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Hybrid subgames and copycat games in a pulsing
model of advertising competition
HI Mesak and JA Calloway

Louisiana Tech University, USA

Two recent papers,6,7 introduced the game of pulsing competition (PC) in advertising together with its related subgames
of alternating pulsing competition (APC) and matching pulsing competition (MPC) for a duopoly. Following a game
theoretic approach in conjunction with a continuous Lanchester model, the above authors basically concluded that when
at least one of the response functions is convex, generalising monopolistic advertising pulsation results to a competitive
setting might not be adequate. This paper expands the scope of the PC game by incorporating in its structure for the ®rst
time in the literature, two versions of a hybrid pulsing competition (HPC) subgame. The article compares the payoffs of
the four alternative subgames and provides an analytical solution of a special case of the PC game. In addition, the article
also introduces for the ®rst time a variant of the PC game designated by `the copycat advertising game' and shows
analytically that for such a game the policy of constant advertising spending over time is optimal for both ®rms
irrespective of the shape of their advertising response functions. The paper illustrates at its end how to solve numerically
the expanded PC game in its general form using linear programming and how to derive a solution for a copycat
advertising game.
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Introduction

Since the early part of the 1970s, the issue of whether a

uniform advertising policy (even-spending over time) is

superior (inferior) to an equivalent advertising policy of

pulsation that costs the same has attracted the attention of

several researchers. Considering continuous advertising

response models, Sasieni1 in his path-breaking work indi-

cated that for a concave or linear advertising response

function, a policy of uniform spending is superior in the

long run, to a cyclic (pulsation) policy that costs the same.

Mahajan and Muller2 and later Sasieni3 showed that for

advertising response functions that contain a convex

portion, a pulsation policy is superior to an equivalent

even policy of advertising spending. This same argument

is the basis for resource allocation models like Lodish's

CALLPLAN.4 A summary of the advertising pulsation

literature for monopolistic markets is found in Mesak and

Darrat.5

Following a game theoretic approach for a duopoly,

Mesak and Calloway6 found that Uniform Advertising

Policy (UAP) is optimal for a ®rm having a concave or

linear response function competing against another having

a concave or a linear response function, and therefore

generalising the above monopoly results for such functions

to a duopoly. When at least one of the response functions is

convex, the above study demonstrated that generalising

monopolistic results might not be adequate. For such

situations, the optimal policy of the ®rm may involve the

Advertising Pulsing=Maintenance Policy (APMP) repla-

cing the monopolistic Advertising Pulsing Policy (APP)

optimal when the response function is convex, or the

monopolistic UAP optimal when the response function is

concave or linear. In a sequel to the above study, Mesak

and Calloway7 estimated empirically the continuous

Lanchester model with considerable success.

Research in advertising pulsing competition is sparse.

Notable examples include Park and Hahn,8 Villas-Boas,9

and Mesak and Callaway.6,7 The general theme of the

modeling framework used in these studies appears to be

static. All studies assume equal periods for the high and

low advertising pulses together with equal cycle lengths for

all rivals. Average undiscounted pro®ts over the in®nite

planning horizon is mostly chosen as the performance

measure used to evaluate alternative advertising pulsation

policies. In addition, Lanchester models are often employed

to represent sales or market share response to the advertis-

ing effort of competing ®rms. Furthermore, the reviewed

studies consider only two competitive situations: Matching

Pulsing Competition and Alternating Pulsing Competition.
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In this paper, the authors extend the earlier works of

Mesak and Calloway6,7 in several directions. Firstly, we

introduce for the ®rst time in the literature the `hybrid'

advertising strategy for a ®rm composed of different APC,

MPC, and HPC subgames, as a feasible response to a

pulsation policy of its rival. We show that if a ®rm chooses

to engage in a `Hybrid Pulsing Competition (HPC)' with its

competitor, its average sales, in the long run, could be

superior to those acquired under Alternating Pulsing

Competition (APC) or under Matching Pulsing Competi-

tion (MPC) considered in Mesak and Calloway.6 Further-

more, the paper introduces and analyses for the ®rst time a

`copycat' game in advertising competition. In addition, we

show how to solve the game of Pulsing Competition (PC),

using linear programming (LP). The paper also demon-

strates that irrespective of the shape of the advertising

response function, a policy of constant advertising over

time is optimal for the two ®rms competing in a copycat

advertising game.

As in Mesak and Calloway,6,7 a game theoretic approach

that employs a Lanchester continuous model is followed

(see Sasieni3 for a justi®cation of using continuous adver-

tising response models and Rao10 for a discussion of their

advantages over the discrete counterparts). Similar to

previous studies in advertising pulsing competition, the

current research follows a static modeling framework

according to which each competitor has to choose among

three alternative policies: (a) Uniform Advertising Policy

(UAP), in which the ®rm advertises at some constant level

throughout; (b) Advertising Pulsing/Maintenance Policy

(APMP), in which the ®rm alternates between a high

level of advertising and a lower level, usually a mainte-

nance level; and (c) Advertising Pulsing Policy (APP), in

which the ®rm alternates between high and zero levels of

advertising.

In competitive situations, Wells and Chinsky11 suggest

as a result of their laboratory study that messages are most

effective when they are delivered in bursts. Also, Ackoff

and Emshoff12 together with Rao and Miller13 indicate as a

result of their ®eld experiments that an Advertising

Pulsing=Maintenance Policy could be superior to the even

policy. These studies and others, justify that the relatively

narrow pulsation policy set considered above is not only of

theoretical interest but also of practical relevance.

The next section of this paper describes the pulsing

competitive game (PC) and its subgames. The third section

develops and compares alternative analytical expressions

for the payoff of the focal ®rm under alternating, matching,

and hybrid competitive situations, and also solves analyti-

cally a special case of the PC game and introduces and

analyses a copycat game in advertising competition. In the

fourth section, linear programming is used to provide a

numerical solution for the PC game formulated in the

second and third sections. A numerical example for the

copycat advertising game discussed in the third section is

also illustrated in the fourth section. Finally, the ®fth

section summarises and concludes the study. Derivation

of key formulas and proofs of all results are available from

the authors upon request.

