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Practical applications

The hedge funds (HF) and the funds of HF universe is evolving rapidly. To explain the growing

attraction of these alternative investments, investors often rely on the existence of free lunch. The

paper examines the diversification benefits of HF and funds of HF. We rely on mean–variance spanning

tests to analyse this issue. It is found that including HF or fund of HF portfolios to a set of benchmark

portfolios (US stocks only) provides an extra return for a unit increase in standard deviation. However,

this conclusion is less evident when we consider an internationally diversified portfolio as a

benchmark. Our message to portfolio managers is that the value added by HF is uncertain and depends

upon the opportunity set that is considered.

Abstract

We examine whether investors can improve their

investment opportunity set through the addition of a

hedge fund (HF) or fund of HF portfolio to different sets

of benchmark portfolios. Using data from 1994 to

2004, we find that HF, as an asset class, improve the

mean–variance frontier of sets of benchmark portfolios

sorted by firm size and book-to-market ratio. However,

we find that the improvement comes mainly from a

leftward shift of the global minimum-variance portfolio

rather than the tangency portfolio. Furthermore,

investors who already hold a diversified portfolio do not

improve their investment opportunity set by adding HF

portfolios. On the other hand, we find that investing in

funds of HF, as an asset class, does bring diversification

benefits for mean–variance investors, even when we

enlarge our investment opportunity set by including

fixed income, international assets and commodities.
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INTRODUCTION

Hedge fund (HF) investment has increased

dramatically in the last decade. For instance, Van
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Hedge Fund Advisors International, Inc. reports

a total of 8,100 global HF managing close $1.2

trillion in capital at the end of year 2005. To

explain the growing attraction of these funds,

investors often rely on the existence of free

lunch. Indeed, HF table higher average returns

than standard market indexes and higher Sharpe

ratio. More important, they tend to have lower

correlations with most passive investments. Low

correlation means that adding HF to a portfolio

can actually reduce risk and still provide the

benefits of higher average returns. However,

these conclusions depend on the investor’s ability

to achieve the performance of passive

investments. For those who do not meet the

definition of accredited investor, investing in

Funds of funds (FOF) is presently the only way

to gain access to absolute return strategies.

Indeed, FOF let investors with as little as

$10,000 to participate in a diversified mix of HF,

while traditional HF require a minimum

investment of $250,000. FOF can offer the most

attractive risk-adjusted rates of return with low

to zero correlation to most traditional portfolios.

However, the diversification across manager

styles comes at the cost of a multiplication of the

fees paid by the investor (Brown et al.1).

The purpose of this article is a better

understanding of the diversification benefits of

HF and funds of HF. We rely on mean–variance

spanning tests to analyse this issue. Throughout

the paper, we consider that a set of asset

returns provides diversification benefits relative

to a set of benchmark returns if adding these

returns to the benchmark leads to a significant

leftward shift in the mean–standard deviation

frontier. We should, however, note that even

if the analysis is based on historical returns, the

benefits we find could have little bearing on

future performance.

The rest of the paper is organised as follows:

The next section sets out the methods used to

evaluate mean–variance spanning; The

subsequent section describes the data for HF,

FOF and benchmark portfolios; The

penultimate section discusses the empirical

results and the final section concludes the paper.

TESTING FOR DIVERSIFICATION

BENEFITS

HF (or FOF) can play an important role as a

diversifier due to its low or negative correlation

to other asset classes. This highlights the

important role HF (or FOF) may play in the

asset allocation mix as it protects the portfolio

from undesirable moves in the equity market.

We rely on mean–variance spanning tests to

evaluate the economic diversification gains of

HF or FOF portfolios for investors (DeRoon

and Nijman;2 Kan and Zhou3). These tests

enable us to analyse the effect on the mean–

variance frontier of adding new assets to a set of

benchmark assets. For example, we can say that

spanning occurs when the mean–variance

frontier of the set of benchmark portfolios and

that of the benchmark portfolios plus a HF

portfolio (or a FOF portfolio) coincide. In this

case, investors do not benefit from adding a HF

(or a FOF) to their current portfolio.

