
A note on a mixed routing and scheduling problem
on a grid graph
Marisa Cenci1, Mirko Di Giacomo1 and Francesco Mason2*
1Department of Business Studies, University of Rome III, Via Silvio D’Amico 77, 00145 Rome, Italy; and
2Department of Management, University of Venice, S.Giobbe Cannaregio 873, 30121 Venice, Italy

We consider a particular case of the Fleet Quickest Routing Problem (FQRP) on a grid graph of m 9 n nodes that
are placed in m levels and n columns. Starting nodes are placed at the first (bottom) level, and nodes of arrival are
placed at the mth level. A feasible solution of FQRP consists in n Manhattan paths, one for each vehicle, such that
capacity constraints are respected. We establish m*, i.e. the number of levels that ensures the existence of a
solution to FQRP in any possible permutation of n destinations. In particular, m* is the minimum number of
levels sufficient to solve any instance of FQRP involving n vehicles, when they move in the ways that the
literature has until now assumed. Existing algorithms give solutions that require, for some values of n, more
levels than m*. For this reason, we provide algorithm CaR, which gives a solution in a graph m* 9 n, as a minor
contribution.
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1. Introduction

In this paper, we study conditions under which the FQRP on a

grid graph has a solution. A grid graph is a Manhattan graph of

m 9 n nodes: nodes are placed in m levels and n columns.

FQRP on a grid graph is a particular multi-commodity flow

problem in which we must find the routes n vehicles have to

perform from an initial position, at the lowest level, to a final

position, at the highest level. Vehicles must respect capacity

constraints on the arcs and on the nodes of the grid, i.e. at most

one vehicle at a time is allowed to cross an arc or a node. The

original FQRP consists in the minimization of the sum of the

times necessary to route each vehicle.

In a generic graph, FQRP is an NP-complete problem. It has

many applications such as the planning of land transhipment of

aircraft in aprons and the building of paths for automated

guided vehicles (AGV). It is evident that FQRP is a routing as

well as a scheduling problem. Obviously, the specific appli-

cation field determines both the formulation of the problem

and the constraints on the characteristics of the paths. In

Ravizza et al (2014) the problem focuses on the land

movements of aircraft. It is formulated for a directed graph

in which arcs represent taxiways. The aim is to minimize the

overall route time, avoiding conflicts and satisfying planned

take-off times on various runways.

Many authors, even though slightly modifying the hypoth-

esis, have found solutions to the problem, using mixed integer

linear programming (Roling and Visser, 2008; Gupta et al,

2009; Clare and Richards, 2011), integer programming

(Smeltink and Soomer, 2005) or a linear multi-commodity

flow model with side constraints and binary variables. Then,

they solved the problem with Branch and Bound or Fix and

Relax (Marı́n and Marin, 2006) techniques. Other authors

(Pesic, 2001; Garcia et al, 2005; Balakrishnan and Jung, 2007;

Andreatta et al, 2010) suggested various algorithms in order to

solve the problem. The particular case of FQRP we are

concerned with in this paper was first studied in Andreatta et al

(2010) where authors state that an optimal solution to FQRP

on grid graphs can be obtained routing each vehicle on a

Manhattan path without stopping and avoiding conflicts

between vehicles.

Furthermore, they provide a dispatching algorithm (DA) to

find such a solution in polynomial time. DA finds optimal

solutions in which vehicles perform all their horizontal moves

on one and only one level and each level allows horizontal

movements in one direction only.

It is important to stress that authors implicitly assume to

deal with a graph having a number of levels high enough to

allow DA find a solution, rather than define explicitly the

number of levels in the instance they consider. Finally, they

provide an instance dependent upper bound to number of

levels needed by DA to solve an instance of FQRP.

Such a value is K0, namely the maximum horizontal

distance of a discordant vehicle at time t = 0, i.e. when all
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vehicles lie on their starting nodes on the first level. A vehicle

is discordant either if it has to move horizontally in a direction

opposite to the one allowed by the level where the vehicle is or

if it has only vertical steps remaining to perform. Thus,

K0 � n� 1.

We will consider m�
DA ¼ n as the instance independent

upper bound to the number of levels needed by DA to solve

any possible instance of FQRP involving n vehicles. Consid-

ering such a value allows including also the case n ¼ 2 which,

strictly speaking, needs two levels. In this way, without

affecting that much neither the overall results of Andreatta

et al (2010) nor this work, more general results are achieved.

The main aim of this paper is to find the number of levels

(m*) that ensures the existence of a solution to FQRP in each

permutation of n vehicles destination. In this perspective, with

respect to a specific permutation of vehicles destination, a

number of levels lower than m* could be (necessary and)

sufficient.

In particular, as we shall see, m* is the minimum number of

levels necessary and sufficient in order to solve any instance

FQRP when vehicles perform all their horizontal steps on one

and only one level and each level allows horizontal move-

ments in one direction only.

The value of m* is not instance dependent but depends on

the length of what we shall call C-type conflict paths that can

be found in an instance of the problem composed by n

vehicles. Furthermore, we will show that m� �m�
DA for values

of n[ 1 and that the higher the value of n the higher the

number of levels that can be saved with respect to pre-existing

solutions.

For this reason, as the second (and minor) aim of the paper,

we provide an algorithm (CaR) to find Manhattan paths of

each vehicle in a graph m* 9 n.

The paper is structured as follows: in the next section, we

recall the main elements of FQRP, while in the second we

study all possible conflicts configuration. In the third, we

define what a C-type conflict path is, what is its length and

some general features of conflict paths.

In the fourth and in the fifth section, we deal with the main

aim of the paper. The second aim of the paper is discussed in

the sixth section.

In section seven we make a comparison between CaR

solution and the solution obtained by executing DA, and

finally we report conclusions.

2. The FQRP problem

The specific FQRP we are concerned with in this paper is

related to the movements of n vehicles on an undirected grid

graph or Manhattan graph, G ¼ V ;Eð Þ. In G, we recognize m

levels and n columns. V is the vertex set, while E is the set of

the edges. Therefore, we have Vj j ¼ mn.

In the following, we assume to have a number of vehicles

equal to the number of columns.

If the number of vehicles is higher than the number of

columns, the problem is not feasible, while if the number of

vehicles is lower than the number of columns, there are fewer

conflicts between vehicles. In the last case, it is possible to

find an optimal solution using CaR and considering just

existing vehicles.

The n vehicles start all at time t ¼ 0 from the level 1 and

must reach their destination, which is known in advance, in

level m. Each edge (both horizontal and vertical) requires one

unit of time to be traversed. The objective of FQRP is to

minimize the overall time, i.e. the sum of the time n vehicles

need to perform the movement.

For the sake of simplicity, we follow the same notations

used in Andreatta et al (2010). Thus, vehicles will be

numbered from 1 to n and start from level 1. Their destinations

correspond to a given permutation

r ¼ r1; r2; . . .; rn

of the integers from 1 to n. For practical purposes, it may also be

useful to take account of the corresponding function i ! r ið Þ,
where r ið Þ denotes the destination column of vehicle i.

Furthermore, we will call node p; qð Þ the node belonging to

level p and column q.

As already stated, all vehicles start at the same time and do

not stop until they reach the final destination.

In order to be feasible, the solution must not allow two

vehicles to come into conflict, i.e. each arc as well as each

node must be crossed by just one vehicle at a time.

For example, an instance on a Manhattan graph 5 9 5 and

r1 ¼ 5; r2 ¼ 4; r3 ¼ 3; r4 ¼ 1; r5 ¼ 2, equivalent to r 1ð Þ ¼
4; r 2ð Þ ¼ 5; r 3ð Þ ¼ 3; r 4ð Þ ¼ 2; r 5ð Þ ¼ 1; can be represented

by a figure, as shown in Figure 1.