The pulsing competitive game and its subgames

Assume there are two ®rms competing in a single market

where advertising is the major element in the marketing

effort of both ®rms. Each of the ®rms manages only one

brand of an established frequently purchased product. We

identify the following competitive situations in a duopoly.

Firm 1 is said to be engaged in an Alternating Pulsing

Competition (APC) with its rival if it cycles low-high (L-H)

pulsing while ®rm 2 cycles high-low (H-L) pulsing or

cycles H-L pulsing while ®rm 2 cycles L-H pulsing.

On the other hand, ®rm 1 is said to be engaged in a

Matching Pulsing Competition (MPC) with its rival if both

®rms cycle the same type of pulsing. Finally, ®rm 1 is said

to be engaged in a Hybrid Pulsing Competition (HPC) with

its rival if both ®rms cycle similarly part of the time and

cycle differently for another part of the time in a repetitive

fashion. There are two versions of HPC. Figure 1 illustrates

examples of the competitive situations discussed above.

We assume that in each cycle of length 4t, the high and

low advertising periods are of the same length 2t. As

illustrated in Figure 1, HPC (versions H1 or H2) can be

conceived as some mixture of the APC and MPC compe-

titive situations. A simple procedure for distinguishing

between the two versions will be discussed shortly. In

this paper, as in Mesak and Calloway,6 the chosen measure

of performance for each ®rm is the average undiscounted

pro®t over the in®nite planning horizon. Park and Hahn8

argue in favor of such performance measure as it has the

advantage of being independent of arbitrary initial condi-

tions in addition that its weakness is substantially mitigated

because of the periodic nature of the considered advertising

policies over time. In the game of pulsing competition

(PC), each ®rm aims at determining the advertising level in

each period (and therefore one of the alternative policies

UAP, APMP, or APP) as well as the advertising timing

relative to the competition (and therefore one or perhaps

some combination of the alternative competitive situations

APC, MPC, or HPC) in order to maximise its performance

measure. Figure 2 introduces schematically the expanded

PC game together with its related subgames.

Figure 2 asserts that the PC game is composed of 16

subgames (4 APCs, 4 MPCs, and 8 HPCs). The PC game is

seen to be of dimension 4 blocks �4 blocks such that each

subgame of the four alternative subgames appears only

once in its block row and once in its block column. Two

versions of the HPC subgames are identi®ed. They are the

Hybrid (version H1) and the Hybrid (version H2). Figure 3

helps in distinguishing between the two versions H1 and

H2.
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Figure 1 Competitive advertising pulsation in a duopoly.
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Regarding Figure 3a in which ®rm 1 cycles according to

the sequence H, H, L, L and ®rm 2 cycles according to the

sequence L, H, H, L or the sequence H, L, L, H related to

the ®rst block row in Figure 2, the versions Hybrid (H1)

and Hybrid (H2) are identi®ed as such because for H1 ®rm

1 leads in time ®rm 2 in clockwise cycling, whereas for H2

®rm 1 lags in time behind ®rm 2 in clockwise cycling. A

similar procedure has also been employed in identifying the

H1 and H2 versions of the HPC subgames in conjunction

with Figures 3b, 3c, and 3d related to the second, third and

fourth block rows in Figure 2. We show in the next section

that the payoff to ®rm 1 (or ®rm 2) under subgame H1 is

different from that under subgame H2.

Comparison of subgames' payoffs

As in Mesak and Calloway,6 we consider the situation of

two ®rms competing in a single market of a constant size m

where competitive behavior in the market is assumed to be

governed by a continuous Lanchester model proposed in

Little.14

Lanchester model

Let S1 � sales rate of ®rm 1 ($ /unit time), S2 � sales rate

of ®rm 2 ($ /unit time), u1 � advertising rate of ®rm 1 ($ /

unit time), and u2 � advertising rate of ®rm 2 ($ /unit time).

The change in the sales rates �dS1=dt� and �dS2=dt� are

expressed by two general ®rst order linear differential

equations:

�dS1=dt� � ÿ�dS2=dt� � f1�u1�S2 ÿ f2�u2�S1; �1�
where f1�u1� and f2�u2� are the advertising response func-

tions of ®rms 1 and 2 respectively. Each response function

can be concave, linear, or convex. Expression (1) is a

modi®cation over Kimball's15 earlier formulation that

assumes each response function to be linear in advertising.

Expression (1) implies that a ®rm gains sales proportional

to its advertising response function and the sales of its rival.

Moreover, the ®rm is losing sales proportional to its sales

and the advertising response function of its rival.

The assumption of a constant market of size m is

plausible for products in the maturity stage of their product

life cycles (Gruca et al16; Erickson17) and implies for the

Lanchester model that

S1 � S2 � m: �2�
The steady state sales rates r1 and r2 can be obtained

through equating �dS1=dt� � �dS2=dt� � 0, then solving (1)

and (2) simultaneously for S1 and S2 to obtain:

r1�u1; u2� � mÿ r2�u1; u2� �
mf1�u1�

f1�u1� � f2�u2�
: �3�

Using (2) and (3), it can be shown that for rectangular or

uniform advertising policies, (1) takes the following form:

�dS1=dt� � ÿ�dS2=dt� � �f1�u1� � f2�u2���r1�u1; u2� ÿ S1�:
�4�

Sales response over time S1�t� and S2�t� are obtained

through solving the differential equation in (4) for certain

given initial conditions S1�t0� � S1;0 and S2�t0� � S2;0 at

time t � t0.

Sales response to advertising pulsation

Figure 4 illustrates a situation for two ®rms engaged in a

Hybrid Pulsing Competition (HPC), version H1, according

to Figure 3a.Figure 3 Identi®cation of H1 and H2 versions of HPC subgame.