In finite samples, the question of whether an

observed shift is statistically significant can be

tested using regression-based tests of mean–

variance spanning.

Asymptotic and finite sample test

statistics

In this section, we briefly describe the statistical

tests used to examine whether adding a HF

portfolio can significantly improve the investment
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opportunity set relative to a set of benchmark

assets. For purposes of convenience, we follow

the notation and treatment in Kan and Zhou.

We denote by K the set of benchmark

portfolios (ie, without HF or FOF portfolios) with

return R1t and by N the set of test assets (the HF

or FOF portfolio) with return R2t. We estimate

the following model using ordinary least squares:

R2t ¼ aþ bR1t þ xt; t ¼ 1; 2; . . .T ;

ðR ¼ XB þ E in matrix notationÞ
ð1Þ

Following Huberman and Kandel,4 the null

hypothesis of ‘spanning’ is:

H0 : a ¼ 0N ; d ¼ 1N � b1K ¼ 0N ; ð2Þ

where 0N is defined as the zero vector of N

elements. We then denote by l1 and by l2 the

two eigenvalues of the matrix ĤĜ�1 (see

Appendix A for the definition of Ĥ and Ĝ). The

distribution of the asymptotic Wald test statistic

of the null hypothesis is:

W ¼ Tðl1 þ l2Þ � w2
2N ð3Þ

In this case, if we fail to reject the null hypothesis,

then the benchmark assets span the mean–variance

frontier of the benchmark plus a HF or FOF

portfolio, that is investors are not able to enlarge

their investment opportunity set by adding a HF or

FOF portfolio. On the other hand, if the null

hypothesis is rejected, adding a HF or FOF portfolio

does improve the investment opportunity set.

The corresponding asymptotic likelihood

ratio and Lagrange multiplier tests are:

LR ¼ T
X2

i¼1

lnð1 þ liÞ � w2
2N ð4Þ

LM ¼ T
X2

i¼1

li

1 þ li

� w2
2N ð5Þ

As the Wald test is not the uniformly most

powerful test, we also use the likelihood ratio

and Lagrange multiplier tests for mean–variance

spanning. The exact finite sample distribution of

the likelihood ratio test under the null, as in

Huberman and Kandel, is:

1

U1=2
� 1

� �
T � K � N

N

� �
�

F2N ;2ðT�K�N Þ for N ¼ 2

ð6Þ

1

U1=2
� 1

� �
T � K � 1

2

� �
�

F2;2ðT�K�1Þ for N ¼ 1

ð7Þ

where U¼ |Ĝ|/|Ĥþ Ĝ|

In general, the test for mean–variance

spanning can be divided into two parts: (1) the

spanning of the global minimum-variance

portfolio and (2) the spanning of the tangency

portfolio. Therefore, we can re-write the Wald

test as

W ¼T
ŝR1

� �2

ŝRð Þ
2
� 1

 !

þ T
1 þ ŷRðR

GMV
1 Þ

2

1 þ ŷR1ðRGMV
1 Þ

2
� 1

 ! ð8Þ

where R is the return of the benchmark assets

plus the HF portfolio; ŝ2
R1

and ŝR
2 are the global

minimum variance of the benchmark assets and

that of the benchmark assets plus a HF or FOF

portfolio, respectively; ŷR1
ðRGMV

1 Þ is the slope of

the asymptote of the mean–variance frontier for

the benchmark assets; and ŷR(R1
GMV) is the slope

of the tangency line of the mean–variance

frontier for the benchmark portfolios plus a HF

or FOF portfolio.

The first term measures the change of the

global minimum-variance portfolios due to the

addition of a HF or FOF portfolio. The second

term measures whether there is an improvement
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of the squared tangency slope after adding a HF

or FOF portfolio to the set of benchmark

portfolios.

