviations of all assignments’ technical parameters

(7)

Feasibility Ensure product parameters to be greater than or equal to the respective minimum

scenario requirements (lower bound)

(8)

Ensure product parameters to be lower than or equal to the respective maximum

scenario requirements (upper bound)

(9)

Integrality Assign products or scenarios en bloc (10)

Bipartite matching Assign each scenario at most once (11)

Assign each battery at most once (12)

Maximum matching Make (at least) k assignments. The cardinality of the maximum matching k is revealed

by solving the next decision model (Table 4) first

(13)
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stationary application scenario, in which the battery is
used in a private household for optimizing the use of
energy from an installed photovoltaic panel, the so-called
residential load following (Prüggler, 2012). We invited 68
battery experts who deal with battery systems or the

repurposing of batteries in their day-to-day business to
evaluate 45 parameters in 11 categories and to add any
missing parameters. A panel of 20 battery experts partic-
ipated in the first round. In the spirit of a group decision-
making process that is provided by a Delphi study
(Linstone & Turoff, 1975; Okoli & Pawlowski, 2004),
the results were aggregated and passed back to the
panelists. Subsequently, we asked the panelists to weight
the relevance of the parameters again. From the 20
participants of the first round, 15 also responded to the
second round. Due to the high bounce rate and stable an-
swers for most parameters, we concluded the study after
two rounds (Figure 8). Based on the results, we compiled
a set of parameters for describing second-life application
scenarios for used batteries in our DSS.

Select 
decision
objects

Enter 
missing 

data

Drop 
decision 
objects

Drop 
decision 
models

Do decision
models

fit to data?

Check 
decision 
models

Build 
decision 
models

Solve 
decision 
models

No

Select 
coping 
strategy

Yes

Intelligence

Show 
decision 
matrix

Design Choice

Figure 3 Sequence of the program run for making repurposing decisions by the DSS.

Figure 4 User interface of the selection of battery instances for decision-making (intelligence phase).

Table 4 Non-formal description of the decision model
for quantifying the assignments in the maximum

matching

Component Description Equation

Objective Find the maximum cardinality of

distinct assignments (k)

(14)

Constraints Apply the same constraints of the

previous model (8)–(12)

(15)–(19)
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Figure 5 User interface of the consistency component for identifying eligible decision models (intelligence phase).

Figure 6 User interface for supplying the user with assignments (choice phase), showing the infeasible (red), feasible (orange and

green), and optimal (green) assignments of the field experiment’s decision problem (Color figure online).
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Decision rules for technical feasibility
Based on the parameters elicited, we asked seven
battery experts to identify constraining technical prop-
erties (upper bounds and lower bounds) that they
considered important for stationary scenarios. Since
only the parameters of the three categories of ‘‘ade-
quacy,’’ ‘‘durability,’’ and ‘‘reliability’’ deal with techni-
cal requirements, parameters from the other categories
were excluded from this expert survey, as were param-
eters that received less than half the number of the
available votes. However, four exceptions were made
regarding the technical parameters ‘‘required charging
current’’ (included with 47% of the votes), ‘‘required
discharging current’’ (included with 40% of the votes),
‘‘derating factor’’ (excluded with 80% of the votes), and
‘‘tolerable mean time to restoration’’ (excluded with
87% of the votes). The last two parameters were
excluded because they cannot be measured properly.
‘‘Required charging current’’ and ‘‘required discharging
current’’ were included since they received more than
half the votes in the first Delphi round. The remaining
fifteen technical parameters (Table 5) were presented to
the panelists to identify exclusion criteria that guide
the decision-making process (i.e., to exclude batteries
that exceed or fall short of the bounded requirements
in a scenario). Based on the experts’ majority view, we
explored if a technical parameter ðTPiÞ should be
constrained by an upper and/or lower bound ðni �4Þ
or not ðni\4Þ.

Subsequently, we analyzed the data to derive decision
rules that govern the fit or misfit of a battery vis-à-vis the
technical requirements for applying used batteries to
smart home scenarios.
Finding 1 Ten TPi i 2 2;4; 6;7;8;9;10;11;14;15f gð Þ

have neither an upper bound nor a lower bound. For
instance, if a scenario requests a battery that should
minimally serve 10 kWh, a particular battery that pro-
vides either 7 kWh or 17 kWh could be utilized in this
scenario. These parameters are unconstrained because
they affect the scenario’s economic perspective rather
than its technical feasibility. A battery that fails to meet,
for example, a scenario’s capacity requirement would
either overachieve or underachieve the scenario’s needs
without compromising the technical feasibility of repur-
posing the battery. Hence, these parameters do not
require dedicated constraints in the decision models.
However, since the experts in the Delphi study attested
that most parameters have a raison d’être, these uncon-
strained parameters could still be included to the objec-
tive function of the technical decision model for
minimizing the total relative technical deviation of
batteries assigned to scenarios.
Finding 2 While the parameters identified in finding 1

remained unconstrained, the experts unanimously deter-
mined that the nominal voltage ðTP1Þ in a scenario must
be strictly met by the battery because each electric load
requires a constrained range of voltage in which it can be
operated. Following the European norm ‘‘EN 50160’’