Figure 2 Alternative subgames of the PC game.
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When the three advertising policies UAP, APMP, and

APP are speci®ed to have the same undiscounted total

advertising budget in a cycle of length 4t, then for any

given average rate Dj of advertising for ®rm j given by:

1

4t

�4t

0

Uj�t�dt � Dj; j � 1; 2;

where Uj�t� is the uniform advertising rate at time t, implies

that

1

2
�Dhj � Dlj� � Dj; j � 1; 2; �5�

and Dhj and Dlj are the high and low advertising rates of

each ®rm j; j � 1; 2. Since all advertising policies are

assumed to cost the same for a given ®rm, then maximising

the undiscounted pro®t in the long-run would be equivalent

to maximising sales revenues in the long-run as such. It can

be shown that the sales at the end of cycle n for ®rm 1,

S1;n�1, is related to the initial sales in the cycle, S1;n,

through the following expression:

S1;n�1 � KS1;n � C; �6�
where K and C are constants such that 0 < K < 1 and

C > 0. According to (6), and as in Mesak and Calloway,6

Figure 4 Sales response to advertising pulsation.
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sales of both ®rms arrive at a quasi-steady state in which

each cycle starts and ends with the same level of sales for

each ®rm independent of the initial sales values. This

®nding is quite general and is applicable for all the other

competitive subgames. This ®nding may also be conceived

as a generalisation of a similar result by Sasieni3 from a

monopoly to a duopoly. Here, as in Sasieni3 the term

`quasi-steady state' is used in realisation of the fact that

sales over the steady state cycle are not constant. The above

®nding, based on (6), gives rise to the following result, the

proof of which is found in Mesak and Calloway.6

Result 1 For an in®nite planning horizon, the long-run

mean sales rate of a ®rm is independent of the initial level of

sales rate, and is equal to the mean sales rate over the steady

state cycle.

The above result is useful in providing the long-run

average sales revenues of ®rm 1 per unit time for an in®nite

planning horizon associated with the HPC (version H1),

HPC (version H2), APC, and MPC subgames, designated

by R1h1;R1h2;R1a, and R1m respectively. The result implies

that in order to derive the above stated measure of perfor-

mance, one only needs to analyze sales response to adver-

tising over the ®nite period of the steady state cycle rather

than doing the same over an in®nite period of time in which

sales con®gurations are dissimilar for different cycles. For

notational convenience, we denote the advertising response

f1�Dh1� � fh1, and f1�Dl1� � fl1 for ®rm 1. The terms fh2 and

fl2 for ®rm 2 are designated in a similar manner. Regarding

expression (3), we further designate r1�Dh1; Dh2� by

r1�h; h�; r1�Dh1; Dl2� by r1�h; l�; r1�Dl1; Dh2� by r1�l; h�,
and r1�Dl1; Dl2� by r1�l; l�. We are now in a position to

introduce the following expressions for R1h1;R1h2;R1a, and

R1m for ®rm 1.

�4t�R1hl � �r1�h; l� � r1�h; h� � r1�l; h� � r1�l; l�t�

� r1�h; l��1ÿ eÿahlt�
�1ÿ eÿat� ÿ �1ÿ eÿ�ahh�alh�all�t�

ahl

�
� �1ÿ eÿahht�

ahh

� �1ÿ eÿalht�eÿahht

alh

� �1ÿ eÿallt�eÿ�alh�ahh�t

all

�

� r1�h; h��1ÿ eÿahht�
�1ÿ eÿat�

�1ÿ eÿahlt�eÿ�alh�all�t

ahl

�

ÿ �1ÿ eÿ�ahl�alh�all�t�
ahh

� �1ÿ eÿalht�
alh

� �1ÿ eÿallt�eÿalht

all

�

� r1�l; h��1ÿ eÿalht�
�1ÿ eÿat�

�1ÿ eÿahlt�eÿallt

ahl

�
� �1ÿ eÿahht�eÿ�ahl�all�t

ahh

ÿ �1ÿ eÿ�ahh�ahl�all�t�
alh

� �1ÿ eÿallt�
all

�
� r1�l; l��1ÿ eÿallt�

�1ÿ eÿat�
�1ÿ eÿahlt�

ahl

�
� �1ÿ eÿahht�eÿahlt

ahh

� �1ÿ eÿalht�eÿ�ahh�ahl�t

alh

ÿ �1ÿ eÿ�ahh�ahl�alh�t�
all

�
;

�7�

�4t�R1h2 � �r1�h; h� � r1�h; l� � r1�l; l� � r1�l; h��t

� r1�h; h��1ÿ eÿahht�
�1ÿ eÿat� ÿ �1ÿ eÿ�ahl�all�alh�t�

ahh

�
� �1ÿ eÿahlt�

ahl

� �1ÿ eÿallt�eÿahlt

all

� �1ÿ eÿalht�eÿ�all�ahl�t

alh

�

� r1�h; l��1ÿ eÿahlt�
�1ÿ eÿat�

�1ÿ eÿahlt�eÿ�all�alh�t

ahh

�
ÿ �1ÿ eÿ�ahh�all�alh�t�

ahl

� �1ÿ eÿallt�
all

� �1ÿ eÿalht�eÿallt

alh

�

� r1�l; l��1ÿ eÿallt�
�1ÿ eÿat�

�1ÿ eÿahht�eÿalht

ahh

�
� �1ÿ eÿahlt�eÿ�ahh�alh�t

ahl

ÿ �1ÿ eÿ�ahl�ahh�alh�t�
all

� �1ÿ eÿalht�
alh

�

� r1�l; h��1ÿ eÿalht�
�1ÿ eÿat�

�1ÿ eÿahht�
ahh

�
� �1ÿ eÿahlt�eÿahht

ahl

� �1ÿ eÿallt�eÿ�ahl�ahh�t

all

ÿ �1ÿ eÿ�ahl�ahh�all �t�
alh

�
;

�8�
�4t�R1a � 2�r1�h; l� � r1�l; h��t

� �r1�h; l� ÿ r1�l; h���1ÿ eÿ2ahlt��1ÿ eÿ2alht�
�1ÿ eÿ2�ahl�alh�t�

� 1

alh

ÿ 1

ahl

� �
; �9�
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and

�4t�R1m � 2�r1�h; h� � r1�l; l�t

� �r1�h; h� ÿ r1�l; l���1ÿ eÿ2ahht��1ÿ eÿ2allt�
�1ÿ eÿ2�ahh�all�t�

� 1

all

ÿ 1

ahh

� �
; �10�

ahl � fh1 � fl2; ahh � fh1 � fh2; alh � fl1 � fh2; all � fl1� fl2;
a � ahl � ahh � alh � all , and from (3), r1�h; l� � mfh1=ahl;
r1�h; h� � mfh1=ahh; r1�l; h� � mfl1=alh, and r1�l; l� �
mfl1=all .