Kan and Zhou suggest a step-down

procedure, which requires us to first test a¼ 0N,

and then test d¼ 1N�b1K¼ 0N, conditional on

a¼ 0N.

The step-down asymptotic Wald tests can be

written as:

W1 ¼ T ðliÞ � w2
N ð9Þ

W2 ¼ T ðliÞ � w2
N ð10Þ

If the rejection is due to the first test, we

conclude that it is because the two tangency

portfolios are very different. If the rejection is

due to the second test, we conclude that it is

because the two global minimum-variance

portfolios are very different.

Spanning tests under non-normality

The tests described previously assume that

returns are normally distributed and the error

term in Equation (1) is homoskedastic.

However, HF or FOF returns are generally not-

normally distributed. In this case, we relax the

normality assumption and we use a GMM Wald

(Wa) test to adjust for return non-normality:

Wa ¼T � vecðŶ0Þ0½ðAT 
 IN Þ

ST ðA
0
T 
 IN Þ�

�1vecðŶ0Þ � w2
2N

ð11Þ

where the moment condition is

E½gt� ¼ EðX 
 EÞ ¼ 00N ð1þKÞ ð12Þ

ST ¼ E½g0tgt� ð13Þ

AT ¼
1 þ â1 �m̂1V̂

�1
11

b̂1 �10KV̂�1
11

" #
ð14Þ

Mean–variance intersection tests

A mean–variance intersection test is equivalent

to a test for mean–variance spanning for a

specific value of the zero-beta rate. Huberman

and Kandel show that the null hypothesis of

mean–variance intersection is:

H0 : a ¼ R0ð1N � b1KÞ ð15Þ

where R0 is the zero beta of return associated

with the mean–variance efficient portfolio at the

intersection point. DeRoon and Nijman show

that the Wald test for mean–variance

intersection is:

W intersection ¼ T
1 þ ŷRðR

0Þ
2

1 þ ŷR1
ðR0Þ

2
� 1

 !
ð16Þ

where ŷR1
ðR0Þ is the Sharpe ratio of the

benchmark assets, and ŷR(R0) is the Sharpe ratio

of benchmark plus test assets. DeRoon and

Nijman show that the Wald test intersection

statistic can easily be interpreted as the

percentage increase in Sharpe ratios scaled by the

sample size. Hence, the intersection hypothesis

is equivalent to the hypothesis that the Jensen

performance measure is zero. If there is

intersection, then there is no possible

improvement in the Sharpe measure to be

achieved by including the additional assets

N in the investor’s portfolio K.

For the spanning test, the Wald test statistic

can be re-written as

W ¼T
1 þ ŷRðR

0Þ
2

1 þ ŷR1
ðR0Þ

2
� 1

 !

þ T
ŝR1

� �2

ŝRð Þ
2
� 1

 ! ð17Þ

where ŷR1
ðR0Þ is the Sharpe ratio of the

benchmark assets and ŷR(R0) is the Sharpe ratio

Diversification benefits of hedge funds 293



of benchmark plus test assets. ŝ2
R1

and ŝR
2 are the

global minimum variance of the benchmark

assets and that of the benchmark assets plus a HF

portfolio, respectively. The equation shows that

the spanning test statistic consists of two parts:

the first is similar to the intersection statistic test

and determined by a change in Sharpe ratios,

and the second is determined by the change in

the global minimum variance of the portfolios.

To sum up, there is intersection even if there is

only one value for which mean–variance investors

cannot improve their mean–variance efficient

portfolio by including R2,tþ 1 in their investment

set. In other words, the mean–variance frontier of

R1,tþ 1 intersects R1,tþ 1þR2,tþ 1. Furthermore,

there is spanning if there are no mean–variance

investors that can improve their mean–variance

efficient portfolio by including R2,tþ 1 in their

investment set. In other words, the mean–variance

frontier of R1,tþ 1 spans R1,tþ 1 R2,tþ 1.