Figure 7 User interface of the model-base management system for building decision models (design phase).
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Round 2 Round 1

Results of the Delphi Study on Parameter Elicitation for Stationary Scenarios

Durability 

Usability

Reliabil ity

Legal 
requirem.

Regulatory 
requirem.

Adequacy 

Space and 
weight 

Ethical 
requirem.

Warranty

Min., nominal and max. voltage [V]

Capacity [Ah or kWh]

Required power/peak power for �me [W or VA (for min)]

Required charging current [C]

Required discharging current [C]

Mean depth of discharge [%]

Maximum length, height, width [cm, cm, cm]

Maximum volume [l]

Maximum mass [kg]

Expected cycle life un�l end of life [#full cycles]

Expected energy throughput un�l end of life [Wh]

Mean up �me per day [min]

Tolerable self-discharge rate (e.g., per month at room temp.) [%]

Opera�ng temperature (range) [°C]

Security & 
safety

Security of the system (e.g., access op�ons and rights)

Compa�bility to technical interfaces (e.g., CAN, USB)

Required security cer�ficates [reference numbers]

Required main user interface (e.g., GUI, terminal)

Privacy

Tolerable mean �me to restora�on [min]

Tolerable mean opera�ng �me between failures/outages [d]

Tolerable failures/outages  in �me [#in hours]

Tolerable mean opera�ng �me to first failure [d]

Product liability

Willingness to pay [€]

Dera�ng factor [%]

Addi�onally required electric equipment

Latest acceptable delivery date [yyyymmdd]

Lifecycle costs of rival energy solu�on [€]

Expected lifecycle costs [€]Economic 
feasibility

Required green energy cer�ficates [reference numbers]

Required safety cer�ficates [reference numbers]

Acceptable celltype (cylindric, prisma�c, pouch)

Safety

(80/20/0)(87/13/0)

(95/0/5)(93/7/0)

(85/10/5)(67/27/7)

(55/35/10)(47/53/0)

(55/35/10)(40/47/13)

(70/25/5)(73/27/0)

(55/40/5)(13/87/0)

(30/65/5)(13/87/0)

(30/70/0)(7/87/7)

(10/75/15)(13/80/7)

(90/10/0)(87/13/0)

(90/5/5)(93/7/0)

(60/25/15)(47/47/7)

(50/40/10)(47/53/0)

(40/40/20)(80/0/20)

(55/30/15)(60/33/7)

(75/20/5)(87/13/0)

(50/25/25)(67/27/7)

(55/20/25)(60/20/20)

(45/45/10)(47/47/7)

(80/20/0)(87/7/7)

(60/25/15)(67/20/13)

(45/35/20)(53/27/20)

(30/15/55)(33/20/47)

(100/0/0)(100/0/0)

(90/0/10)(100/0/0)

(85/10/5)(100/0/0)

(85/15/0)(93/7/0)

(55/30/15)(67/27/7)

(50/25/25)(33/27/40)

(75/10/15)(80/0/20)

(90/0/10)(100/0/0)

(95/0/5)(100/0/0)

(55/30/15)(53/27/20)

(55/20/25)(67/0/33)

Legal access protec�on (60/20/20)(67/20/13)

Legal safety (89/0/11)(93/7/0)

Economic 
feasibility

Adequacy 

Open circuit/peak performance voltage of power source [V]

Nominal power of power source [Wp, kWp or W, kW]

Maximum output of power source per year [Wh or kWh]

Average output of power source per day [Wh or kWh]

Number of hours with full load of power source per year [#]

(65/20/15)(73/13/13)

(95/0/5)(87/7/7)

(65/20/15)(73/20/7)

(85/5/10)(87/7/7)

(68/26/5)(73/13/13)

Costs of purchased electricity from grid [€]

Compensa�on for stored electricity fed into the grid [€]

Compensa�on for green electricity fed into the grid [€]

(75/10/15)(93/0/7)

