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We present a method to combine expert opinion on the likelihood of under-reporting with
an operational risk data set. Under-reporting means that not all losses are identified and
therefore an incorrect distributional assumption may be made, and ultimately an incorrect
assessment made of capital required. Our approach can be applied to help insurers and
other financial services companies make better assessments of capital requirements for
operational risk using either external or internal sources. We conclude that operational risk
capital evaluation can be significantly biased if under-reporting is ignored.
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Introduction

Many financial services companies are now utilizing loss data for the purposes of
calculating operational risk capital requirements, potentially arising from either
regulatory requirements or indeed from a desire to integrate capital sensitive
management within their organizations. Instinctively, the use of internal loss
experience directly or as a means of deriving distribution parameters from which
simulations can be made is most appealing. However, several factors mitigate against
its effectiveness when considered alone: firstly, the data is backward looking based on
historical events — the company profile may have changed, and should any large losses
have occurred it is likely that controls will have been improved to prevent
a reoccurrence. A greater problem nonetheless is that the regularly encountered
losses may provide limited information on the size and frequency of large, rarely
occurring losses that are the major factor in determining capital requirements. With
this in mind organizations have recognized the value of obtaining loss data from
outside their company, either through data sharing consortia or through publicly
reported losses. In this paper, we focus on the use of publicly reported (also commonly
called external) loss data to supplement internal loss experience.

Utilizing publicly reported operational losses for modeling purposes involves
a number of considerations. The losses chosen for modeling should be representative
of the organization as far as is practicable. This should facilitate the use of both
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internal and external data in the modeling since they could then show similar behavior
in terms of size distribution (i.e., they come from the same distribution). This might
involve, for example, filtering processes whereby events are removed that are not
representative of the company in question (i.e. they could not happen to the company).
For example, certain losses may be associated with a particular business activity,
geography or even size. Even after this filtering the remaining events do not necessarily
convey information about the control standards being applied. It might, therefore,
involve some kind of scaling process to reflect the control standard in the organization
using the data.

Assuming, however, that the filtering process has been applied rigorously, further
challenging issues arise in the use of publicly reported data. These concern the quality
and classification of reported losses and the notion of under-reporting. While it is
possible for any organization to collect and use loss data taken directly from public
sources such as newsfeeds, the challenges associated with ensuring data quality
(including updates) and consistent categorization are not inconsiderable. Commercial
database vendors can apply suitable quality assurance protocols to provide comfort on
these matters. The second issue, that of under-reporting, is more difficult since not all
losses will necessarily reach the public domain. Furthermore, the likelihood of the loss
being reported could vary by both risk type and by size. For example, an incident
involving legal proceedings will almost certainly be reported, similarly large losses
intuitively are more likely to reach the public domain. The effect of this under-
reporting is that any capital calculation that does not account for this factor could be
skewed towards larger losses and therefore could result in extra capital being held.

However, also the frequency of the reported losses is affected by under-reporting.
By ignoring under-reporting the high frequently small losses are not included in the
capital held, which could add up to a huge amount, and in a worse case scenario lead
to an insolvent business. The under-reporting effect is different from the stated
minimum reporting threshold in a database, for example ~ £0.5 million ($1 million)
which could be accounted for relatively easily.

An approach for dealing with under-reporting has been described by Frachot and
Roncalli' and Baud et al.,”> who regard the problem as being one in which the publicly
reported data is subject to an unknown (and varying) lower reporting threshold. In
this paper, we propose an alternative, simpler approach, drawing on the input of risk
experts opinion in the estimation of under-reporting to derive estimators of the
underlying true publicly reported loss data size distribution. Subject matter experts
within an internationally active insurance company were asked to provide percentage
estimates of reporting likelihood across the Basel operational risk categories at
different loss sizes. These factors are then used to derive an under-reporting function
that can be combined with the publicly reported data to give an estimator of the
underlying true loss distribution. Requirements that apply to the under-reporting
function are that it must pass through certain points (reflecting the responses given by
the subject matter experts), that it should be a continuous function, and that it should

! Frachot and Roncalli (2002).
2 Baud et al. (2002).
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be mathematically well behaved beyond the final reporting point. The mathematical
approach applied in this situation is termed spline theory, which seeks to interpolate
values between the reported values (threshold points). Beyond the final reporting value,
we use extrapolation. More precisely, we utilize a cubic spline approximation, fitting
piecewise cubic polynomials between the fixed report levels (termed knots in spline
theory). As a result, the approach provides an indication on the true size of the losses. The
exact same function is also involved in the frequency setup, but here in a slightly different
form, as seen in the forthcoming sections. For an updated overview about quantifying
operational risk in general insurance company, see Tripp et al.® and the discussion therein.