Based on expressions (7) through (10), we are in a

position to introduce the following self-explanatory results

for the focal ®rm, ®rm 1.

Result 2 R1 (Match) 5R1 (Alter) if fh1 � fl1 5 fh2 � fl2.

Result 3 R1�Hybrid 2�5R1�Hybrid1�.

Result 2 asserts that in response to the pulsation policy

of ®rm 2, ®rm 1 should prefer a matching (alternating)

pulsation policy over the alternating (matching) counterpart

if its attraction power, fh1 � fl1, is larger (smaller) than the

attraction power of its competitor. When the attraction

power of both ®rms are equal, however, ®rm 1 would be

indifferent between the two pulsation policies. Result 3, on

the other hand asserts that ®rm 1 would consistently prefer

to engage with its rival in a HPC (version H2) subgame

rather than a HPC (version H1) subgame irrespective of the

relative attraction power of both parties. It is interesting to

mention that the equality signs in results 2 and 3 would only

hold if ®rm 2 employs a Uniform Advertising Policy [see

result (iii) in Mesak and Calloway.6

Problem formulation

Designating the policy parameter for ®rm 1 by x and that

for ®rm 2 by y, both 04 x, y4 1, such that Dl1 � xD1 and

Dl2 � yD2, then the different advertising policies that could

be employed by ®rms 1 and 2 can be characterised as

follows: UAP is characterised by x �or y� � 1. APMP is

characterized by 0 < x �or y� < 1 and APP is characterised

by x �or y� � 0.

At this point, the PC game considered in this article may

be formulated as follows. For exogenously arbitrarily

determined values of the quantities D1, D2 and t in a

market of a ®xed size m, what is the optimal value x�

chosen by ®rm 1 and the optimal value y� chosen by ®rm 2

together with the optimal sequence of pulsation for each

(H, H, L, L), (L, L, H, H), (L, H, H, L), or (H, L, L, H)

provided that the payoff to ®rm 1 is represented by (7),

(8), (9), or (10) for every policy pair �x; y� such that

04 x; y4 1? This problem formulation is within the

context of a special class of in®nite two person, zero-sum

games known in game theory as Games on the Square.

Though we deal with a constant-sum game, such a game can

be converted to a zero-sum game by subtracting the quantity

m=2 from the payoff R1 (usually called the Kernel). Early

treatments of such games for speci®c situations are found in

McKinsey18 and Karlin.19

As in Mesak and Calloway6 assuming that each of the

two ®rms strive to make its worst possible outcome as good

as possible (Von Neumann-Morgenstern behavior), the

Maxmin±Minimax solution concept would be appropriate

in analysing such a competitive situation (more details

regarding that solution concept may be found in Taha).20

Therefore, the above mentioned solution concept will be

adopted throughout.

The situation for which the subgames MPC, APC,

HPC(H1), and HPC(H2) have saddle points at the same

corner can be dealt with analytically. Mesak and Calloway7

found in their empirical study that such a situation is

practically relevant for the MPC and APC subgames

analyzed in Mesak and Calloway6 study (see also Figure

6). De®ning the game G by the �4� 4� matrix the entries of

which represent the values of the subgames composed of

the PC game shown in Figure 2, then the following

important result is obtained as a direct consequence of a

theorem by Sherman.21

Result 4 In a game of pulsing competition for which the

related subgames posses saddle points at the same corner:

(i) The value of the PC game is equal to the value of

game G.

(ii) The optimal strategy for a given ®rm (pure or mixed)

is the same as that derived from game G, distributed over

the policies associated with the saddle points in the PC

game.

To enhance the understanding of result 4 and appreciate

its implications, let us consider an example. Assume that all

the subgames of the PC game have saddle points at the

corner (0, 0) and vm; va; vh1, and vh2 represent the values at

the saddle points for ®rm 1 related to the subgames MPC,

APC, HPC(H1), and HPC(H2) respectively. In reference to

Figure 5 Elements of game G.
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Figure 2, game G in this case would be as shown in Figure

5.

It can be shown that an analysis of game G produces an

optimal mixed strategy (0.25, 0.25, 0.25, 0.25) for each

®rm. The value of game G would be given by

(vm � va � vh1 � vh2)=4. According to result 4, the PC

game would have the same value for game G shown

above and each of the two ®rms would use APP policies

of sequences (H-H-L-L), (L-L-H-H), (L-H-H-L) and (H-L-

L-H), 25% of the time.