(75/15/10)(80/20/0)

(85/5/10)(87/13/0)

(relevant/not relevant/uncertain)
100% ≥ x > 75% 75% ≥ x > 60% 60% ≥ x > 40% 40% ≥ x > 25% 25% ≥ xRelevance:

Figure 8 Results of the Delphi study on parameter elicitation (round 1: n = 20; round 2: n = 15) (Beverungen et al., 2017).
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(European Committee for Electrotechnical Standardiza-
tion, 2011), a range of ca. ±10% of the ‘‘nominal voltage’’
requirement, which is defined for a scenario, is accept-
able. Consequently, the decision model must be supple-
mented with two inequality constraints that define this
corridor.
Finding 3 With regard to the technical feasibility of

assignments, four parameters, TPi i 2 3;5;12;13f gð Þ, have
no upper bound, but all are constrained by a lower
bound. For instance, the electric power requirement of a
scenario must be fulfilled to run the scenario’s electric
loads properly, but if the battery potentially provides
more electric power than needed, it does not compromise
the scenario’s technical feasibility. Therefore, lower
bounds must be put on these parameters.
Finding 4 Linking the assessment data acquired by the

Delphi study (importance of parameters for scenario
characterization) to the assessment results from the
expert survey (important decision rules regarding the
technical feasibility of batteries in scenarios) reveals that
parameter weights could be derived and introduced to the
objective function in order to minimize the scenarios’
relative technical deviations. In this way, the objective
function for minimizing the relative technical deviation
of battery parameters to the lower bounds or target values
of the respective scenario requirements can work more
precisely since some parameters characterize the quality
and value of a used battery better than others. However,
since the weighting of the technical parameters requires
further in-depth knowledge, which could be gained by
technical investigations of the field of repurposed batter-
ies in the future, the objective function is currently
defined to weight every technical parameter.

Finding 5 Based on finding 4, the data point at a
contradiction. While the experts from the Delphi study
stated that T5 is less important than the other parameters
are, the experts in the survey advocated that this
parameter must be constrained by a lower bound.
However, a constrained parameter cannot be irrelevant,
since it seems to have a substantial influence on the
technical feasibility of a battery.

Finding 5 in particular convinced us that a triangulation
of the expert survey’s results is required. Therefore, we
asked two additional battery experts to assess the appro-
priateness, quality, and coherence of the decision rules we
derived. After the two independent experts agreed with the
majority view regarding the parameters’ boundaries, we
asked which parameters could be easily assessed and, thus,
extracted from used battery systems to provide the deci-
sion models with suitable decision-related data. The
experts found a consensus in six TPi i 2 1;2;3;4; 5;7f gð Þ
remaining from the initial set. Three TPi i 2 2; 4;7f gð Þ are
included, even though they have no hard upper or lower
bounds, because they are easily measurable and the experts
of the Delphi study considered them relevant to the
optimal technical assignment.

Although lower bounds were identified for the power
source’s ‘‘open circuit voltage’’ and ‘‘voltage at maximum
power’’, these parameters were excluded because they are
not directly comparable to the batteries’ parameters.
Other parameters identified in the Delphi study were
found to be too vague to be considered in a decision rule.
For instance, the parameter ‘‘tolerable mean uptime until
first failure’’ deals with a statistical fact that is difficult to
measure or determine up-front, and empirical field data
on this item are still unavailable.

Table 5 Results of expert survey on upper and lower bounds of technical parameters of batteries (n 5 7)

Has Lower Bound? Has Upper Bound?

i Technical Parameter (Ti)
Delphi 

Relevance
Derived 
Answer # of Votes Derived 

Answer # of Votes

1 Nominal voltage [V] 87% Yes 6 Yes 7
2 Capacity [kWh] 93% No 0 No 0
3 Required power [W or VA] 67% Yes 4 No 0
4 Required charging current [A] 47% No 0 No 0
5 Required discharging current [A] 40% Yes 4 No 0
6 Mean depth of discharge [%] 73% No 1 No 0
7 Expected cycle life until end of life [# full cycles] 87% No 0 No 0
8 Expected energy throughput until end of life [Wh] 93% No 0 No 0
9 Tolerable mean operating time to first failure [min] 60% No 3 No 1

10 Tolerable mean operating time between failures [d] 60% No 3 No 1
11 Tolerable failures in time [# in h] 67% No 0 No 2
12 Open circuit voltage [V] 73% Yes 5 No 2
13 Voltage at max. power [V] 73% Yes 5 No 1
14 Nominal power of power source [Wp, kWp or W, kW] 87% No 1 No 0
15 Number of hours with full load [h] 73% No 0 No 0
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Field experiment
In order to demonstrate that the implemented DSS
successfully matches batteries and scenarios, we defined
two decision tasks. For both decision tasks, we generated
four used batteries and four scenarios to populate the
DSS’s database. Generating consistent test data on used
batteries was necessary since data on a sufficiently large
set of used batteries are not publicly available.