The strategy is to first formulate the under-reporting functions on each event risk
category based on the judgement of the risk experts opinion on the likelihood of
reporting losses. Thereafter, a distribution is estimated for the available data combined
with the under-reporting information to produce an estimate of the true loss
distribution that counteracts the impact of under-reporting. For illustration, we
present an application utilizing publicly reported loss data and introduce different true
distributions as benchmarks. We compare the different loss distributions with and
without the under-reporting effect and evaluate the consequences for operational risk
capital requirements in the different scenarios.

The under-reporting function

When modeling a publicly reported database one needs to fit the operational risk
exposure to a company’s own situation. This is done here by introducing an under-
reporting function into the model, which could be thought of as a scaling function
explaining the likelihood of a loss being reported at different threshold levels. A very
simple interpretation of how the function affects the distribution is that in the
beginning and main body is up-weighted to include more probability mass in that
domain, while larger losses are down-weighted.

The under-reporting function should, as well as being continuous, pass exactly through
the predetermined reporting level values. The requirement is mathematically termed as
interpolating the report levels, which is a prediction made through and between the
report levels. A further requirement is to have a continuous and well-defined function
after the last observed report level. Mathematically, this is defined as extrapolation — a
prediction made beyond the last observed report level. Of course, a prediction based
upon extrapolation is potentially less reliable than a prediction between report levels since
one must assume an historical pattern will continue outside the reported value domain.

Spline theory meets these requirements. We utilize a cubic spline approximation
constructed by fitting piecewise cubic polynomials between the report levels (the
prediction beyond is captured linearly). A summary is provided in the Appendix and
deeper treatment of the subject can be found in Fan and Gijbels* and de Boor.’

3 Tripp er al. (2004).
# Fan and Gijbels (1996).
5 de Boor (2001).
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The estimated under-reporting function

The Basel operational risk categories were used as a standard basis from which to
estimate the under-reporting functions. Several subject matter risk experts from a
major international insurance company provided estimates of under-reporting.® This
lead to percentage estimates of the reporting likelihood at different predetermined loss
sizes. The risk event categories are shown in Table 1.

Data provided by the expert opinion on the probability of reporting a loss of a given
amount for each type of risk has been used to produce the under-reporting functions.
Figure 1 presents the estimated probability of reporting for each risk category. It can
be seen that the event risk category 7 (Execution, Delivery and Process Management)
has the lowest reporting likelihood, which means that losses for this kind of
operational risk are likely to be under-reported. On the other hand, smaller losses that
belong to category 5 (Clients, Products and Systems Failure) have a much higher
probability of being reported than small losses for other types of risks. Also
noteworthy is that for all event risk categories, the expert opinion assesses that the
probability of reporting a loss is smaller than or equal to 99 per cent, even for very
large losses. In fact, this acts as a bound, and it implies that there is at least a 1 per cent
chance that a very large loss occurs and is not reported. The estimation of the under-
reporting function is essential in our approach, but unfortunately very little is known
about the magnitude of under-reporting and even less on the validity of experts’
estimation. We think that further research needs to be done on the stability of these
estimates and we believe that here we provide a starting point for discussion.

A parametric distribution for loss data

As a starting point we use a probability distribution for the true operational risk
losses. Since we do not have full public reporting of all losses, the publicly available

Table 1 Event risk categories

1. Internal fraud

2. External fraud

3. Employment practices and workplace safety
4. Business disruption

5. Clients, products and system failures

6. Damage to physical assets

7. Execution, delivery and process management

® Eight top risk managers from different regions (Ireland, Canada, U.K., Scandinavia, etc.) were
interviewed. The experts currently practice within an international insurer and are exposed to routine
losses within the organization as well as having access to the vendors’ data set and any other information
in the public domain. They have all been involved with estimating severities and frequencies as part of the
Advanced Methodology approach (scenario analysis) operational risk capital calculation for regulatory
purposes. This was done initially as part of group activities to arrive at severities and frequencies — for this
paper they responded on under-reporting as individuals.
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Figure 1. The estimated under-reporting functions explaining the likelihood that a loss being reported on
each event risk category (ERC).