The minimum length property of the Manhattan path of

vehicle i is equivalent to the statement that, in each step, a

vehicle can perform only one out of two movements: a vertical

or a horizontal step. The horizontal step is towards the right if

r ið Þ[ i and conversely if r ið Þ\i: Paths cannot contain steps

in opposite directions.

Without loss of generality, we will consider not decompos-

able problems in what follows. We call ‘decomposable in two

(or more) disjoint subproblems’ problems in which there exists

a number k\n such that r 1ð Þ; r 2ð Þ; . . .; r kð Þ is a permutation

of the integers 1; 2; . . .; k.

It is quite evident that, in such a case, the vehicles that

occupy the positions from 1 to k in the first level must reach a

destination in one of the first k columns and may be treated

separately from the other vehicles.

3. Conflicts between vehicles

As we already said, the n vehicles, which have to move on paths

in the Manhattan graph (m� n), start from their initial position,

respectively, 1; 2; . . .; n in the first level and go to their

respective ending positions, defined by r 1ð Þ; r 2ð Þ; . . .; r nð Þ.
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Vehicles start simultaneously and never stop until they

reach the final position. Each vehicle must move horizontally

or vertically fulfilling capacity constraints on nodes and on

arcs.

The number of horizontal steps for vehicle i is r ið Þ � ij j: As

said before, if r ið Þ[ i, then steps are to the right while if

r ið Þ\i then steps are to the left. A vehicle must perform only

vertical steps iff r ið Þ ¼ i.

It is quite natural to partition the set of vehicles in three

subsets:

R1 ¼ fvehicles ijr ið Þ[ ig

L1 ¼ fvehicles ijr ið Þ\ig

H ¼ fvehicles ijr ið Þ ¼ ig

Of course, the units of time needed in order to be sure that each

vehicle reaches its destination is equal to T, where T is:

T ¼ max
i

r ið Þ � ij j þ m

The last expression allows us to explain why, in some real

applications, the value of m is important: such a number

affects both T and the existence of a solution. As a

consequence, the value of m should be minimum but high

enough to guarantee the existence of a solution.

Considering a graph m� � n allows reducing the effort, in

terms of time, to route all vehicles to their destinations. For

each couple of vehicles i and j, with i\j, starting at time 0

from nodes at the first level, we can have exactly one of the

following:

1. i 2 H; j 2 H

2. i 2 H and j must perform at least a horizontal step:

a. r ið Þ\r jð Þ
b. r ið Þ[ r jð Þ

3. j 2 H and i must perform at least a horizontal step:

a. r ið Þ\r jð Þ
b. r ið Þ[ r jð Þ

4. i 2 R1; j 2 R1 or i 2 L1; j 2 L1:

a. r ið Þ[r jð Þ
b. r ið Þ\r jð Þ

5. i 2 R1; j 2 L1 :

a. r ið Þ\r jð Þ
b. r ið Þ[r jð Þ

• iþj
2
is not integer

• iþj
2
is integer and r ið Þ 6¼ iþj

2
6¼ r jð Þ

• iþj
2
is integer and r ið Þ ¼ iþj

2
or r jð Þ ¼ iþj

2
.

6. i 2 L1; j 2 R1

In the first case, both vehicles have only vertical moves:

they cannot collide.

In cases 2.a. and 3.a., column i ¼ r ið Þ is not between

columns j and r jð Þ. It follows that shortest paths of vehicles

will never share any node at any time. In cases 2.b., i.e. when

i ¼ r ið Þ is between columns j and r jð Þ, and 4.a, when

i 2 L1; j 2 L1, vehicle i reaches its destination before vehicle j

and stays in it in the following units of time. Then, a conflict

arises only if the path of vehicle j contains the node m; r ið Þð Þ.
A very similar conflict arises in cases 3.b. and 4.a., when

i 2 R1, j 2 R1, in which vehicle j reaches its destination before

vehicle i and stays in it in the following time units: a conflict

occurs only if the path of vehicle i contains the node m; r jð Þð Þ.
We will call cases 2.b., 3.b. and 4.a ‘type A conflicts’ and give

the following definition:

Definition 1 Node conflicts: type A

Two vehicles i and j are subject to an A-type conflict if the

following relations hold:

i\j�r jð Þ\r ið Þ or r jð Þ\r ið Þ� i\j

Observation 1 The only node where a conflict between i and

j may occur is the node m; r jð Þð Þ in the first case and the

node m; r ið Þð Þ in the second one. Indeed, in both cases

there is not a node belonging to a level lower than m that

can be reached at the same time by the two vehicles. As a

consequence, to avoid the conflict due to the occurrence

of an A-type conflict, it is necessary that the destination

node of j (or, in the second case, i) does not belong to path

of vehicle i (or j).

Observation 2 A-type conflict is the only type of conflict that

vehicles of the set H can be involved in.

In cases 4.b., 5.a. and 6, there is no conflict. Indeed, both

shortest paths of the two vehicles do not share the same node

or arc at the same time. In particular, in case 6, the two

vehicles, i and j, never cross the same arc or node, since the

5 54 3 1 2

1 52 3 4 5

Figure 1 FQRP instance on a Manhattan graph 5 9 5.
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left one (i.e. i) goes to the left while the right one (i.e. j) goes

to the right.

In the remaining cases, i.e. the three 5.b. subcases, i and

j have to perform horizontal movements in opposite direc-

tions and they can meet halfway. In these cases, they can

collide on a node (or an arc) when that node (or that arc) is

reachable from the departure nodes i and j after the same

number of steps and when both vehicles have to pass through

it. Therefore, we define three other types of conflicts, as

follows.

Definition 2 Arc conflicts

Two vehicles, i and j, where i\j, i 2 R1, j 2 L1, are ‘subject

to an arc conflict’ if we contemporarily have:

i\rðiÞ
j[ rðjÞ
rðjÞ\ iþ j

2
\rðiÞ

j� i ¼ 2pþ 1 p� 0; integer

8
>>><

>>>:

That is to say, if vehicles i and j move horizontally one

towards the other on the same level, then they enter in conflict

on one of the arcs joining a node of column iþj
2
� 1 with a node

of column iþj
2
þ 1.

Definition 3 Node conflicts: type B.

We have B-type conflicts when two vehicles, i and j, i\j,

must move in opposite direction and the following conditions

hold:

i\rðiÞ
j\rðjÞ
rðjÞ\ iþ j

2
\rðiÞ

j� i ¼ 2p p� 0; integer

8
>>><

>>>:

i.e. when the horizontal distance between i and j starting nodes

is an even number and the destinations of i and j are located,

respectively, to the right and to the left of the median node

iþ jð Þ=2.

Observation 3 Any routing rule that allows movements only

in one direction at a fixed level makes both arc conflicts

and B-type conflicts impossible (and, for this reason, their

determination is superfluous).

Definition 4 Node conflicts: type C

We have C-type conflicts if two vehicles i and j, with i\j,

move in opposite direction at the same level and one of the

following relations holds:

r ið Þ ¼ iþ jð Þ
2

r jð Þ\ iþ jð Þ
2

8
><

>:

or, alternatively,

r jð Þ ¼ iþ jð Þ
2

r ið Þ[ iþ jð Þ
2

8
><

>:

In such a framework, we define ‘vehicle subject to C-type

conflict’ the vehicle whose destination is a node of the column

iþ jð Þ=2. In order to express this relation between vehicles i

and j, we use the notation i jð Þ if r ið Þ ¼ iþ jð Þ=2; otherwise,

we write j ið Þ if r jð Þ ¼ iþ jð Þ=2.

The following proposition holds.