DATA

To represent the HF and FOF universes, we

choose to use The Credit Suisse First Boston/

Tremont (CSFB/Tremont) Hedge Fund Index

and TASS Fund of Hedge Funds Index (TASS

FOF), respectively. We also use two benchmark

sets. First, we take five size and five book-to-

market portfolios to form 25 value-weighted size

and book-to-market portfolios of NYSE, AMEX

and NASDAQ stocks. The 25 benchmark

portfolios are obtained from French’s website.5

Panel A of Table 1 presents the summary statistics

of the 25 size/book-to-market portfolios. These

portfolios show a mean return range from 0.55 to

1.88 per cent and a range of standard deviation

from 4.37 to 9.79 per cent.

Second, we enlarge our benchmark set by

including international asset classes, bonds and

commodities. Thus, our second benchmark

includes: Standard & Poor’s 500 for US large

capitalisation stocks, Standard & Poor’s SmallCap

600 for US small capitalisation stocks, Morgan

Stanley Capital International (MSCI) EAFE for

Europe, Australia and Far East stocks, MSCI EM

for emerging markets stocks, Goldman Sachs

Commodity Index (GSCI) for commodities,

Lehman Brothers Aggregate Index for fixed

income, and Payden & Rygel (P&R) 90 day

T-Bill for short term investments. Panel B of

Table 1 presents the summary statistics of the

second benchmark assets.

EMPIRICAL RESULTS

Full sample results

Table 2 reports the MVST results for the period

1994–2004. Based on LM, LR, W and GMM

Wa tests, we reject the null hypothesis that the 25

size/book-to-market portfolios as benchmark

portfolios (B1) can span the HF portfolio (as

represented by the CSFB/Tremont Hedge Fund

Index) at the 1 per cent confidence level.

Therefore, we suggest that investing in HF does

bring diversification benefits for mean–variance

investors. However, when we enlarge our

investment opportunity set by including fixed

income, international assets and commodities

(B2), we cannot reject the spanning hypothesis at

the 5 per cent level. This result is somewhat to

be expected due to the presence of international

asset classes, commodities and bonds. Thus, the

value added by HF is uncertain and depends

upon the opportunity set that is considered.

On the other hand, based on LM, LR and Wa

tests, we reject the null hypothesis that the 25

size/book-to-market portfolios as benchmark

portfolios can span the FOF portfolio at the 1
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per cent confidence level. We also confirm these

results using the GMM Wa test allowing for

heteroskedasticity. Therefore, we suggest that

investing in FOF does bring diversification

benefits for mean–variance investors, even when

we enlarge our investment opportunity set by

including fixed income, international assets and

commodities.

To further investigate the sources of the

spanning hypothesis rejection, we implement a

step-down procedure as suggested by Kan and

Zhou. These authors divide the spanning test

into two: the first test is related to the tangency

portfolio and refers to the restriction on the

intercepts of the regression (a¼ 0N), and the

second is related to the global minimum-

variance portfolio and refers to the constraint on

the estimated coefficients (d¼ 1N�b1K¼ 0N).

As sustained by Petrella,6 this division is

important for investors with a low risk aversion,

as they will benefit more from the improvement

of the tangency portfolio’s characteristics.

Table 3 reports results of the step-down

procedure. Panel A of Table 3 reports results for

the CSFB/Tremont Hedge Fund Index. We find

that, when we use B1, the null hypothesis related

to the tangency portfolio is not rejected, while

we reject the null hypothesis of the global

Table 1: Summary statistics of benchmark portfolios (1994–2004)

Panel A Size

Smallest 2 3 4 Biggest

Lowest 0.55 (9.79) 0.82 (8.31) 0.74 (7.67) 1.06 (6.86) 1.02 (4.86)

2 1.53 (7.99) 1.03 (5.81) 1.07 (5.17) 1.17 (4.73) 1.15 (4.50)