Informed by two previous studies, we conducted a field
experiment to compare the decision quality reached by
human agents who used our DSS with the decision
quality reached by human decision-makers without using
a DSS. While research reminds us that human decision-
making is constrained by bounded rationality (Simon,
1977), we sought to quantify the increase in decision
quality that can be attributed to using our DSS as an aid
in a simplified decision process. In line with the demand
to evaluate IT artifacts with ‘‘testable propositions or
hypotheses’’ (Gregor & Jones, 2007, p. 317), the field
experiment was focused on testing four propositions.

Proposition 1 The decision quality of human agents who
identify all feasible assignments of a given
set of used batteries and scenarios without
using an IT artifact are inferior to that of
agents who use our DSS.

Proposition 2 The decision quality of human agents who
quantify the cardinality of the maximum
matching of a given set of used batteries and
scenarios without using an IT artifact are
inferior to that of agents who use our DSS.

Proposition 3 The decision quality of human agents who
identify the weighted maximum matching
of a given set of used batteries and sce-
narios without using an IT artifact are
inferior to that of agents who use our DSS.

Proposition 4 Human agents who must identify all fea-
sible assignments, quantify the cardinality
of the maximum matching, and identify
the weighted maximum matching of a
given set of used batteries and scenarios
without using an IT artifact spend more
time on decision-making than agents who
use our DSS.

The field experiment was set up as follows. Data related
to used batteries were generated by battery experts, who
based their assumptions on existing batteries’ master data
acquired from official battery specifications. Data related
to second-life scenarios (smart home case) were compiled
from available photovoltaic panels and mean energy
requirements of households with varying numbers of
residents and usage profiles. The scenarios in this case
request a stationary energy storage solution for storing
energy from photovoltaic panels (charging) and for
providing electric power (discharging). The used battery
instances and the scenarios’ requirements (Table 6) were
defined in terms of the technical parameters identified as
important in our Delphi study (Figure 8).

Subsequently, eight battery experts were provided with
these decision objects in order to identify all feasible
assignments and propose a maximum matching. Based
on their self-assessment (Table 7), we dealt with experts
having an advanced (ADV) and excellent (EXC) level of
battery expertise in the four domains battery research
(RES), battery manufacturing (MAN), battery pack devel-
opment (BPD), and BMS development (BMSD).

First, the experts proposed assignments for matching
each battery to each scenario in order to determine
whether a single assignment is feasible. Since the field
experiment focused on analyzing the experts’ indepen-
dent decision quality, the experts were not provided with

Table 7 Overview of the experts’ personal information regarding their battery expertise

Personal information Study participant (STPi)

1 2 3 4 5 6 7 8

Level of battery expertise EXC EXC EXC EXC ADV ADV ADV ADV

Area of expertise RES MAN RES BPD BMSD MAN BPD RES

Table 6 Technical parameters and requirements of four used battery instances and four scenario instances

i Technical parameter (TPi) Used battery instances Scenario (smart home) instances

B1 B2 B3 B4 S1 S2 S3 S4

1 Nominal voltage (V) 306.00 316.80 310.08 342.00 306.00 331.80 306.00 331.80

2 Capacity (kWh) 9.18 11.40 9.92 16.42 6.40 16.00 16.00 6.40

3 Max. charging power (kW) 21.25 19.80 5.51 26.72 7.60 13.00 5.10 13.00

4 Max. discharging power (kW) 58.65 54.65 51.68 73.74 4.00 35.00 35.00 4.00

5 Charging current (A) 69.44 62.50 17.78 78.13 24.96 39.00 16.67 39.00

6 Discharging current (A) 191.67 172.50 166.67 215.63 13.07 105.49 114.38 12.06

7 Expected cycles until end of life (#) 200 400 200 1000 150 400 200 300
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the decision rules that were compiled in our expert
survey. The optimal solution of this case is numerically
solved by the DSS to the total number of Zopt ¼ 10
feasible assignments (cf. Table 8).