For the situation in which the subgames have no saddle

points at the same corner, numerical methods are called

upon to arrive at a solution. This is done by ®rst discretising

the policy variables x and y and therefore converting the PC

Figure 6 Payoff matrices of four subgames.
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Firm2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0 349.04 350.54 351.65 352.57 353.31 353.92 354.41 354.78 355.04 355.19 355.23
0.1 342.69 344.36 345.62 346.63 347.47 348.15 348.69 349.11 349.40 349.57 349.62
0.2 335.40 337.26 338.66 339.80 340.74 341.50 342.11 342.58 342.90 343.09 343.15
0.3 327.14 329.22 330.78 332.05 333.10 333.96 334.64 335.16 335.52 335.74 335.81

Firm 1 0.4 317.97 320.29 322.03 323.45 324.62 325.57 326.33 326.91 327.32 327.56 327.64
0.5 308.14 310.70 312.63 314.19 315.49 316.55 317.39 318.03 318.48 318.75 318.84
0.6 298.10 300.90 303.01 304.73 306.15 307.31 308.23 308.94 309.43 309.73 309.83
0.7 288.60 291.62 293.89 295.75 297.28 298.54 299.54 300.30 300.84 301.16 301.27
0.8 280.62 283.82 286.23 288.20 289.83 291.16 292.22 293.04 293.61 293.95 294.06
0.9 275.25 278.57 281.07 283.12 284.81 286.19 287.29 288.14 288.73 289.09 289.20
1.0 273.35 276.71 279.24 281.31 283.03 284.43 285.54 286.40 287.00 287.36 287.48

a. Payoff matrix of MPC subgame (Rtm)

Firm2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 348.92 350.43 351.56 352.48 353.24 353.86 354.36 354.74 355.01 355.18 355.23
0.1 342.59 344.27 345.53 346.56 347.41 348.10 348.65 349.08 349.37 349.55 349.62
0.2 335.31 337.19 338.59 339.74 340.69 341.46 342.08 342.55 342.88 343.08 343.15
0.3 327.o7 329.15 330.72 332.00 333.06 333.92 334.61 335.14 335.51 335.73 335.81

Firm 1 0.4 317.92 320.24 321.98 323.40 324.58 325.54 326.30 326.89 327.31 327.55 327.64
0.5 308.10 310.66 312.59 314.16 315.46 316.52 317.37 318.02 318.47 318.75 318.84
0.6 298.o7 300.87 302.98 304.70 306.12 307.29 308.22 308.93 309.43 309.73 309.83
0.7 288.57 291.60 293.87 295.73 297.27 298.52 299.53 300.29 300.83 301.16 301.27
0.8 280.60 283.81 286.22 288.19 289.82 291.15 292.22 293.03 293.61 293.95 294.06
0.9 275.24 278.56 281.06 283.11 284.80 286.18 287.29 288.13 288.73 289.08 289.20
1.0 273.35 276.71 279.24 281.31 283.03 284.43 285.54 286.40 287.00 287.36 287.48

b. Payoff matrix of APC subgame (Rta)

Firm2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 347.61 349.23 350.48 351.53 352.42 353.18 353.81 354.33 354.74 355.04 355.24
0.1 341.29 343.08 344.46 345.62 346.59 347.42 348.10 348.66 349.10 349.42 349.62
0.2 334.03 336.01 337.54 338.81 339.88 340.79 341.53 342.14 342.61 342.95 343.15
0.3 325.81 328.01 329.69 331.09 332.27 333.26 334.08 334.74 335.24 335.60 335.81

Firm 1 0.4 316.72 319.14 321.00 322.54 323.83 324.91 325.80 326.51 327.05 327.43 327.64
0.5 306.99 309.65 311.68 313.36 314.77 315.94 316.90 317.67 318.24 318.63 318.84
0.6 297.10 299.98 302.18 304.00 305.51 306.78 307.80 308.62 309.22 309.62 309.83
0.7 287.78 290.87 293.22 295.15 296.77 298.11 299.19 300.04 300.67 301.07 301.27
0.8 280.04 283.29 285.75 287.78 289.47 290.86 291.98 292.85 293.49 293.89 294.06
0.9 274.95 278.29 280.82 282.90 284.62 286.03 287.16 288.04 288.67 289.05 289.20
1.0 273.35 276.71 279.24 281.31 283.03 284.43 285.54 286.40 287.00 287.36 287.48

c. Payoff matrix ofHPC (Hl) subgame (Rlbl)

Finn2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 350.35 351.74 352.73 353.52 354.14 354.61 354.96 355.20 355.32 355.33 355.24
0.1 343.99 345.56 346.69 347.58 348.29 348.84 349.24 349.52 349.68 349.71 349.62
0.2 336.68 338.45 339.72 340.74 341.55 342.18 342.66 342.98 343.17 343.23 343.15
0.3 328.39 330.37 331.81 332.97 333.89 334.62 335.17 335.56 335.79 335.87 335.81

Firm 1 0.4 319.17 321.39 323.01 324.32 325.37 326.20 326.84 327.29 327.57 327.69 327.64
0.5 309.25 311.72 313.54 315.00 316.18 317.13 317.86 318.38 318.72 318.87 318.84
0.6 299.07 301.79 303.81 305.44 306.76 307.82 308.64 309.25 309.64 309.83 309.83
0.7 289.39 292.35 294.55 296.33 297.78 298.96 299.87 300.56 301.01 301.25 301.27
0.8 281.18 284.34 286.70 288.61 290.19 291.46 292.46 293.22 293.73 294.01 294.06
0.9 275.54 278.84 281.31 283.33 284.99 286.34 287.42 288.23 288.79 289.12 289.20
1.0 273.35 276.71 279.24 281.31 283.03 284.43 285.54 286.40 287.00 287.36 287.48

d. Payoff matrix ofHPC (H2) subgame (Rtb2)



in®nite game to a ®nite one that would be easier to solve.

Upon formulating the game as a linear programming

problem afterwards, the optimal strategies and the value

of the PC game can be obtained. The method will be

discussed in detail in the next numerical section of the

paper.

A copycat game in advertising competition

In an industry that is composed of, or dominated by, two

competitors of approximately equal market shares and

producing products that have a lot of attributes in

common such as Coke and Pepsi in the soft drink industry,

their advertising budgets and advertising competitive beha-

vior tend to be also similar. We designate such ®rms by

symmetric (or identical) ®rms. Following Schmalensee,22

the two ®rms are assumed to have the same production

costs, to be able to acquire real promotion on the same

terms, to charge the same ®xed price, and to face

symmetric demand functions.

In this section, we consider the situation of two identical

®rms competing according to a variant structure of the PC

game depicted in Figure 2. Again by identical competing

®rms, we also mean that the two ®rms possess similar

advertising budgets, similar advertising response functions,

and the magnitudes of their low and high advertising levels

are also similar. Although their advertising pulsation poli-

cies are considered to be `copycats' of each other (me-too

kind of behavior), they are only allowed to be different in

terms of the timing of their advertising pulsation sequence.