loss data will not follow the true distribution. We assume two benchmark parametric
distributions (lognormal and Weibull) that are potentially suitable and widely used in
the industry for the true losses. We also consider the generalized three-parameter
Champernowne distribution whose characteristics are appealing when working with
operational risk losses. The distribution shows a similar shape to the lognormal
distribution in the beginning and middle part of the domain and a convergence to the
heavy tail Pareto distribution for very large values (more details are given in the
Appendix).

Publicly reported loss data

The publicly reported loss database used for this exercise comprises information on
over 10,000 events including financial loss suffered, dates, locations, description and
loss category assignment across a range of global organizations. It is subject to quality
assurance and continual updating by the vendor.” Of course, an organization could
compile its database using newsfeeds if it wished. There is a considerable variation in
both the numbers and sizes of losses reported across categories. In Table 2, we give a
summary on each event risk categories statistics.

The second column shows the number of observations for each event risk category.
There is considerable variation in the number of losses; event risk categories 5 and 6
have 6,526 and 2,395 reported losses compared to category 4 that has been exposed to

7 Publicly available data were kindly provided by a specialized firm, which requested not to be cited.
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45 losses only. Columns 3-6 show some empirical results on each event risk category.
Note that the mean is significantly larger than the median in all cases, consistent with
right skewed distributions.

Figure 2 presents the estimated densities on event risk category 1 under different
scenarios. Three different probability distributions were fitted (lognormal, Pareto and
generalized Champernowne). On the left (observed density for ERC1), there is no
correction for under-reporting, while on the right (“true” density for ERCI1), the
estimation accounts for the existing under-reporting function. For the other six event
risk categories, a similar shape is expected.

Table 2 Descriptive statistics of the seven event risk categories reported losses (£million)

Event risk category Number of Maximum Sample  Sample  Standard
losses loss median mean deviation
1. Internal fraud 1,247 6,683.8 1.82 32.24 269.43
2. External fraud 538 910.6 2.14 15.60 69.68
3. Employment practices and workplace safety 721 221.9 1.98 7.84 20.04
4. Business disruption 45 117.6 5.88 22.46 33.25
5. Clients, products and system failures 6,526 11,228.7 3.74 36.59 268.28
6. Damage to physical assets 2,395 39,546.4 2.35 7491 1,192.55
7. Execution, delivery and process management 75 104.6 1.56 7.39 17.72
Observed Density for ERC 1 True Density for ERC 1
0'8 - Weibull 0.8 Weibull
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Figure 2. Estimated densities on event risk category 1. Dotted line represents the generalized
Champernowne model, broken line the Lognormal model and solid line the Weibull model. The left-hand
plot is the model without under-reporting effects, and the right-hand plot is the model that includes the
under-reporting estimates.
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Evaluating an internal operational risk loss distribution based on the publicly
reported losses

In this section, we simulate an operational risk loss distribution based on both
corrected and uncorrected publicly reported losses for every event risk category. This
is obtained using a severity distribution (one of the six shown in Figure 2 for event risk
category one and correspondingly for all the other events) together with a Poisson-
based frequency through 20,000 draws for one-year operational loss. Summation of
amounts from the seven event risk categories provides a single value for the simulated
distribution. For the severity distributions, we have a total of six different model
assumptions, three distributions with and without under-reporting effect. For the
frequency, we have four different scenarios, the observed and the corrected frequencies
for each probability distribution. Table 3 presents the different frequencies for the
different event risk categories.

Figure 3 shows six histograms of operational risk exposure. The top-row is total loss
distributions without an under-reporting effect. The second row includes the under-
reporting effect. Note that the generalized Champernowne model, both with and
without under-reporting, presents a heavy tail characteristic.