Book-to-market 3 1.62 (5.78) 1.30 (4.74) 1.16 (4.51) 1.32 (4.61) 1.11 (4.48)

4 1.88 (5.14) 1.37 (4.92) 1.15 (4.58) 1.32 (4.45) 1.06 (4.37)

Highest 1.77 (5.24) 1.40 (5.39) 1.52 (4.98) 1.13 (4.85) 0.79 (5.02)

Panel B S&P

500

(%)

S&P

Small Cap

600 (%)

MSCI

EAFE

(%)

MSCI

EM

(%)

Lehman Brothers

Aggregate Index

(%)

P&R US

T-bill 90-day

(%)

GSCI (%)

Mean return 0.97 1.12 0.59 0.42 0.55 0.33 0.86

Standard

deviation

4.40 5.26 4.29 6.69 1.15 0.16 5.67

Panel A presents the mean monthly percentage returns and monthly percentage standard deviations

(in parentheses) of the 25 size/book-to-market portfolios.

Panel B presents the mean monthly returns and monthly standard deviations of the second benchmark (B2)

assets. B2 includes: Standard & Poor’s 500 for US large capitalisation stocks, Standard & Poor’s SmallCap 600 for

US small capitalisation stocks, Morgan Stanley Capital International (MSCI) EAFE for Europe, Australia and Far

East stocks, MSCI EM for emergent markets stocks, Lehman Brothers Aggregate Index for fixed income,

Payden & Rygel (P&R) 90-day T-bill for short-term investments and Goldman Sachs Commodity Index

(GSCI) for commodities.
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minimum-variance portfolio at the 1 per cent

confidence level. Thus, investing in a HF

portfolio (as represented by the CSFB/Tremont

Hedge Fund Index) improves the global –

minimum-variance portfolio but not the

tangency portfolio. However, when we use B2,

we reject neither of the tests. Investors who

already hold a diversified portfolio with

international assets, bonds and commodities do

not improve their investment opportunity set by

adding HF portfolios.

Panel B of Table 3 reports results for the TASS

FOF. We find that, when we use B1, the null

hypothesis related to the tangency portfolio is

not rejected, while we reject the null hypothesis

of the global minimum-variance portfolio at the

1 per cent confidence level. Thus, investing in a

FOF portfolio improves the global minimum-

variance portfolio but not the tangency

portfolio. We also confirm this result using B2.

Mean–variance spanning tests in terms

of performance measures

The purpose of this section is to examine the

added value of HF and FOF in terms of the

Table 2: Mean–variance spanning tests of hedge funds and funds of hedge funds portfolios

(1994–2004)

Benchmark (B1) Benchmark (B2)

Regression-based

mean–variance

spanning tests

GMM

Wa

test

Regression-based

mean–variance

spanning tests

GMM

Wa

test

LM LR W Wa LM LR W Wa

Panel A

CSFB/Tremont

Hedge Fund Index

7.663

(0.005)

11.470

(0.000)

18.273

(0.000)

8.014

(0.004)

5.076

(0.079)

5.176

(0.075)

5.279

(0.071)

4.454

(0.108)

Panel B

TASS FOF Index 107.46

(o0.000)

222.10

(o0.000)

578.12

(o0.000)

462.79

(o0.000)

7.073

(0.029)

7.269

(0.026)

7.473

(0.023)

4.821

(0.089)

The test portfolios are the CSFB/Tremont Hedge Fund and TASS Funds of Hedge Funds Indexes. Benchmark

(B1) includes 25 size/book-to-market portfolios that are constructed by all of the firms trading on the NYSE,

AMEX or NASDAQ. Benchmark (B2) includes: Standard & Poor’s 500 for US large capitalisation stocks,

Standard & Poor’s SmallCap 600 for US small capitalisation stocks, Morgan Stanley Capital International

(MSCI) EAFE for Europe, Australia and Far East stocks, MSCI EM for emergent markets stocks, Goldman

Sachs Commodity Index (GSCI) for commodities, Lehman Brothers Aggregate Index for fixed income, and

Payden & Rygel (P&R) 90-day T-bill for short-term investments. LM, LR and W represent the asymptotic

Lagrange multiplier, likelihood ratio and Wald tests, respectively. Wa is the GMM Wald test allowing for

heteroskedasticity. The p-values are in parentheses.
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Sharpe ratio and Jensen’s alpha, using MVSTs.