Then, based on these feasible assignments, the experts
were asked to find a maximum matching. In the
proposed case, the solution of this decision task referred
to a perfect matching (Zopt ¼ 4), as every battery could
uniquely be assigned to a scenario and vice versa. Experts
were not asked to decide in line with a predefined
objective function, but minimizing the sum of the
technical parameters’ relative deviations would be the
most reasonable and efficient decision strategy one could
apply. Since the field experiment case’s total number of
feasible assignments (k ¼ 4) could be optimally realized,
the efficient set (Table 8) contributed to the global
minimum of the total parameters’ relative deviations
(Zopt ¼ 41:25).

Binary classification was used in the process of analyzing
the result sets that were derived by the battery experts.
Hence, based on the computed DSS’s results, the count of
true-positive (TP), true-negative (TN), false-positive (FP),
and false-negative (FN) answers was determined from the
experts’ assignments. Five metrics – ‘‘precision,’’ ‘‘recall’’
(hit rate), ‘‘false-negative rate’’ (miss rate), ‘‘fallout,’’ and
‘‘accuracy rate’’ – were computed to reveal the quality of the
human agents’ decisions (e.g., Chinchor, 1991; Fawcett,
2006; Powers, 2011). Other measures are available for
characterizing the performance of classifiers, such as the
‘‘Fb score’’ (based on the effectiveness measure of van
Rijsbergen, 1979) and ‘‘Matthews correlation coefficient’’
(MCC) (Matthews, 1975).

A more sophisticated accuracy measure, the Fb score is a
harmonic mean of precision and recall that indicates the
respective metric’s b-induced importance, where b is
usually defined for doubling the importance of precision
(b ¼ 0:5) or recall ðb ¼ 2Þ or weighting both equally
(b ¼ 1) (Chinchor, 1991). Since batteries are dangerous
goods, erroneous repurposing decisions could lead to
undesirable effects in the respective scenarios. Therefore,
we argue that precision is more important for repurpos-
ing used batteries than recall is, so we used the F0:5 score
in the analyzing our field experiment.

Fb ¼ 1 þ b2
� � precision � recall

b2 � precision
� �

þ recall
ð1Þ

The MCC is regarded as a strong measure since ‘‘[t]he
correlation coefficient uses all four numbers (TP, TN, FP,
FN) and may often provide a much more balanced
evaluation of the prediction than, for instance, the
percentages.’’ (Baldi et al, 2000, p. 415, italics in the
text). By returning a continuous value in the interval of
�1;þ1½ �, the coefficient indicates whether a prediction is
imperfect (�1), perfect (þ1), or not better than random
(0) (Matthews, 1975). Thus, the MCC ‘‘[…] immediately
gives an indication [of] how much better a given
prediction is than a random one.’’ (Matthews, 1975,
p. 445)

MCC ¼ TP � TNð Þ � FP � FNð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FNð Þ � TP þ FPð Þ � TN þ FNð Þ � TN þ FPð Þ

p

ð2Þ

Testing Proposition 1 The field experiment revealed that
the battery experts made numerous mistakes in their
decisions compared to all feasible assignments provided
by the DSS’s decision model (cf. Table 8), which operates
according to a majority view of seven battery experts. The
aggregated results of the first decision task show the
bounded rationality of human agents’ attempts to
identify all feasible and infeasible assignments (Table 9).

No participant reached a flawless result in terms of the
solution provided by the decision model for identifying
all feasible assignments implemented in our DSS,
although the experts performed with a
respectable mean accuracy rate of 70.3%. However, this
rate indicates that the experts did not identify, on
average, 29.7% of the feasible assignments. While the
decision quality of the independent participants 2 and 6
was equally good (e.g., high accuracy rate of 93.8% and
F0:5 score of 97.8%, no FP decisions made, MCC of 0.878),
participants 1 and 3 had poor to average results. For
instance, the recall of participant 1 was low (20%), and
participant 3’s decisions resulted in an intolerably high
fallout rate (two-thirds).

Hence, the quality of the decisions made by manually
finding all feasible solutions can be regarded as poor,
confirming proposition 1, because used batteries were
illegitimately assigned to scenarios (FPs of participants 3,
4, 5, 7, and 8). In addition, none of the participants
found all feasible solutions (mean FN rate of 32.5%).
Despite participants 1, 3, and 7’s comparably high

Table 8 Feasible (Zopt ¼ 10) and optimal (k ¼ 4;Zopt ¼ 41:25) assignments of the field experiments’ decision problem

 
S1     

 

 Optimal   Feasible   
 Feasible  Feasible  Feasible  Optimal  
 Feasible   Optimal   
  Optimal   Feasible  

Scenarios 
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S1 S2 S3 S4
B1
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B4
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accuracy rates (50%, 56.3%, and 56.3%) and F0:5 scores
(55.6%, 64.8%, and 65.8%), the three participants per-
formed randomly, as indicated by their respective MCCs
(0.293, 0.035, and 0.163), which are close to zero.