Table 4 shows the value at risk (VaR) and tail value at risk (TVaR) with level
2={0.95,0.99,0.999} for the three specific models when we account for under-reporting
as estimated by the experts. Table 5 shows what happens if it is assumed that there is
no under-reporting. For increasing values of o, the VaR and TVaR increase as
expected. It is also shown that when under-reporting is neglected, two of the three
models have a similar behavior. Only the generalized Champernowne distribution,
which has a heavy-tailed behavior, would imply larger capital requirements, especially
for the 0.999 level of significance. Under-reporting brings effects to capital
requirements calculation. The greater reporting of lower value losses will lead to
estimated distributions which could have lighter tailed characteristics and hence lower
capital estimates. On the other hand, where there is under-reporting at higher loss
values the effect will be to increase capital required. In our study, it appears that the
latter effect outweighs the former; however, the impact in company-specific situations
will vary with the specific data set being considered and the degree of under-reporting
estimated. Interestingly, the generalized Champernowne model differs significantly

Table 3 Frequency for each event risk category with and without a correction for under-reporting

Frequency model Event risk category
1 2 3 4 5 6 7
Without correction 1,247 538 721 45 6,526 2,395 75

With correction
Lognormal 1,708 742 1,156 74 10,282 4,318 390
Weibull 1,754 757 1,168 72 11,668 4,501 363
Champernowne 1,798 760 1,206 73 9,720 4,517 419
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Figure 3. Histograms of total loss distribution using Monte-Carlo simulation with the six scenarios. The
first row shows three different models without under-reporting effects. The second shows the models
including under-reporting.

from the other two models, because the values for VaR and TVaR are as much as two
times the ones obtained for the other two models.

Conclusions

We have addressed the question of quantifying operational risk when there are two
sources of information. One comes from data on the frequency and amount of losses,
which may be internal or external. The other source of information is based on the risk
experts’ opinion on the likelihood of reporting losses with respect to the loss amount.
We have used professionals to agree on an estimate of the probability of reporting a
loss for several risk categories. We observe that the profiles vary significantly for one
type of risk to another. As expected, large amounts are more likely to be reported than
small amounts.

We have then looked at the risk evaluation of the sum of risks and have confirmed
that the use of a distribution like the generalized Champernowne distribution that is
heavy-tailed, substantially increases the estimated capital requirements under the
conditions of our study. On the other hand, we have been able to assess that ignoring
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Table 4 Statistics for the loss distribution (£million), with a correction for under-reporting

Model specification Measure

VaRy.gs VaRy.o9 VaR.999 TVaRy.es TVaRy.99 TVaRy.999
Lognormal 92,411 97,021 102,492 95,271 99,537 106,226
Weibull 130,061 132,951 136,305 131,795 134,425 138,030
Champernowne 118,986 140,265 164,692 132,577 151,203 174,729

Table 5 Statistics for the loss distribution (£million), without a correction for under-reporting

Model specification Measure

VaRy.gs VaRy.g9 VaRy 999 TVaRy.es TVaRy.99 TVaRy.999
Lognormal 49,392 52,648 55,636 51,306 54,154 57,565
Weibull 54,594 61,560 63,652 60,799 62,584 64,525
Champernowne 72,033 107,711 130,019 92,977 120,264 147,521

the under-reporting phenomenon can lead to a biased estimate of the VaR and TVaR.
The approach described here is general in that it could be applied within any
organization. In our study, we have found that the overall effect of considering under-
reporting is to increase the capital requirement. However, this finding may well not be
universal since it appears that two opposing effects are in operation and therefore in
different circumstances could lead to a lower capital requirement. The overall effect
will depend on both the expert judgement on reporting and the external losses chosen
for modeling.

We have offered a way of evaluating the difference between the capital needs to
cover operational risk in practice and the capital standards obtained from data that
experts believe to be biased. We call for the further consideration of such methods and
also for deeper studies on the under-reporting phenomenon.
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Appendix
Piecewise cubic polynomial as under-reporting function

Our approach uses piecewise cubic polynomials for interpolating which are by
construction twice-continuous differentiable functions. In order to apply this to our
situation, we let {x,-,}ff;”f"' .—; be the report levels, where i=1, ..., k indicates event risk
category and r=1, ..., m; specifies the predetermined report levels. Also, we let the
partition 0 = x;; <xjp < -+ <X, be fulfilled in the domain [x;;, X;y,]. Furthermore, let
the relation x;—y; explain the corresponding likelihood of a loss being reported,
and assuming 0 =y; <pp<--- <Vin, <l holds. This realizes an under-reporting
function that is monotonically increasing. On each interval [x;, x;,] for
r=1,...,(m;—1) a third-order polynomial is estimated, resulting in a series of (n,;—1)
equations. The compound curve of all piecewise polynomials is then denoted as u; (-)
for each event risk category i. The spline method thus results in an underreporting
function for each risk event category that is continuous, smooth and passes through all
report levels®.