Accordingly, for such a game we may write fl1 � fl2 � fl and

fh1 � fh2 � fh. The structure of the copycat PC game dictates

that the payoffs are only relevant along the main diagonals

of each of the 16 subgames shown in Figure 2.

We introduce below a result related to a PC game for

symmetric ®rms prior of introducing two more results

related to the copycat game. This is performed ®rst as the

proofs of the copycat game results are highly dependent on

the ®ndings of such results.

Result 5 In a two person, zero-sum game for symmetric

®rms

(i) R1m�x; y� � ÿR1m�y; x� for x 6� y; and R1m�x; y� � 0;
for x � y:

(ii) R1a�x; y� � ÿR1a�y; x� for x 6� y; and R1a�x; y� � 0;
for x � y:

(iii) R1h1�x; y� � ÿR1h2�y; x�; for all 04 x; y4 1:

Findings 5(i) and 5 (ii) imply that both the Kernels R1m and

R1a are skew-symmetric and take on zero values along the

main diagonal of the square 04 x, y4 1. An interesting

consequence of the above is that the values of the MPC and

APC subgames are zeros, which is a well-known result in

game theory. The outcome 5(iii) implies that the Kernel R1h2

is derived from the Kernel R1h1 through a rather simple

mathematical manipulation. We are now in a position to

introduce the following ®ndings for a copycat game.

Result 6 For a copycat game in advertising competition

(i) R1h1�x; y�4R1a�x; y� � R1m�x; y� �
m=24R1h2�x; y�; 04 x � y4 1

(ii) R1h1�x; y� � R1h2�x; y� � m; 04 x � y4 1

Based on the ®ndings of result 6, ®rm 1 would prefer to

engage in a HPC (version H2) subgame in response to the

pulsation policy of its rival. Obviously, from 6(ii),

R1h1 4m=2 and R1h2 5m=2. In addition, the equality of

R1a to R1m is a direct consequence of result 2 reported

earlier. It should be further noted that the inequalities in

result 6(i) hold as strict equalities only for the situation in

which both ®rms employ similar UAP policies �x � y � 1�.
Based on the ®ndings of result 6 and upon employing a

maxmin-minimax solution concept, the solution of the

copycat advertising game is introduced below.

Result 7 Irrespective of the shape of the advertising

response functions, UAP is the optimal policy for both

®rms competing in a copycat advertising game.

The ®ndings of result 7 are rather striking. They imply,

for the ®rst time in the literature, that it is possible for the

policy of constant spending over time (UAP) to be optimal

for both ®rms even if their response functions are convex.

Such an interesting outcome is mainly attributed to the

special properties of the copycat advertising game that

result in a peculiar structure for its related payoff matrix.

More importantly, the solution of the copycat advertising

game would not have been unique had the hybrid competi-

tion subgames not been included as integral parts of the PC

game as the proof of result 7 is highly dependent on the

®ndings reported in result 6.

The next section illustrates how to solve the PC game in

its general form using linear programming and shows how

to use maxmin-minimax principle to solve the copycat

advertising game.

A numerical investigation

The goals of this section are two-fold: (1) to illustrate how

to solve the PC game in its general form numerically using

linear programming; and (2) to demonstrate how to obtain a

numerical solution for the advertising copycat game intro-

duced in the third section.

As in Mesak and Calloway,7 the following advertising

response function is employed in conducting the numerical

analysis pertaining to this section:

fj�uj� � aj � bju
dj

j ; aj; bj; dj > 0; j � 1; 2; �11�

where
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aj � is the value of the response function at zero advertis-

ing, conceived to represent a measure of `consumer

franchise' or habitual behavior,

bj � is the measure of advertising effectiveness, and

dj � is a measure of the degree of convexity (concavity) of

the response function.

The function (11) is concave for 0 < dj < 1, linear for

dj � 1, and convex for dj > 1.

As has been mentioned earlier, de®ne the policy para-

meter for ®rm 1 by x and that for ®rm 2 by y, both

04 x; y4 1, such that Dl1 � xD1 and Dl2 � yD2, then

the different advertising policies that could be employed

by ®rms 1 and 2 can be characterized as follows: UAP is

characterized by x �or y� � 1. APMP is characterized by

0 < x �or y� < 1 and APP is characterized by x �or y� � 0.

For any given 04 x; y4 1;D1 and D2, the high advertising

levels are uniquely determined from expression (5).

Assume a market of annual size m � 800 million dollars,

D1 � D2 � 5 million dollars, t � 1 month (0.083 year),

a1 � a2 � 0:01; b1 � b2 � 0:005, d1 � 2:50, and

d2 � 1:25. The rationale governing the assignment of the

values of m;D1;D2, and t is found in Mesak and Callo-

way.7 The chosen values of the parameters a1; a2; b1, and

b2 are within the ranges of the estimated parameters

obtained for the application reported in Table 1 in Mesak

and Calloway.7 For different values of x and y ranging

between 0 and 1 in increments of 0.1, expressions (7)

through (10) were computed using expressions (5) and

(11). Due to space limitations, Figure 6 illustrates the

obtained payoff matrix for the basic four subgames of the

PC game shown schematically in Figure 2. It is noteworthy

to mention at this point that the policy variables x and y

have been described in the above manner in order to

convert the PC in®nite game to a ®nite one that is generally

easier to solve.