Bekaert and Urias7 point out that the change in

the Sharpe ratio of the tangency portfolio

measures the economic importance of the shift

in the efficient frontier. As the Sharpe ratio of

the tangency portfolio gives the largest mean

return per unit of standard deviation, a

difference between the Sharpe ratios computed

for the benchmark assets (K) and the KþN

(new assets) indicates that investors can enhance

their returns per unit of risk by investing in the

additional N assets.

Further, in addition to using the change in the

maximum Sharpe ratio, we use Jensen’s alpha as a

measure of portfolio efficiency. To do so, we

conduct mean–variance intersection tests that

are, as previously shown, equivalent to Jensen’s

alpha measure of portfolio performance.

Panel A and B of Table 4 report the results for

the mean–spanning tests (using the Sharpe ratio)

and the mean–variance intersection tests

(equivalent to Jensen’s alpha) for the CSFB/

Tremont Hedge Fund Index and the TASS FOF

indexes, respectively. First, we find that when we

consider B1 as the benchmark portfolio, we fail

to reject the mean–variance intersection

hypothesis for CSFB/Tremont Hedge Fund

Index. Thus, there is no evidence of abnormal

performance for HF portfolio relative to the

benchmark B1. However, this conclusion is less

evident when we consider B2 as a benchmark

portfolio.

Table 3: Mean–variance intersection and spanning tests of Hedge funds and funds of Hedge

funds portfolios (1994–2004)

Step-down tests

Benchmark (B1) Benchmark (B2)

W1 W2 W1 W2

Panel A

CSFB/Tremont Hedge Fund Index 0.683 (0.710) 9.604 (0.008) 0.0001 (1.000) 3.513 (0.173)

Panel B

TASS FOF Index 1.138 (0.566) 462.795 (o0.000) 0.004 (0.997) 4.821 (0.089)

The test portfolios are the CSFB/Tremont Hedge Fund and TASS Funds of Hedge Funds Indexes. Benchmark

(B1) includes 25 size/book-to-market portfolios that are constructed by all of the firms trading on the NYSE,

AMEX or NASDAQ. Benchmark (B2) includes: Standard & Poor’s 500 for US large capitalisation stocks,

Standard & Poor’s SmallCap 600 for US small capitalisation stocks, Morgan Stanley Capital International

(MSCI) EAFE for Europe, Australia and Far East stocks, Morgan Stanley Capital International (MSCI) EM for

emergent markets stocks, Goldman Sachs Commodity Index GSCI for commodities, Lehman Brothers

Aggregate Index for fixed income and Payden & Rygel (P&R) 90-day T-bill for short-term investments. The

first test (W1) is a Wald test of H0: a=0N, and the second test (W2) is a Wald test of H0: d=1N�b1K=0N

conditional on a=0N. The p-values are in parentheses.
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Panel B of Table 4 reports the results for the

mean–spanning tests and the mean–variance

intersection tests for the FOF portfolio. We find

that, when we consider B1 as the benchmark

portfolio, we reject the mean–variance

intersection hypothesis. In other words, there is a

significant abnormal performance on FOF

portfolio relative to a set of 25 size/book-to-

market portfolios as benchmarks. However, we

fail to reject the mean–variance intersection

hypothesis for FOF portfolio when we consider

B2 as a benchmark portfolio.

Overall, we conclude that including HF or

FOF portfolio in a set of benchmark portfolios

(US stocks only) does provide an extra return for

a unit increase in standard deviation. However,

this conclusion is less evident when we consider

a diversified benchmark.