Proposition 1 In order to avoid the collision which could

arise from the occurrence of i jð Þ, when i\j, the first node

of column r ið Þ belonging to the path of vehicle i must be

q; r ið Þð Þ and the last node of the same column belonging

to the path of vehicle j must be p; r ið Þð Þ, with q[ p.

Proof If we have i and j, with i\j and i jð Þ; it follows that:

r ið Þ ¼ iþ jð Þ
2

and r jð Þ\r ið Þ

Therefore, column r ið Þ, which is the one containing the

destination node of vehicle i, is equidistant from the col-

umns from which i and j start:

r ið Þ � i ¼ j� r ið Þ

We distinguish two cases:

• If q� p then both vehicles reach the node p; r ið Þð Þ at

time t ¼ j�i
2
þ p� 1. In fact, remembering that they

are equidistant from column r ið Þ, if q ¼ p then both

vehicles are on the node p; r ið Þð Þ at the same time. On

the other side, if q\p, then vehicle i reaches column

r ið Þ at time t ¼ j�i
2
þ q� 1 and it has only vertical

steps left. Moving vertically in the following time

units, it occupies the nodes from qþ 1; r ið Þð Þ to

p; r ið Þð Þ and so j cannot avoid to use a node in which

vehicle i is still.

• If q[ p, then vehicle j leaves the column r ið Þ before

than the arrival of vehicle i, i.e. at time t ¼ j�i
2
þ p� 1.

In this way, the occurrence of a conflict is avoided

(Figure 2). h

Observation 4 In order to discover C-type conflicts, we need

O nð Þ calculations. Indeed, it is sufficient to scan all

vehicles and verify what follows:

• If i ¼ r ið Þ; i cannot be subject to C-type conflict;

• If i\rði), then find the vehicle j ¼ 2r ið Þ � i: we have

a C-type conflict i jð Þ iff r jð Þ\ iþ jð Þ=2;
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• If i[ rði), then find the vehicle j ¼ 2r ið Þ � i: we have

a C-type conflict i jð Þ iff r jð Þ[ iþ jð Þ=2.

Observation 5 The conflict relation u vð Þ is asymmetric

because when vehicle u is subject to C-type conflict with

vehicle v, v cannot be subject to C-type conflict with u.

Furthermore, it is univocal because it is impossible to

simultaneously have two relations u vð Þ and u wð Þ with

v 6¼ w.

Consequently, we can represent C-type conflicts in an

instance FQRP by a directed graph G0 ¼ N 0;A0ð Þ in which

nodes represent vehicles and the generic arc u; vð Þ represents

the relation u vð Þ.
Conflict graph G0 is a family of arborescences. Arcs are

oriented towards the root: for each node, the outer degree is at

most 1 (the inner degree can be higher than 1).

4. Paths of C-type conflicts

We call C-type conflict path (more simply, conflict path), any

sequence of vehicles z1; z2; . . .; zkf g that generates a number k

of C-type conflicts z1 z2ð Þ; z2 z3ð Þ; . . .; zk zkþ1ð Þ: in short these

vehicles constitute the path z1; z2; . . .; zkð Þ. As a particular case,

a conflict path can consist of a single C-type conflict: z1 z2ð Þ: In

graph G0, the conflict path z1; z2; . . .; zkð Þ corresponds to a

(directed) path from node z1 to node zk. Based on the previous

definitions, it is evident that in a path of conflicts, vehicles

zi; i odd must move in opposite direction with respect to

vehicles zj; jeven.

Definition 5 Length of a path

We define Length of a path the number of vehicles subject

to the C-type conflict in a path. In other words, the length of

the generic conflict path z1 z2ð Þ; z2 z3ð Þ; . . .; zk zkþ1ð Þ is k.

Observation 6 Conflict paths allow building a list of priori-

ties that must be respected. Consider a C-conflict path

such that relations z1 z2ð Þ; z2 z3ð Þ hold. Proposition 1 allows

us to state that both paths of vehicles z1 and z2 contain at

least a node of column r z1ð Þ and that both paths of

vehicles z2 and z3 contain at least a node of column r z2ð Þ.
Proposition 1 follows that the first node of column r z1ð Þ
belonging to the path of z1 must be located on hz1

[ h0z2
,

where h0z2
is the level of the last node of column r z1ð Þ

belonging to the path of z2.

Similarly, the first node of column r z2ð Þ belonging to the

path of z2 must be located on a level hz2
[ h0z3

, where h0z3
is the

level of last node of column r z2ð Þ belonging to the path of z3.

Obviously, it is hz2
� h0z2

. Indeed, column r z1ð Þ must be

located between z2 and r z2ð Þ. As a consequence, when z2

reaches the node h0z2
; r z1ð Þ

� �
, two are the cases: if z2 does not

perform any vertical steps in the section of its paths from

column r z1ð Þ to column r z2ð Þ, then it must be hz2
¼ h0z2

.

Otherwise, i.e. if z2 performs one or more vertical steps in such

a section, it must be hz2
¼ h0z2

.

Thus, referring to a conflict path whose length is k, called hzi
the level of first node of column r zið Þ belonging to the path of

zi and h0zi the level of the last node of column r zi�1ð Þ belonging

to the path of zi the following relations hold:

hzi [ h0ziþ1
i ¼ 1; . . .; k

hzi � h0zi i ¼ 2; . . .; k þ 1

These relations represent a list of priorities that must be

respected (in order to find a feasible solution to FQRP).

Observation 7 k þ 1 levels are sufficient to route the vehicles

belonging to a conflict path whose length is k.

Indeed, these k þ 1 vehicles could be routed using a very

simple rule: each vehicle performs all its horizontal steps on

one and only one level (opportunely chosen respecting the

previously shown list of priorities) and each level allows

performing its horizontal steps to one and only one of these

vehicles. The result is an 1-1 assignment of vehicles to levels,

so that k þ 1 levels are required and sufficient. Note that the

spirit of the previous rule is quite similar to the one of the

DAs: in both vehicles performs all their horizontal steps on

one and only one level and each level allows movement in one

direction only. These rules imply that hzi ¼ h0zi for each i.

Then, we could write the second relation shown in Observation

6 as follows:

hzi [ hziþ1
i ¼ 1; . . .; k

i.e. if each vehicle performs all its horizontal steps on one and

only one level and each level allows movements in one

direction only, zkþ1 levels are necessary and sufficient to route

all vehicles belonging to a conflict path whose length is k.

Finally, Proposition 2 states a general property of conflict

paths.

Proposition 2 Given a path z1 z2ð Þ; z2 z3ð Þ; . . .; zk zkþ1ð Þ, the

distance zkþ1 � zkj j is higher than the distance between

σ(j) σ(i)

ji

Figure 2 An example of C-type conflict.
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any other couple of vehicles belonging to the conflict

path.

Proof Assume that zi � r zið Þ\0 if i is odd and zi �
r zið Þ[ 0 otherwise. Then it must be:

r z1ð Þ[r z2ð Þ
r z2ð Þ\r z3ð Þ
r z3ð Þ[r z4ð Þ
r z4ð Þ\r z5ð Þ

. . .

where the last inequality is r zk�1ð Þ[ r zkð Þ if k is even

and it is r zk�1ð Þ\r zkð Þ otherwise.

Remembering that in the considered path

r zið Þ ¼ ziþziþ1

2
, substituting such values in the previous

inequalities we obtain:

zk\ � � �\z5\z3\z1 and z2\z4\z6\ � � �\zkþ1

if k is even, and

zkþ1\ � � �\z5\z3\z1 and z2\z4\z6\ � � �\zk

otherwise.

Since z1 z2ð Þ and z1 2 R1, it must necessarily be z1\z2.