LP solution of the pulsing game

To formulate the LP program related to the above PC game,

let

i � 1; 2; . . . ; 11 designate the strategy of ®rm 1 when

x � 0; 0:1; . . . ; 1 respectively if the ®rm employs its

H-H-L-L pulsing sequence.

i � 12; 13; . . . ; 22 designate the strategy of ®rm 1 when

x � 0; 0:1; . . . ; 1 respectively if the ®rm employs its

L-L-H-H pulsing sequence.

i � 23; 24; . . . ; 33 designate the strategy of ®rm 1 when

x � 0; 0:1; . . . ; 1 respectively if the ®rm employs its

L-H-H-L pulsing sequence.

i � 34; 35; . . . ; 44 designate the strategy of ®rm 1 when

x � 0; 0:1; . . . ; 1 respectively if the ®rm employs its

H-L-L-H pulsing sequence.

j � strategy of ®rm 2, j � 1; 2; . . . ; 44 de®ned in a

similar way as i.

R1m�i; j�;R1a�i; j�;R1h1�i; j�;R1h2�i; j� � payoff to ®rm 1

when it chooses strategy i and ®rm 2 chooses strategy j and

the two ®rms compete in the subgames MPC, APC, HPC

(H1), and HPC(H2) respectively.

Pi � probability of ®rm 1 choosing strategy i.

Wj � probability of ®rm 2 choosing strategy j.

Having de®ned the above terms, the details of the related LP

are found in the Appendix. Upon solving the LP problems

(A1) and (A2) included in the Appendix, using the commer-

cial software package LP88 and a personal computer, it is

found that P�1 � P�12 � P�23 � P�34 � 0:25 and

W �1 � W �12 � W �23 � W �34 � 0:25 whereas the remaining 80

quantities take on zero values represent one optimal feasible

solution. The value of the PC game (entries of the payoff

matrix represent deviations from 400) is V � � 348:99. It is

interesting to note that the value of the PC game is one-

fourth of the sum of the values of the four subgames

depicted in Figure 6. This is in conformity with the discus-

sion related to result 4 in conjunction with game G shown in

Figure 5.

The above optimal solution implies that the two ®rms

should be engaged in a matching pulsing competitive

subgame for which x� � y� � 0, 25% of the time, alternat-

ing pulsing competitive subgame for which x� � y� � 0,

25% of the time, hybrid pulsing competitive subgame (H1)

for which x� � y� � 0, 25% of the time, and hybrid pulsing

competitive subgame (H2) for which x� � y� � 0, 25% of

the time. For all such solutions, Dh1 � Dh2 � 10 and

Dl1 � Dl2 � 0. The long-run average sales revenue for

the ®rst ®rm is 400� 348:99 � 748:99 (equivalent to a

market share of 93.62%) while it is 51.01 for the second

®rm (equivalent to a market share of 6.38%).

It should be noted that the solution for convex advertis-

ing response function PC games does not need to be always

at x� � y� � 0. As a matter of fact, when the as and bs have

changed to a1 � a2 � 0:25 and b1 � b2 � 1:5, the optimal

Table 1 Relevant payoffs of the copycat game

Subgame

Policy
variable Matching Alternating

Hybrid
H1

Hybrid
H2

x � y R1m R1a R1h1 R1h2 Min Max

0.0 0.00 0.00 ÿ1:19 1.19 ÿ1:19 1.19
0.1 0.00 0.00 ÿ1:02 1.02 ÿ1:02 1.02
0.2 0.00 0.00 ÿ0:87 0.87 ÿ0:87 0.87
0.3 0.00 0.00 ÿ0:72 0.72 ÿ0:72 0.72
0.4 0.00 0.00 ÿ0:57 0.57 ÿ0:57 0.57
0.5 0.00 0.00 ÿ0:44 0.44 ÿ0:44 0.44
0.6 0.00 0.00 ÿ0:30 0.30 ÿ0:30 0.30
0.7 0.00 0.00 ÿ0:18 0.18 ÿ0:18 0.18
0.8 0.00 0.00 ÿ0:09 0.09 ÿ0:09 0.09
0.9 0.00 0.00 ÿ0:02 0.02 ÿ0:02 0.02
1.0 0.00 0.00 0.00 0.00 0.00 0.00
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policy of ®rm 1 turned out to be UAP (for which x� � 1)

and the optimal policy of ®rm 2 turned out to be APP (for

which y� � 0). The value of the PC game �V �� has changed

to 300.21. The differences in the optimal solutions are

basically attributed to the fact that for the ®rst example, all

the subgames shown in Figure 6 have saddle points at

the corners �x � y � 0�. For the second example, however,

two of the subgames do not have saddle points (more detail

on this point is found in section 1.1 in Mesak and

Calloway).7

A copycat game example

As discussed in the previous section, the payoffs of an

advertising copycat game for two identical ®rms are

derived from a related PC game by simply considering

only the main diagonal elements associated with its four

subgames.

For m � 400, D1 � D2 � 4; t � 2=12; a1 � a2 � 0:01;
b1 � b2 � 0:001, and d1 � d2 � 2:75 the relevant payoffs

related to ®rm 1 are shown in Table 1. We observe from

Table 1 that R1h1 4R1m � R1a 4R1h2, in conformity with

result 5. Upon identifying the maximum and minimum of

entries lying in the last two columns of Table 1, it becomes

evident upon applying the maxmin-minimax solution

concept that the optimal policy is a UAP for both ®rms

�x� � y� � 1�. This is the case despite the convexity of the

advertising response functions, in conformity with result 7.

We note that the PC game has four subgames, each

repeated four times (see Figure 2). Therefore, there

should be four equal values for each entry appearing in

each row of Table 1. Obviously, including one value of

each should be suf®cient for our analysis.

Realising that the payoffs reported in Table 1 are devia-

tions from m/2, the long-run average sales revenue for each

®rm at equilibrium is 200 for the analysed copycat game.

We reiterate that the solution of the copycat game would

have not been unique had the hybrid subgames not been

included in the PC game (main diagonal elements of the

MPC and APC subgames are all zeros).

Summary and discussion

Advertising plays a key role in the struggle for success in

competitive markets. The issues of allocating the advertis-

ing budget over time and its relative timing with respect to

its main rival(s) are of managerial relevance to any ®rm.