Testing Propositions 2 and 3 With regard to both
decision tasks of quantifying the maximum matching
and identifying the weighted maximum matching (set of
optimal assignments), the experts’ decision quality varied
(Table 10). While participants 2, 3, 4, and 6 feasibly
provided each scenario with only one battery (and vice
versa), participants 1, 5, 7, and 8 did not find a feasible
(technical constraint violations), correct (columns’ and
rows’ sum greater than one), or perfect (k 6¼ 4) matching
set. Since only four of the eight participants were able to
quantify the maximum matching (k) comprising correct
and feasible assignments, proposition 2 is confirmed.
Additionally, since only participants 2, 4, and 6

identified the optimal solution (weighted maximum
matching) and the other participants did not perform
better than a random choice (indicated by the low MCC
values), proposition 3 is confirmed, too. Moreover, it seems
that participant 4 found the optimal set randomly
(MCC ¼ 0:358). Even if the percentage difference
between the solution proposed by participant 3 and the
optimal set identified by the DSS is marginal (2.6%), we can
expect that the difference would be larger in more complex
and realistic sets that include many batteries and scenarios.

Testing Proposition 4 With respect to the required time
for completing the decision tasks manually, the
assignments that were created by the participants took
considerably longer than those derived from the DSS
(Table 11). Despite the small sample size, it took the
participants an average of 12.4 min to complete all
decision tasks. Since the DSS solves all requested tasks

Table 9 Classification of study participants’ decision results (n 5 8)

Total # of assignments selected 2 9 11 9 10 9 7 9
# of feasible assignments selected (TPs) 2 9 7 7 8 9 5 7
# of infeasible assignments unselected (TNs) 6 6 2 4 4 6 4 4
# of infeasible assignments selected (FPs) 0 0 4 2 2 0 2 2
# of feasible assignments unselected (FNs) 8 1 3 3 2 1 5 3

Recall (hit rate) 20.0% 90.0% 70.0% 70.0% 80.0% 90.0% 50.0% 70.0%
67.5%

False negative rate (miss rate) 80.0% 10.0% 30.0% 30.0% 20.0% 10.0% 50.0% 30.0%
32.5%

Precision 100% 100% 63.6% 77.8% 80.0% 100% 71.4% 77.8%
81.8%

Fallout 0.0% 0.0% 66.7% 33.3% 33.3% 0.0% 33.3% 33.3%
25.0%

Accuracy rate 50.0% 93.8% 56.3% 68.8% 75.0% 93.8% 56.3% 68.8%
70.3%

F0.5 Score 0.556 0.978 0.648 0.761 0.800 0.978 0.658 0.761
F1 Score 0.333 0.947 0.667 0.737 0.800 0.947 0.588 0.737
F2 Score 0.238 0.918 0.686 0.714 0.800 0.918 0.532 0.714
Matthews correlation coefficient 0.293 0.878 0.035 0.358 0.467 0.878 0.163 0.358

Study Participant (Pi)
Results (All Feasible Assignments) 1 2 3 4 5 6 7 8

Binary Classification

Table 10 Overview of the participants’ optimal performance

 
Results (Optimal Set) 1 2 3 4 5 6 7 8 
Total # of assignments selected 1 4 4 4 4 4 4* 3 
Technical feasibility violated? No No No No Yes No No No 
Optimal set selected? No Yes No Yes No Yes No No 

      
Total relative deviation achieved (Zp) - 67.2 67.3 67.2 - 67.2 - - 
Percentage difference of Zp to Zopt - 0% +0.15% 0% - 0% - - 

Study Participant (Pi) 

Analysis

aParticipant matched one battery to two scenarios.
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in milliseconds (0.016 s), proposition 4 is confirmed.
While roughly twelve minutes is not an unreasonable
time in which to make the requested decisions, a larger
number of batteries and scenarios would likely result in a
workload that could not be managed manually with good
performance, whereas the DSS could deal with more
complex decisions quickly.

Linking the time required for solving the decision tasks
to the quality of the participants’ decisions does not
clearly reveal a dependent variable. While experts 7 and 8
spent the shortest, respectively, longest timespan for
completing the experiment, both participants had poor
results in terms of their performance, as indicated by low
recall (7), high fallout (both), and close to zero MCCs
(both). As more field experiments are conducted, time
will remain an influential variable affecting the decision
quality since insufficient processing time and low deci-
sion quality are basic concepts that call for dedicated IT
support, such as that provided by the DSS.