As a consequence, it will be:

zk\ � � �\z5\z3\z1\z2\z4\z6\ � � �\zkþ1

if k is even, and

zkþ1\ � � �\z5\z3\z1\z2\z4\z6\ � � �\zk

if k is odd. Note that zk and zkþ1 are, respectively, the

leftmost and rightmost elements in the first case and the

rightmost and leftmost elements in the second case. This

proves the thesis. To prove the other case, i.e. when zi �
r zið Þ[ 0 if i is odd and zi � r zið Þ\0 otherwise, it is

sufficient to repeat the above-mentioned procedure con-

sidering that all the inequalities that holds in the previous

case are reversed. h

Corollary 1 A conflict path whose length is k needs at least

zkþ1 � zkj j þ 1 columns to exist.

5. The relation between the length of the C-conflict path
and number of vehicles in the graph

In this section, we establish the relation between the length k of

a conflict path and the minimum number of columns (and,

consequently, vehicles) needed to guarantee the existence of

such a path, i.e. z1ðz2Þ; z2ðz3Þ; . . .; zk zkþ1ð Þ. In other words, with

regard to all possible permutations which contain a conflict

path whose length is k, we find the number of columns of the

permutation composed by the minimum number of vehicles.

Then, to find such a number, which we shall call nmin, we

solve the following problem:

min
R kð Þ

zkþ1 � zkj j þ 1f g

where zkþ1 � zkj j þ 1 is the number of column needed to a

conflict path whose length is k to exist (see Corollary 1) and

R kð Þ is the set of all permutations which contain a k length

conflict path. Consequently, nmin is the value of the objective

function in correspondence of an optimal solution.

Proposition 3 allows decomposing objective function of the

previous problem in a very useful way.

Proposition 3 Consider a conflict path whose length is k.

Then, the following holds:

zk � zkþ1j j ¼ 2 z1 � r z1ð Þj j þ
Xk�1

i¼1

r zið Þ � r ziþ1ð Þj j
 !

Proof In the following, without loss of generality, we assume

that zi � r zið Þ\0 if i is an odd number, while it will be

zi � r zið Þ[ 0 otherwise. First, we prove the proposition

assuming k an odd number.

In this case, zk � zkþ1j j ¼ zkþ1 � zk, and keeping in

mind:

zhþ1 � zh ¼ 2 r zhð Þ � zh½ �; 8h;

we can write:

zkþ1 � zk ¼ 2 r zkð Þ � zk½ �
¼ 2 r zkð Þ � zk þ zk�1 � zk�1 þ zk�2 � zk�2½
þ � � � þ z2 � z2 þ z1 � z1�

¼ 2 r zkð Þ � r zk�1ð Þð Þ þ r zk�2ð Þ � r zk�1ð Þð Þ½
þ � � � þ r z1ð Þ � r z2ð Þð Þ þ r z1ð Þ � z1ð Þ�

Since k is odd, and given that zi 2 R1 if i is an odd

number while it belongs to L1 otherwise, it must be:

r z1ð Þ[r z2ð Þ; r z3ð Þ[r z2ð Þ; r z3ð Þ[r z4ð Þ; . . .; r zkð Þ[r zk�1ð Þ

As a consequence, all the terms inside round brackets

are positive and this proves the thesis.

When k is even, the proof is quite similar.

The other case, i.e. when we have zi � r zið Þ[ 0 if i is

an odd number and zi � r zið Þ\0 otherwise, can be proved

with analogous considerations. h

Observation 8 Proposition 3 shows that zk � zkþ1j j is a

strictly increasing function of both the sum of the dis-

tances between destinations of two consecutive vehicles
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in the conflict path, i.e.
Pk�1

i¼1

r zið Þ � r ziþ1ð Þj j, and the

number of horizontal steps of vehicle z1. This leads to two

considerations. First, rather than minimizing jzk � zkþ1j,
we can minimize the right-hand side of equation in

Proposition 3. Second, to minimize z1 � r z1ð Þj j is trivial,

since the minimum number of horizontal steps of a vehicle

is 1 and it is equivalent to state that z1 � z2j j ¼ 2. Such a

value represents the minimum distance between vehicles

that can be involved in a conflict path whose length is 1, i.e.

nmin ¼ 3; when k ¼ 1. It follows that if z1 moves towards

the right, then z2 ¼ z1 þ 2. Otherwise it will be

z1 ¼ z2 � 2. Note that minimizing such a distance does not

affect the minimization of
Pk�1

i¼1 r zið Þ � r ziþ1ð Þj j.

Once proved that finding nmin when k ¼ 1 it is quite trivial, in

the following we focus on k� 2 assuming that z1 � r z1ð Þj j ¼ 1.

Then we will proceed as follows: first, we define a new problem

which is equivalent to min zkþ1 � zkj j þ 1. Second, in Proposi-

tions 4 and 5 we describe properties that allow identifying

whether a solution of such a new problem is optimal.

Proposition 6 shows the existence, for each k, of a solution

that has such properties.

In order to get nmin, we solve the problem consisting in the

determination of k different destinations of vehicles, i.e.

r zið Þ; i ¼ 1; . . .; k, which do not overlap and minimize the

following:

zk � zkþ1j j ¼ 2
Xk�1

i¼1

r zið Þ � r ziþ1ð Þj j þ 1

 !

ð1Þ

For the sake of simplicity, we will use the notation

Di ¼ r zið Þ � r ziþ1ð Þj j.
In this way, the problem of finding the minimum number of

columns that allows a k length conflict path is equivalent to

find an 1-1 assignment of k vehicles to k destinations for which

is a minimum the quantity:

Xk�1

i¼1

Di ð2Þ

Note that, when k ¼ 2 the problem is trivial, since we must

find the min value of D1, subject to the constraint of D1 � 1, in

order to avoid that r z1ð Þ ¼ r z2ð Þ: consequently, the optimal

solution, when k ¼ 2, is D1 ¼ 1.

Observation 9 In the following propositions, when we make

a statement regarding the destinations of the vehicles in a

conflict path, we assume given an assignment (obviously

without overlapping) of the destinations of vehicles not

belonging to the conflict path to the remaining columns.

Proposition 4 In the solution that minimizes (2), the desti-

nations r zið Þ; i ¼ 1; . . .; k, of the vehicles involved in a

conflict path of length k, must be located in a subset of

adjacent columns of the graph.

Proof Assume that in a feasible solution exist two vehicles

destinations r zið Þ and r zj
� �

situated in two non-adjacent

columns, i.e. r zið Þ ¼ p and r zj
� �

¼ pþ q, with q� 2 and

assume also that columns pþ 1; pþ 2; . . .; pþ q� 1 are

not destinations of any one of the vehicles involved in the

conflict path.

For the sake of simplicity, we call U ¼ pþ 1; pþf
2; . . .pþ q� 1g the set of these adjacent columns.

From the assumptions, it follows that it must exist at

least an integer h, 1� h� k � 1, such that the columns of

the set U are located between destinations of two con-

secutive vehicles r zhð Þ and r zhþ1ð Þ: if not, the hypothesis

is denied, since all destinations of vehicles would be

necessarily on the same side of U. Thus, we can move

towards left, of q� 1 steps, all the destinations situated on

columns whose index is at least pþ q. Such movement

reduces of q� 1 units the distance between two consec-

utive vehicles that are separated by U and does not affect

the other distances between consecutive vehicles belong-

ing to the conflict path. It follows that any solution in

which destinations of vehicles belonging to conflict path

are not located in a subset of adjacent columns of the

graph is not optimal. h

Now let us denote with wk ¼
Pk�1

i¼1 Di and

w�
k ¼ min

Pk�1
i¼1 Di, respectively, the value of (2) in cor-

respondence of a generic feasible solution—not neces-

sarily the optimal one—and its optimal value when the

path length is k. Proposition 5 holds.