This paper extends the earlier works of Mesak and

Calloway6,7 by introducing and analyzing, for the ®rst

time in the literature, the hybrid pulsing competition

(HPC) subgames in addition to the MPC and APC

subgames considered previously. Based on the ®nding

summarised in result 1, the article reports several interest-

ing relationships among the payoffs related to the four

subgames mentioned above. These relationships are

summarised in results 2, 3, and 5.

The solution of a special case of practical relevance

related to the PC game is documented in result 4.

This article, also for the ®rst time, introduces and solves

a copycat game (or me-too kind of game) in advertising

competition. Based on analytical ®ndings summarised in

results 6 and 7, the uniform advertising policy UAP is

found to be the optimal policy for the game, irrespective of

the shape of the advertising response functions of the rivals.

The managerial implications of such ®ndings are quite

clear. Each ®rm should spend its advertising budget

evenly over time without any need to identify the shape

of its advertising response function or that of the competi-

tion.

The copycat game would be appropriate in modeling

competitive situations for which the two rivals share a lot

of relevant things in common. Plausible examples in this

regard include the rivalry between Coke and Pepsi in the

soft-drink industry and the competition between two major

candidates running for an of®ce, where both belong to the

same political party and have successfully raised similar

funds for their election campaigns. As pointed out by Coyte

and Landon,23 the relationship between political parties and

®rms is not as obtuse as it may at ®rst seem. The goal of

parties, like ®rms, is to sell a product using a constrained

supply of resources.

Using linear programming (LP), this study further illu-

strated how to numerically solve the game of pulsing

competition (PC) for which the hybrid subgames are

integral subgames. A numerical example illustrating the

procedure of solving the advertising copycat game has been

also demonstrated.

Following what have been previously reported in Mesak

and Calloway,7 future research directions may consider: (1)

relaxing the assumption of a market with ®xed size; (2)

incorporating other marketing mix variables in the model-

ing effort; (3) proposing a stochastic relationship between

sales and advertising; (4) dealing with asymmetric structure

response of sales to an increase versus decrease in adver-

tising level; (5) treating the advertising budget for each ®rm

as a decision variable; (6) applying a measure of perfor-

mance for which a discount factor is used; and (7) incor-

porating more than two ®rms in the game of pulsing

competition.

One immediate research direction that is closely related

to the work reported herein would be to study in more depth

the properties of a generalized copycat game for which only

the policy variables x and y are required to be similar,

whereas advertising budgets or the advertising response

functions are not required to be similar for both ®rms.

Introducing and proving theorems regarding the existence,

uniqueness and characterization of solutions in pure or

mixed strategies for such games would offer a signi®cant
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contribution to the literature. Another important direction

for future research is to incorporate production cost in the

modeling effort as a function of sales or the advertising

levels being alternated. It would be interesting to ®nd out

how sensitive are the conclusions arrived at in this paper to

variations in the manufacturing cost. The review article of

Eliashberg and Steinberg24 discussing the interface

between the marketing and production functions should

be helpful in this respect.

Appendix

Formulating the pulsation game as a linear program

Designating the value of the PC game by V and denoting

V 0 � 1=V ;P0i � Pi=V and W 0j � Wj=V , the LP of ®rm 1 is

formulated as follows:

min V 0 �P44

i�1

P0i

subject to

P11

i�1

R1m�i; j�P0i �
P22

i�12

R1a�i; j�P0i �
P33

i�23

R1h2�i; j�P0i

� P44

i�34

R1h1�i; j�P0i 5 1; j � 1; 2; . . . ; 11;

P11

i�1

R1a�i; j�P0i �
P22

i�12

R1m�i; j�P0i �
P33

i�23

R1h1�i; j�P0i

� P44

i�34

R1h2�i; j�P0i 5 1; j � 12; 13; . . . ; 22;

P11

i�1

R1h1�i; j�P0i �
P22

i�12

R1h2�i; j�P0i �
P33

i�23

R1m�i; j�P0i

� P44

i�34

R1a�i; j�P0i 5 1; j � 23; 24; . . . ; 33;

P11

i�1

R1h2�i; j�P0i �
P22

i�12

R1h1�i; j�P0i

� P33

i�23

R1a�i; j�P0i �
P44

i�34

R1m�i; j�P0i 5 1;

j � 34; 35; . . . ; 44:

and P0i 5 0; i � 1; 2; . . . ; 44: �A1�

The LP problem of ®rm 2 is formulated as follows:

max V 0 �P44

j�1

W 0j

subject toP11

j�1

R1m�i; j�W 0j �
P22

j�12

R1a�i; j�W 0j �
P33

j�23

R1h1�i; j�W 0j

� P44

j�34

R1h2�i; j�W 0j 4 1; i � 1; 2; . . . ; 11;

P11

j�1

R1a�i; j�W 0j �
P22

j�12

R1m�i; j�W 0j �
P33

j�23

R1h2�i; j�W 0j

� P44

j�34

R1h1�i; j�W 0j 4 1; i � 12; 13; . . . ; 22;

P11

j�1

R1h2�i; j�W 0j �
P22

j�12

R1h1�i; j�W 0j �
P33

j�23

R1m�i; j�W 0j

� P44

j�34

R1a�i; j�W 0j 4 1; i � 23; 24; . . . ; 33;

P11

j�1

R1h1�i; j�W 0j �
P22

j�12

R1h2�i; j�W 0j

� P33

j�23

R1a�i; j�W 0j �
P44

j�34

R1m�i; j�W 0j 4 1;

i � 34; 35; . . . ; 44:

and W 0j 5 0; j � 1; 2; . . . ; 44: �A2�
Upon solving (A1) and (A2), the optimal strategies of ®rms

1 and 2 are given by P�i � P0i
�=V 0� and W �j � W 0j

�=V 0� and

the value of the PC game is given by V � � 1=V 0�.
After identifying the related x� and y� values, the

corresponding low advertising levels D�lj; j � 1; 2, are

given by D�l1 � x�D1 and D�l2 � y�D2. The high advertising

levels D�hj; j � 1; 2, are obtained from (5) afterwards as

D�h1 � �2ÿ x��D1 and D�h2 � �2ÿ y��D2.
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