Discussion
In line with the dual mission of DSR, our findings
contribute to descriptive and prescriptive knowledge
(Mokyr, 2002; Gregor & Hevner, 2013).

First, we characterized repurposing used batteries to
different scenarios as an important and yet unsolved
decision problem that necessitates the design and develop-
ment of a DSS. We showed that the underlying class of
decision problems – assigning used physical products to
scenarios – refers to a bipartite matching problem. Drawing
from decision science literature, we explained how the
decision process for repurposing used products, such as
batteries, works.

Second, we adopted IT artifacts from the DSS and
operations research fields designed to solve arbitrary bipar-
tite matching problems. In the exaptation, we designed two
decision models that (a) identify the technical fit between
physical products and scenarios and (b) provide an optimal
solution for matching many products to many scenarios.
Subsequently, we designed a class of DSSs that supports the
entire decision process, from modeling used products and
scenarios to assigning used products to scenarios based on
the decision models. The DSS offers support as it reliably
prevents technical misfit between any product and any
scenario. Moreover, it provides a (weighted) maximum
matching of all products to all scenarios, based on technical
fit. Other researchers can use the proposed class of systems
as a blueprint for designing their own DSSs for repurposing
physical products.

Third, we instantiated the designed class of DSSs for
repurposing used batteries, based on parametrizing the
decision models and implementing the DSS. Relying on
natural laws, interviews, and a Delphi study with battery
experts, we identified a set of fifteen technical parameters
that constitute the technical fit between batteries and
scenarios. These parameters detail the decision models,
such that they identify all technical feasible assignments.
We designed decision rules for each parameter to account
for its upper bound and lower bound that govern the
technical fit between a battery and a scenario. Evidence
from our field experiment reveals that, even for the
artificially small decision problem of assigning four
batteries to four scenarios, our DSS leads to a decision
quality that is considerably superior to the decisions
reached by battery experts who do not use such a
software. Among other benefits, using our DSS prevented
the experts from matching batteries to non-fitting sce-
narios and enabled them to repurpose additional batter-
ies, too. Using the software accelerated the decision
process even in our small evaluation scenario. As regards
realistically large decision scenarios comprising thou-
sands of batteries and dozens of scenarios, a long
tradition of DSS research illustrates that human deci-
sion-makers cannot identify an optimal solution due to
the overwhelming mental workload (Paas & Van Mer-
riënboer, 1994) and the bounded rationality that con-
strains human decision-making (Simon, 1977).
Therefore, we assert that utilizing a DSS as designed in
this paper is essential for successfully repurposing com-
plex products, such as used electric vehicle batteries.

Conclusions
Against the backdrop of electric vehicles’ growing sales
figures, repurposing used batteries is an economical,
societal, and ecological imperative. On a more general
level, a similar rationale applies to repurposing other
valuable products in second-life application scenarios.

This paper presents the design, implementation, and
evaluation of a class of DSSs that aid human decision-
makers with matching used products, such as electric
vehicle batteries, to scenarios. The system prevents a
technical misfit between a product and a scenario and
provides an optimal solution for matching many prod-
ucts to many scenarios. While even in an artificially small
evaluation scenario our DSS increases the decision qual-
ity of repurposing batteries as opposed to manual deci-
sion-making, we argue utilizing a DSS is indispensable for
repurposing batteries on an industrial scale. Since our

Table 11 Summary of the time participants used to conduct the experiments

Results (field experiment) Study participant (STPi)

1 2 3 4 5 6 7 8

Time consumed in performing the decision task (min.) 5.0 11.0 15.0 5.0 5.0 13.0 4.0 40.0

12.4
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DSS is the first system to aid decision-makers with
repurposing used batteries, we propose a solution to a
heretofore unresolved decision problem.