Proposition 5 For any value of k, the following relation

holds:

w�
k � w�

k�1 � 2 ð3Þ

Proof Consider a k-length C-conflict path, i.e. z1 z2ð Þ;
z2 z3ð Þ; . . .; zk zkþ1ð Þ. From Proposition 4, it follows that the

destinations of such vehicles will identify a subset of k

adjacent columns of the graph. Assuming that zi � r zið Þ\
0 if i is odd, while it will be zi � r zið Þ[ 0, a feasible

solution of (1) must respect the following inequalities:

r z1ð Þ[ r z2ð Þ
r z2ð Þ\r z3ð Þ
r z3ð Þ[ r z4ð Þ
r z4ð Þ\r z5ð Þ

. . .

where the last inequality is r zk�1ð Þ[ r zkð Þ if k is even

and it is r zk�1ð Þ\r zkð Þ otherwise.

Given an optimal solution, i.e. the permutation of k

destinations of vehicles belonging to the conflict path that

minimizes the (1) considers in it the position of r zkð Þ: We

have two cases: either r zkð Þ is inner in the permutation,

i.e. relation r zið Þ\r zkð Þ\r zj
� �

holds, or r zkð Þ is the

extremity of the permutation, i.e. either r zið Þ\r zkð Þ or
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r zið Þ[r zkð Þ, i ¼ 1; . . .; k � 1 holds. In every case, if we

delete r zkð Þ from the solution (and we delete also k�1 from

the objective function) the remaining destinations of the

vehicles z1; z2; . . .; zk�1 give a feasible solution of the

problem related to a path of k � 1 conflicts. Let us con-

sider separately the two cases.

In the first case, r zkð Þ is inner in the permutation, i.e.

relation r zið Þ\r zkð Þ\r zj
� �

holds for some zi and zj

belonging to the conflict path. Then, the elimination of

r zkð Þ has two effects.

The first one is the reduction in the value of (2) in the

case the path length is k � 1 of at least one unit. Such a

reduction is due to the elimination from the objective

function of the addend Dk�1.

The second effect is the creation of an empty space

between destinations of the remaining k � 1 vehicles. As a

consequence, it is possible to fill such a space (see Propo-

sition 4) in order to get adjacent destinations of vehicles

belonging to the conflict path with a reduction in the

objective function of at least one unit and relation (3) holds.

In the second case, when r zkð Þ is the extremity of the

permutation, as said before, either r zið Þ\r zkð Þ or r zið Þ[
r zkð Þ, i ¼ 1; . . .; k � 1 holds. The first situation is possible

only when k is even, while the second one is possible only

when k is odd. Assume that r zkð Þ is the leftmost destination

of the permutation, i.e. that k is even. Then, it must be:

r zkð Þ\r zk�1ð Þ; r zk�2ð Þ\r zk�1ð Þ

In order to satisfy the set of inequalities that describe a

feasible solution, it must be Dk�1 ¼ r zkð Þ � r zk�1ð Þj j � 2.

Indeed, if Dk�1 ¼ 1, it would be r zkð Þ adjacent to r zk�1ð Þ,
and the only possible destination r zk�2ð Þ available for

vehicle zk�2 would be on the left of r zkð Þ. This would

contradict the hypothesis r zið Þ[r zkð Þ; i ¼ 1; . . .; k � 1.

In this way, analogously to the procedure in Case a),

we get a feasible solution for (1) when the length of the

conflict path is k � 1, through the elimination of r zkð Þ
(and of the correspondent variable Dk�1) from the optimal

solution of the conflict path whose length is k. It follows

that the value of (2) for the k � 1 case in correspondence

of the feasible solution obtained in this way is reduced of

at least two units:

wk�1 �w�
k � 2:

A fortiori it will be:

w�
k�1 �wk�1 �w�

k � 2:

When k is odd and r zkð Þ is at the right extremity of the

permutation, it must be:

r zk�1ð Þ\r zk�2ð Þ; r zk�1ð Þ\r zkð Þ

and very similar considerations prove that (3) holds.

The proof is quite similar when zi � r zið Þ[ 0 if i is

odd and zi � r zið Þ\0 otherwise. h

Observation 10 Consider wk; i.e. the value of (2) in corre-

spondence of a feasible solution—not necessarily the

optimal one—when the conflict path length is k.

As a consequence of Proposition 5, if wk � w�
k�1 ¼ 2;

then wk ¼ w�
k . In other words, if wk � w�

k�1 ¼ 2, then wk is

an optimal solution of min
Pk�1

i¼1 Di.

Since, as said, w�
2 ¼ 1, for values of k� 2 it must be

w�
k ¼ 2k � 3. Substituting this value in (1) we obtain:

zk � zkþ1j j ¼ 2 1 þ 2k � 3ð Þ ¼ 4 k � 1ð Þ;

that gives the (minimum) highest distance between vehicles

belonging to the conflict path as a function of its length.

Proposition 6 A feasible solution such that wk ¼ w�
k�1 þ 2 ¼

2k � 3 exists 8k� 2.

Proof Consider a conflict path whose length is k, i.e. z1 z2ð Þ;
z2 z3ð Þ; . . .; zk zkþ1ð Þ. In what follows we assume that zi �
r zið Þ\0 if i is odd, while it will be zi � r zið Þ[ 0 otherwise.

We distinguish the case in which k is even and the case

in which k is odd. Note that in both cases, the exact

destination of the vehicle zkþ1, which do not belong to the

conflict path, is irrelevant, provided that either r zkþ1ð Þ[
r zkð Þ if k is even or r zkþ1ð Þ\r zkð Þ if k is odd.

When k is even, then, as a consequence of the existence

of a conflict path, it must be:

r z1ð Þ[ r z2ð Þ
r z2ð Þ\r z3ð Þ
r z3ð Þ[ r z4ð Þ

. . .
r zk�1ð Þ[r zkð Þ

Then, consider the following permutation of destinations:

r z2ð Þ; r z1ð Þ; r z4ð Þ; r z3ð Þ; . . .; r zkð Þ; r zk�1ð Þ:

The corresponding values of Di are Di ¼ 1; i ¼ 1; 3;

5; . . .; k � 1, and Di ¼ 3; i ¼ 2; 4; 6; . . .; k � 2. Their

sum is equal to 2k � 3. When k is odd, then it must be:

r z1ð Þ[ r z2ð Þ
r z2ð Þ\r z3ð Þ
r z3ð Þ[ r z4ð Þ

. . .
r zk�1ð Þ\r zkð Þ

Then consider the following permutation of destinations:

r z2ð Þ; r z1ð Þ; r z4ð Þ; r z3ð Þ; . . .; r zk�1ð Þ; r zk�2ð Þ; r zkð Þ

The corresponding values of Di are Di ¼ 1; i ¼ 1; 3;

5; . . .; k � 2, Di ¼ 3; i ¼ 2; 4; 6; . . .; k � 3 and Dk�1 ¼ 2.

The sum of these values is equal to 2k � 3. h
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Observation 11 Proposition 6 states the existence of an

optimal solution but not necessarily it is unique. Indeed,

in the other case, i.e. when zi � r zið Þ[ 0 if i is odd, and

zi � r zið Þ\0 otherwise, there may be other feasible

solutions but, as Proposition 5 states, they cannot be better

than the one presented in the proof of Proposition 6.