Three probability distributions for loss data

Champernowne’ first highlighted the distribution in context of economic income. A
deeper treatment was presented in Champernowne.' Furthermore, Buch-Larsen
et al'' demonstrated in a simulation study that the flexibility of the generalized
Champernowne distribution outweighs the advantages of the stability in the original
case with scale parameter ¢ =0, and also discuss the properties of this distribution and
its desirable properties in heavy tailed situations. The generalized Champernowne

8 We utilize a linear prediction beyond the last observed report level Xjm; for which we need to find an
intercept and a slope. Since the linear function should start from the last observed report level, this point is
naturally chosen as the intercept. Utilizing the derivative of the piecewise polynomial corresponding to the
intercept point, we find the slope by the expression u:.(nlﬁl)(x,-n”).

° Champernowne (1937).

10 Champernowne (1952).

" Buch-Larsen et al. (2005).
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distribution is defined for positive values and with parameter vector 0, = {a;, M, ¢;} on
each event risk category. The generalized Champernowne density takes the form

ai(x 4 ¢)" [(M; + ¢)" — ¢*]
[(x + )™ + (M; + ¢;)" = 2647

g(x;0;) =

Let
671/2(1nx7;4,-/0,')2
 xon2m
define the lognormal density with parameter vector n; = {;,6,}, and let
o(x;g) = ;— (ﬁf) L
be the Weibull density with parameter vector {; = {y;, f;}. The lognormal and the

Weibull are two widely used distributions in operational risk practice and should
benchmark the result from the unknown generalized Champernowne distribution.

h(x;n;) =

The correction for under-reporting for severities

For a correction with under-reporting information on the model assumption, we
combine the under-reporting functions discussed in the second section with the
parametric distributions for true losses from the previous section. This is obtained by
utilizing a multiplicative model defined for each event risk category i as

o (g0
TS0 =1 = etesopae ™ <

In this structure, the generalized Champernowne density can easily be replaced by the
lognormal density A(x; n;) or the Weibull density w(x; ;) as required. The resulting
density f(x; 0,) is the density of the publicly available information, that is the density
estimated on the observed data. By fitting publicly available data, we will be able to
find an estimate of the observed parameters (0, for the modified Champernowne, #; for
the lognormal and {; for the Weibull).

The multiplicative construction above is known both from the bias reduction
literature'? and also in the credibility literature.'® The difference from the latter is that
stochastic processes are used in the structure instead of an under-reporting function to
estimate the multiplicative error nonparametrically. In the first two references, the
multiplicative structure is used as a means to reduce bias while keeping the variance
stable on the same order. Note the appearance of the denominator since we want a
well-defined estimator, meaning that it should integrate to one. This is often termed as
a normalizing constant in the statistical literature. The parameters for the loss
distributions are estimated by the maximum likelihood method.

'2 Hjort and Glad (1995) and Jones et al. (1995).
13 Gustafsson et al. (2006).
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The correction for under-reporting on frequencies

For the frequency, we assume that the true number of claims X, ..., X,,, VI is iid and
follows a Poisson distribution with intensity A;. The frequency distribution including
under-reporting is then defined as follows. Let I(j),j=1, ...,m; be a standard indicator
function taking the value zero or one if the ith claims is not observed or observed,
respectively. The observed number of claims are then defined by the summation
Ni= 320 1(). 1f we let Xi,..., Xy Vi be the observed number of claims from the
publicly reported loss database, the under-reporting is then expressed as
u;(x)=P(I(1)=1/X,=x). Then we have that the X, ...,)?N, follows a Poisson
distribution with intensity A,P;,, where P;,= f u;(w)g(w; 0)dw. If the model
assumption is Weibull or lognormal, then we change the density to @ or h. This
means that when the frequencies are corrected with under-reporting, the observed
intensities are divided by the corresponding Ps. The authors can provide more details
for a deeper mathematical treatment on severity and frequency.
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