Other researchers can extend the proposed class of
systems as well as the instantiated system’s functionality
in various ways. Additional decision models can maxi-
mize the ecologic sustainability of used products,
whereas maximizing business value necessitates adding
parameters like costs, prices of rival products, and a
customer’s willingness-to-pay to the decision models. As
regards technical considerations, scenarios might be
incompatible with repurposing exactly one product, such
that the DSS needs to match scenarios with intercon-
nected products or with a product’s sub-components.
From the perspective of offering complete solutions,
decision-makers might not only match products to

scenarios, but may configure more complex value propo-
sitions that consist of products and value-added services.
Thus, used products might be bundled with services to
transport the product to the field, starting it up, and
operating it to create value-in-use for customers. To
provide the required functionality, the DSS will have to
move beyond matching products and scenarios to afford
configuring individual value propositions from a catalog
of used products and value-added services. From the
perspective of economic theory, the system will have to
avoid the adverse selection effect of the market for used
batteries as a lemon market, as suggested by lemon
market theory (Akerlof, 1970), so as to establish and
sustain a market for trading used products.
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Appendix

Abbreviations

ADV Advanced
BMSD Battery management system development
BPD Battery pack development
DSR Design science research
DSS Decision support system
EXC Excellent
FN False negative

FP False positive
IT Information technology
MCC Matthew’s correlation coefficient
STPi i-th study participant
RES Battery research
TPi i-th technical parameter
TN True negative
TP True positive
Zopt Optimal value of an objective function

Decision models
Nomenclature
Designators

B := Set of available or considered batteries

S := Set of available or considered scenarios

P := Set of technical parameters

e:g:; voltage; current; capacityð Þ

b :¼ b�th battery; b 2 B

s :¼ s�th scenario; s 2 S

p :¼ p�th technical paramter; p 2 P

Decision variables (model-endogenous)

Xbs :=
1; if matching of batteryb to scenario s is selected;
0; otherwise

�

Parameters (model-exogenous)

k := Quantity of assignments in the maximum matching

BPbp :¼ Value of the p�th technical parameter of

the b�th battery

SLsp:¼Lower bound of the p�th technical parameter of

the s�th scenario

SPsp:¼Goal target valueð Þ of the p�th technical

parameter of the s�th scenario

SUsp :¼ Upper bound of the p�th technical parameter

of the s�th scenario

Technical decision model for identifying all
feasible assignments

max
XB

b¼1

XS

s¼1

Xbs ð3Þ

subject to
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Xbs � BPbp �Xbs � SLsp; 8b; s; p ð4Þ

Xbs � BPbp � SUsp; 8b; s; p ð5Þ

Xbs 2 0;1f g; 8b; s ð6Þ

Technical decision model for identifying optimal
assignments

min
XB

b¼1

XS

s¼1

Xbs �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XP

p¼1

BPbp � SPsp

SPsp

� �2
vuut ð7Þ

subject to

Xbs � BPbp �Xbs � SLsp; 8b; s; p ð8Þ

Xbs � BPbp � SUsp; 8b; s; p ð9Þ

Xbs 2 0;1f g; 8b; s ð10Þ

XB

b¼1

Xbs �1 ; 8s ð11Þ

XS

s¼1

Xbs �1 ; 8b ð12Þ

XB

b¼1

XS

s¼1

Xbs ¼ k ð13Þ

where

k ¼ Zopt ¼ max
XB

b¼1

XS

s¼1

Xbs ð14Þ

subject to

Xbs � BPbp �Xbs � SLsp; 8b; s; p ð15Þ

Xbs � BPbp � SUsp; 8b; s; p ð16Þ

Xbs 2 0; 1f g; 8b; s ð17Þ

XB

b¼1

Xbs �1 ; 8s ð18Þ

XS

s¼1

Xbs � 1 ; 8b ð19Þ

This work is licensed under a Creative
Commons Attribution-NonCommer-

cial-NoDerivs 3.0 Unported License. The images
orother third party material in this article are
includedin the article’s Creative Commons license,
unlessindicated otherwise in the credit line; if the
materialis not included under the Creative Com-
monslicense, users will need to obtain permission
from thelicense holder to reproduce the material.
To view acopy of this license, visit http://
creativecommons.org/licenses/by-nc-nd/3.0/.

Design and evaluation of a model-driven decision support system Benjamin Klör et al

European Journal of Information Systems

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

	Design and evaluation of a model-driven decision support system for repurposing electric vehicle batteries
	Abstract
	Introduction
	Research background
	Repurposing electric vehicle batteries
	Repurposing products as a class of decision problems
	Decision support systems

	Research method
	Artifact description
	Data
	Decision models
	Decision model for identifying all feasible assign-	ments
	Decision model for identifying optimal assign-	ments

	User interface

	Model parametrization, demonstration, and evaluation
	Parameter elicitation
	Decision rules for technical feasibility
	Field experiment
	Testing Proposition 1
	Testing Propositions 2 and 3
	Testing Proposition 4


	Discussion
	Conclusions
	References
	Appendix
	Technical decision model for identifying all feasible assignments
	Technical decision model for identifying optimal assignments