So, it is possible now to establish the relation between

the minimum number of columns needed to the existence

of a conflict and its length: recalling that nmin ¼ min
R kð Þ

zkþ1 � zkj j þ 1f g, with min
R kð Þ

zkþ1 � zkj j ¼ 4 k � 1ð Þ, k� 2,

and with min z2 � z1j j ¼ 2; we can conclude that:

nmin ¼ 4k � 3 k� 2

3 k ¼ 1

�

6. The computation of the number of levels that ensure
the existence of a solution to any instance of FQRP
involving n vehicles

In this paragraph, we determine the number of levels that

ensure the existence of a solution to any possible permutation

of vehicles destinations when the value of n is fixed. In order

to do so, we firstly prove that, given n, the length of the longest

C-type conflict path can be computed in advance. The

following proposition provides the relation between n and

such a length.

Proposition 7 The length of the longest C-type conflict path

in a graph m� n, which we shall call kmax, is:

kmax ¼ 1 þ int
n� 1

4

� �

if n� 3

0 Otherwise

8
<

:

where int xð Þ is the integer part of x.

Proof The result is immediately deducible considering that:

nmin ¼ 4k � 3 k� 2

3 k ¼ 1

�

h

If the maximum possible length of a conflict path having n

vehicles is known, we can also determine the number of levels

that ensure the existence of a solution to any instance of FQRP

involving n vehicles. We call such a number m�, as the

following proposition states.

Proposition 8 A solution to FQRP for any possible permu-

tation of n destinations r ¼ r 1ð Þ; r 2ð Þ; . . .; r nð Þ can be

found in a graph composed of at most m� levels, where:

m� ¼ kmax þ 2

Proof We can distinguish two cases: 1� n� 2 and n� 3.

In the first case, all the permutations of destinations do

not allow the existence of A-type conflicts and C-type

conflicts, i.e. kmax ¼ 0. In particular, when n ¼ 1 we have

only one vehicle that belongs to set H. When n ¼ 2, if

both vehicles do not belong to set H, the leftmost vehicle

belongs to set R1 while the other belongs to L1.

In such a case, we can route all vehicles using two

levels. Indeed, if the two vehicles perform all their hori-

zontal steps on different levels, they will never enter into

conflict. Note that in such a case permutations of desti-

nations exclude the occurrence of an A-type conflict. This

proves the thesis in the first case.

When n� 3, we can have no C-type conflicts as well as

one or more than one conflict path, whose length is at

most kmax.

In the absence of C-type conflicts, it is possible once

more to route all vehicles using two levels: we could force

vehicles belonging to a set (equivalently, R1 or L1) to

perform all their horizontal steps on the first level while

other vehicles perform all their horizontal moves on the

second level. The use of such a routing rule always

ensures to avoid the occurrence of any kind of conflict.

Arc and B-type conflict occurrences are avoided due to the

assignment to different levels of vehicles that must move

in opposite directions (see Observation 3). Any possible

A-type conflict is avoided (remember: when n� 3),

because m� � 3 and there is not a vehicle which must

perform its horizontal steps on level m�. This proves the

thesis when n� 3 and kmax ¼ 0.

Alternatively, as said, we can find one or more than one

conflict paths whose length is kmax.

In order to take advantage of Observation 7, in the

following part of the proof we will assume that each

vehicle performs all its horizontal steps on one and only

one level. This implies that it must be hzi [ hziþ1
for each

vehicle belonging to a given conflict path. Then, as a

consequence, kmax þ 1 levels should be used to route these

vehicles. The relaxation of such hypothesis implies that it

could be used a number of levels lower than m�: a fortiori

the thesis is proved.

Now, consider an instance in which we have two

conflict paths both of maximum length, i.e. z01 z02
� �

; z02 z03
� �

;

. . .; z0kmax
z0kmaxþ1

� �
and z001 z002

� �
; z002 z003
� �

; . . .; z00kmax
z00kmaxþ1

� �
.

We must distinguish, once more, two cases.

The first one arises when z01 and z001 must move hori-

zontally on the same direction. In this situation, the

vehicles of the two conflict paths can be grouped in the

following way: vehicles z0kmaxþ1 and z00kmaxþ1 perform all

their horizontal steps on the first level (possibly, together

with other vehicles that do not belong to any conflict

path), vehicles z0kmax
and z00kmax

do all their horizontal steps
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on the second level and so on. The last group is com-

posed by vehicles z01 and z001 that are forced to make all

their horizontal steps on level kmax þ 1, while all the other

vehicles make all their horizontal moves on a level lower

than kmax þ 1. It follows that, since m� ¼ kmax þ 1, vehi-

cles z01 and z001 are the only vehicles forced to move hor-

izontally on the last level and an A-type conflict may

occur. On the contrary, vehicles z01 and z001 cannot be

involved in an A-type conflict, since they belong to a

conflict path whose length is kmax and, as a consequence,

it must be:

z01 � r z01
� �	

	
	
	 ¼ z001 � r z001

� �	
	

	
	 ¼ 1 ð4Þ

It follows that we cannot have a vehicle j such that:

z01\j�r jð Þ\r z01
� �

or z001\j�r jð Þ\r z001
� �

ð5Þ

because relations (4) and (5) cannot hold at the same time.

The second case arises when z01 and z001 must move

horizontally on opposite directions: grouping vehicles as

in the previous case will make the occurrence of arc

conflicts and B-type conflicts possible.

Then, one solution is to force vehicle z00kmaxþ1 and

vehicle z0kmaxþ1 (grouped with z00kmax
) to perform all their

horizontal steps, respectively, on the first and on the

second level.

The other solution is allowing vehicle z0kmaxþ1 to make all

its horizontal steps on the first level and vehicle z00kmaxþ1 (and

z0kmax
) on the second level. As a consequence, either vehicle

z01 or z001 will perform all its horizontal steps on level

kmax þ 2. As said, they cannot be involved in A-type con-

flicts, since (4) and (5) should hold at the same time and this

is not possible. This proves the thesis when n� 3 and

kmax [ 0.

So, in general, in order to guarantee the existence of a

solution to FQRP in any possible permutation of n desti-

nations, at least kmax þ 2 levels are needed. h

Corollary 2 m� levels are necessary and sufficient to find a

solution to any possible instance of FQRP involving n

vehicles when they perform all their horizontal steps on

one and only one level (i.e. when hzi ¼ h0zi i ¼ 2; . . .; k þ 1)

and each level allows movements in one direction only.

Observation 12 Note that m� �m�
DA, for n[ 1. Indeed,

consider that m�
DA ¼ n and that the following holds:

m� ¼ int
n� 1

4

� �

þ 3 n� 3

2 Otherwise

8
<

:

In particular, note that the difference m�
DA � m�, namely the

number of levels that can be saved with respect to previously

provided solutions, is an increasing function of the number of

vehicles n.

7. Solving FQRP in a graph m* 3 n

In the previous section, we provided m*. As shown in

Observation 12, the higher is the number of vehicles involved

in the instance, the higher is the number of levels that could be

saved with respect to solution provided by DA (for example,

see the next section). In this section, in order to find a FQRP

solution, we provide an algorithm (CaR) to classify vehicles in

subsets and route them in a graph m* 9 n, assuming as input

the destinations of n vehicles, i.e. r ¼ r1; r2; . . .; rn.

Routes we will find have some features in common with

other algorithms that have been proposed (i.e. DA): we will

force vehicle to perform all their horizontal steps on the

same level and each level allows movements in one direction

only.

These features, rather than being hypotheses, are a choice due

to several reasons: first, they represent a link to previous works

allowing a direct comparison with existing solutions; second,

they allow taking advantage of Observation 3, i.e. they permit to

ignore research of arc type and B-type conflicts in the instance

we face; third, solution is made of very simple path: a feature that

could be useful for large vehicles, as aircraft are. Algorithm CaR

is composed of two procedures: P1 and P2. P1 starts from sets

R1; L1,R2 and L2 and determines a finite sequence of subsets

that are used as input in the second procedure, P2, which aim is

the assignment of one or more vehicles to a suitable level.

After the level assignment, the routing rule is very simple: if

vehicle i is assigned to level hi, then i starts moving vertically

from the first level. Once level hi, is reached, i performs all its

horizontal steps on level hi. Then, when i reaches column r ið Þ
moving along level hi, it moves again vertically, until it

reaches its destination on level m�. Obviously, if hi ¼ 1,

vehicle i starts moving horizontally on the first level and it

performs all its vertical steps on arcs of column r ið Þ.
Furthermore, if i 2 H, it has only vertical steps to perform

and such assignment is irrelevant. Procedure P1 follows.

Procedure P1 to assign vehicles to subsets

Begin:

R1 ¼ vehicles ijr ið Þ[ if g
L1 ¼ vehicles ijr ið Þ\if g
R2 ¼ vehicles i 2 R1; such that i jð Þwith j 2 L1f g
L2 ¼ vehicles i 2 L1; such that i jð Þwith j 2 R1f g
Step 1 if both R2 and L2 are empty then STOP. Otherwise

put s ¼ 2 and go to step 2.

Step 2 Put in set Rsþ1 each vehicle i 2 Rs such that i jð Þ,
j 2 Ls. Go to step 3.

Step 3 Put in set Lsþ1 each vehicle i 2 Ls such that i jð Þ,
j 2 Rsþ1. Go to step 4.

Step 4 if both Rsþ1 and Lsþ1 are non-empty, then s ¼ sþ 1

and return to step 2. Otherwise STOP.

Note that such a procedure starts from sets R1, L1, R2 and L2.

These last two subsets are composed of all vehicles that are
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subjected to a C-type conflict and must move, respectively,

towards right and towards left. Then, later, the procedure

iteratively finds sets, obtained starting from R2 and L2, that

share the following features 8s� 2 :

• Rsþ1 contains vehicles belonging to Rs that must perform

their horizontal steps on a level higher than the level used

by at least one vehicle belonging to Ls.

• Lsþ1 is composed of vehicles belonging to Ls that must

perform their horizontal steps on a level higher than the

level used by at least one vehicle belonging to Rsþ1.

Note that if Rsþ1 ¼ ;, then necessarily it must be Lsþ1 ¼ ;.

Then, when the procedure stops, two are the possibilities:

Rsþ1 6¼ ; and Lsþ1 ¼ ; or Rsþ1 ¼ ; and Lsþ1 ¼ ;. In the

following, we will call �k the highest index such that R�k 6¼ ;.

Proposition 9 The following relations hold:

Rsþ1 	 Rs

Lsþ1 	 Ls

for each s.

Proof To prove the relations when s ¼ 1, remember that we

explicitly consider not decomposable problems (see sec-

tion first): it follows that vehicles 1 and n cannot belong to

H. As a consequence, it must necessarily exist vehicles

i 2 R1 and j 2 L1 such that r ið Þ ¼ 1 and r jð Þ ¼ n. Vehicle i

cannot be subjected to C-type conflicts, since there is not a

vehicle u\r ið Þ, and vehicle j cannot be subjected to C-type

conflicts, since there is not a vehicle v[ r jð Þ. Then, at

least one vehicle belonging to the set R1 does not belong to

R2 and at least a vehicle belonging to the set L1 does not

belong to L2. This way, the relations are verified for s ¼ 1.

To prove these relations when s� 2 consider that, by

definition, vehicles belonging to, respectively, Rsþ1 and

Lsþ1, are also elements of Rs and Ls. Then Rsþ1 
 Rs and

Lsþ1 
 Ls. To prove that Rsþ1 is a proper subset of Rs,

assume that Rsþ1 ¼ Rs. This implies that if we arbitrarily

chose a vehicle i 2 Rsþ1 it must exist a vehicle j 2 Ls with

i jð Þ. If j 2 Ls, and Rsþ1 ¼ Rs, then it must exist a vehicle

g 2 Rsþ1 such that j gð Þ. In turn, it must exist a vehicle

p 2 Ls such that g pð Þ, and so on, until, due to the finite

number of vehicles, we will find a vehicle q 2 Ls such that

q ið Þ. The resulting conflict graph will contain a circuit, but

this is not possible since conflict graph is always a family

of arborescences. Similar considerations prove that

Lsþ1 	 Ls. h

Observation 13 From Proposition 9, it follows that the fol-

lowing relation holds:

Rsj j þ Lsj j[ Rsþ1j j þ Lsþ1j j ð6Þ

Proposition 10 The following relation holds:

�k� n� 3

2

Proof Consider relation (6), assume w.l.o.g. that set H is

empty and that the quantity Rsj j þ Lsj j � Rsþ1j j � Lsþ1j j is

as smaller as possible for each value of s, i.e.

Rsj j þ Lsj j ¼ Rsþ1j j þ Lsþ1j j þ 2.

As a consequence, it will be R1j j þ L1j j ¼ n,

R2j j þ L2j j ¼ n� 2, R3j j þ L3j j ¼ n� 4 and, in general,

Rsj j þ Lsj j ¼ n� 2 s� 1ð Þ. Since by definition R�k 6¼ ;, it

must be R�kj j þ L�kj j � 1, then n� 2 �k � 1ð Þ� 1, i.e.
�k� n�3

2
. h

The main feature of procedure P1 is that it allows to order

sets according to the list of priorities (see Observation 6 and

Observation 7). In order to show this feature, consider the

general case in which the procedure finds 2�k, �k� 2 non-empty

sets: R1; L1;R2; L2; . . .;R�k; L�k.

Consider now L�k:By definition it is the set of vehicles that are

subject to C-type conflict with at least one vehicle belonging to

R�k, i.e. vehicles of L�k must move on a level higher than the level

used by vehicles of set R�k. As a consequence, vehicles of set R�k

must move horizontally on a level such that is both lower than

the level used by vehicles of set L�k and higher than the level used

by at least one vehicle of set L�k�1.

Considering that L�k 	 L�k�1, it follows that vehicles of set R�k

must move horizontally on a level higher than the level used

by some vehicles of L�k�1 and lower than the level used by the

remaining vehicles of L�k�1.

As a consequence, if vehicles of set L�k move horizontally on

level m� � 1 (remember that, in order to avoid A-type conflict,

there is not a vehicle moving horizontally on level m�)

vehicles of set R�k must move horizontally on level m� � 2.

Then, the set of vehicles that must move on level m� � 3 is

L�k�1nL�k, i.e. the set of vehicles belonging to L�k�1 that must not

move on a level higher than m� � 2. Similar considerations

hold with respect to other levels: the set of vehicles that must

move on level m� � 4 is R�k�1nR�k, while vehicles of set

L�k�2nL�k�1 move horizontally on level m� � 5, and so on.

Note that such a hypothetical assignment would require 2�k

levels and, in particular, we would assign the second and the

first level to, respectively, vehicles of set L1nL2 and R1nR2 to

move horizontally.

Note also that vehicles of sets R1nR2 and R2nR3 can move

without conflicts on the same level and one level can be saved

through the merging of these sets, i.e. forcing sets R1nR2 and

R2nR3 to move horizontally on the same level. This implies

that, in such a case, 2�k � 1 levels are required.

Observation 14 Note that, due to the relation Rsþ1 	 Rs

between the sets found by the procedure, we have

R1nR3 ¼ R2nR3 [ R1nR2, where the set R1nR2 is the set of

vehicles that must move towards right and that are not
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subjected to C-type conflict and R2nR3 is the set of

vehicles that must move towards right and must perform

their horizontal steps on a level that is higher than the

level used by vehicles of L1 (see the above-mentioned

features of sets) and lower than the level used by vehicles

of L2.

Finally, note that, since set R1nR3 contains vehicles

subjected to C-type conflicts, it must be assigned to a level

higher than the level assigned to set L1nL2.

Procedure P1 assigns vehicles to subsets. The following

procedure P2 assigns vehicles to levels on the basis of the sets

defined by the procedure P1 with respect to the list of

priorities inherently present in sets found by procedure P1.

Note that the use of P2 can be avoided when �k ¼ 1 (see proof

of Proposition 8).

Then, in the following procedure that assumes as input

subsets defined using the procedure P1, we assume that �k� 2.

Procedure P2 to assign subsets to levels.

Begin:
p ¼ 2�k � 1:

Step 1 Assign to level p vehicles belonging to set Lpþ1
2
nLpþ3

2
.

if p ¼ 1 STOP, otherwise go to step 2.

Step 2 if p 6¼ 3 assign to level p� 1 vehicles belonging to

set Rpþ1
2
nRpþ3

2
. Otherwise assign to level 2 vehicles belonging

to set R1nR3. Go to Step 3).

Step 3 p ¼ p� 2 and return to step 1.

The procedure P2 starts defining the value of a parameter p.

Such a parameter can be interpreted as the highest level in

which a vehicle performs its horizontal steps and, as already

said, the number of levels required is at most 2�k � 1 due to the

merging of vehicles of sets R1nR2 and R2nR3 that move

horizontally on the same level.

Finally, note that the number of iterations in the second

procedure P2 is always equal to �k.

8. Complexity issues

Proposition 11 Algorithm CaR gives in polynomial time O

n3ð Þ a solution of FQRP.

Proof Remember that CaR consists in two procedures, P1 and

P2. In the first one, the partition of vehicles in the two

subsets R1 and L1 requires O nð Þ comparisons. The con-

struction of R2 and L2, i.e. the recognition of C-type

conflicts, can be made in O nð Þ operations (see Observation

4). The following construction of each one of the sets R3,

L3, etc. requires at most n2 comparisons. Generally

speaking, in order to construct Rsþ1 we must consider each

vehicle i 2 Rs (set Rs contains less than n vehicles), then

consider the vehicle j with whom i is subject to C-type

conflict and verify whether vehicle j belongs to Ls: this can

be done with O nð Þ comparisons. Analogous considerations

hold for the construction of set Lsþ1. Being 2 �k the number

of such sets, and remembering that �k� n�3
2

, this phase

(Procedure P1) requires O n3ð Þ comparisons. Finally, the

assignment of vehicles to levels (Procedure P2) can be

made in O n2ð Þ operations. From a practical point of view,

we can build two 0-1 matrices, which we shall call MR and

ML. In both of them we have n columns (one column for

each vehicle) and �k levels. In MR, element aij ¼ 1 iff

vehicle j belong to set Ri; otherwise the value is 0. Anal-

ogously in ML, where element aij ¼ 1 iff vehicle j belong

to set Li; otherwise the value is 0. MR and ML can be

constructed in P1. In both the matrices, all nonzero ele-

ments, if any, are at the top of eachcolumn.

If we take the sum of all level vectors in MR (and anal-

ogously, in ML), we get a vector v which contains, for each

vehicle j j ¼ 1; 2; . . .; nð Þ, the maximum index of the setsRi;

which contain j. In other words, if
P

i aij ¼ h, then the

vehicle j belongs to sets R1;R2; . . .;Rh; but does not belong

to sets Rhþ1;Rhþ2; . . .;R�k. In this way, all the vehicles for

which the sum of the elements in their column is h belong to

the set RhnRhþ1. This allows assigning them to the same

level (following the rules already stated). Provided that the

number of levels in MR and ML is equal to O nð Þ; the

number of sums we must calculate is O n2ð Þ. h

Observation 15 The complexity of CaR is heavier than the one

of the DA. In this way, using fewer levels than DA requires

a fee, in terms of higher computational effort, to be paid.

Example Let us suppose we have 29 vehicles, so m� ¼ 10.

The starting permutation is the identical one. The per-

mutation of destinations is:

r ¼ 29; 12; 3; 6; 4; 7; 2; 8; 11; 9; 13; 14; 21; 27; 1; 5;ð
19; 15; 10; 28; 22; 16; 23; 20; 25; 26; 18; 17; 24Þ

The sets H, R1, L1 are:

H ¼ 3; 8; 23; 25; 26f g;

R1 ¼ 1; 2; 4; 5; 9; 10; 15; 16; 17; 18; 20; 24f g;

L1 ¼ 6; 7; 11; 12; 13; 14; 19; 21; 22; 27; 28; 29f g:

The application of P1 leads to the following sets:

R2 ¼ 1; 2; 4; 5; 9; 15; 16; 20f g;

L2 ¼ 6; 7; 14; 19; 21; 22; 27f g;

R3 ¼ 15; 5; 4f g;

L3 ¼ 7; 19; 21f g;

1374 Journal of the Operational Research Society Vol. 68, No. 11



R4 ¼ 15f g;

L4 ¼ 19f g:

The assignment of the vehicles to levels, due to the application

of P2, is given in Table 1. Note that levels 8, 9 and 10 are not

traversed by vehicles moving horizontally.

9. Number of levels necessary to DA to solve FQRP:
an empirical comparison

In this section we show that the number of levels needed by

DA can be higher than m�.

Consider the following instance in which we have 13

vehicles, so m� ¼ 6: The starting permutation is the identical

one. The permutation of destinations is: r ¼ 13; 9; 8; 6; 4; 3;ð
5; 2; 11; 1; 7; 10; 12Þ:

In order to show DA results, we need to make some

specifications. DA forces movements in a particular way: even

(odd) levels allow horizontal movements to the right and odd

(even) levels allow horizontal movements to the left. Once the

direction allowed by even (odd) levels is chosen, a key role is

played by a threshold parameter which is called Kt and is

defined as the maximum horizontal distance at time t of

‘discordant’ vehicles on the current maximum level. As said, a

vehicle is discordant if one of the following conditions is

verified: it has to move horizontally in a direction opposite to

the one allowed by the level where the vehicle is, or it has only

vertical steps to perform. DA works as follows: for each t and

for each actual maximum level, both all discordant vehicles

and vehicles not discordant having horizontal distance less

than Kt perform a vertical step. When executing DA, the

solution obtained needs a grid graph 8 9 13. Table 2 com-

pares the assignment of vehicles to levels in DA solution with

the assignment obtained using our procedures. As said, if a

vehicle is assigned to level, then it performs all its horizontal

steps on that level.

Note that DA needs two levels more than m�, while, using

our procedures, the number of levels effectively used by

vehicles to perform their horizontal steps is lower than m�.

10. Concluding remarks

In this paper, we considered FQRP on a grid graph, i.e. the

problem of find n manhattan paths, one for each vehicle,

connecting starting nodes, placed at the first (bottom) level, to

arrival nodes, placed at the highest level.

The existing literature provided solutions assuming that

each level allows movements in one direction only and that

each vehicle performs all its horizontal steps on the same level.

In such solutions, the number of levels of the graph is

supposed to be high enough.

The main result of this paper is the determination of m�, the

minimum number of levels in a grid graph that guarantees the

existence of a solution to any instance of FQRP involving n

vehicles when they move in the ways that the literature has

until now assumed.

We show that the higher the number of vehicles in the

instance, the higher the number of levels that can be saved

with respect to existing solutions. This is the reason why, as a

minor aim, we provide, an algorithm, CaR, to find a FQRP

solution in a graph m� � n.

In our opinion, this is a significant contribution to the state

of art because, fixed a value of n, it is possible identifying a

grid whose number of levels is minimum but high enough to

find a solution to any permutation of destinations. These

results can be useful in some real applications, as in any

context in which there are AGVs, because we can reduce the

effort (in terms of time) to route all the fleet from departures to

destinations.
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