CONCLUSION

In this paper, we examine whether investors can

improve their investment opportunity set by

adding a HF or fund of HF portfolio to different

sets of benchmark portfolios. We apply a battery

of mean–variance spanning tests using data from

1994 to 2004. To the best of our knowledge, our

study is the first to use these tests in the HF or

FOF context.

When we consider benchmark portfolios

sorted by firm size and book-to-market ratio, we

find that HFs, as an asset class, improve the

Table 4: Mean–variance intersection tests and mean–variance spanning tests (in terms of

sharpe ratios) of hedge funds and funds of hedge funds portfolios (1994–2004)

Benchmark (B1) Benchmark (B2)

Intersection

hypothesis

Spanning

hypothesis

Intersection

hypothesis

Spanning

hypothesis

WIntersection WSpanning WIntersection WSpanning

Panel A

CSFB/Tremont Hedge

Fund Index

2.564 (0.109) 16.090 (0.000) 29.361 (0.001) 23.590 (0.009)

Panel B

TASS FOF Index 65.978 (o0.000) 257.908 (o0.000) 0.070 (0.791) 3.729 (0.053)

The test portfolios are the CSFB/Tremont Hedge Fund and TASS Funds of Hedge Funds Indexes. Benchmark

(B1) includes 25 size/book-to-market portfolios that are constructed by all of the firms trading on the NYSE,

AMEX or NASDAQ. Benchmark (B2) includes: Standard & Poor’s 500 for US large capitalisation stocks,

Standard & Poor’s SmallCap 600 for US small capitalisation stocks, Morgan Stanley Capital International

(MSCI) EAFE for Europe, Australia and Far East stocks, Morgan Stanley Capital International (MSCI) EM for

emergent markets stocks, Goldman Sachs Commodity Index GSCI for commodities, Lehman Brothers

Aggregate Index for fixed income and Payden & Rygel (P&R) 90-day T-bill for short-term investments. W

represents the asymptotic Wald test. The p-values are in parentheses.
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mean–variance frontier set. However, the

improvement comes mainly from a leftward shift

of the global minimum-variance portfolio rather

than the tangency portfolio. These results are

especially important to low risk investors who

are looking for alternative assets to enlarge the

minimum-variance frontier. Additionally, we

find that investors who already hold a diversified

portfolio with international assets, bonds and

commodities do not improve their investment

opportunity set by adding HF portfolios. On the

other hand, results show that investing in FOF

does bring diversification benefits for mean–

variance investors, even when we enlarge our

investment opportunity set by including fixed

income, international assets and commodities.

Further, to investigate the economic

importance of the shift in the efficient frontier

that results from adding HF or FOF, we conduct

further tests: mean–variance spanning tests using

Sharpe ratios and mean–variance intersection

tests that are equivalent to the Jensen’s alpha

measure of portfolio performance. Our general

conclusion is that including HF or FOF

portfolios to a set of benchmark portfolios (US

stocks only) provides an extra return for a unit

increase in standard deviation. However, this

conclusion is less evident when we consider an

internationally diversified portfolio as a

benchmark.

These results confirm Amin and Kat8

observations. These authors investigate the

diversification effects that occur when

combining HF with stocks and bonds. They

show that HF do not mix too well with equity

and that including HF in a traditional investment

portfolio not only improve portfolio’s mean–

variance characteristics, but also lead to

significantly lower skewness as well as higher

kurtosis. This is an important result giving that

most institutional investors continue to allocate

growing percentage of their assets to HF.

Furthermore, we confirm that not only FOF

allow for institutional investors to have access to

the best HF managers, but they do provide

added diversification. The HF and the funds of

HF universe is evolving rapidly and much

remains to be done to better understand the

importance of these alternative investments to

asset allocation.
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Appendix A

Asymptotic and finite test statistics for

mean–variance spanning tests

Following Huberman and Kandel,4 the null

hypothesis of ‘spanning’ is:

H0 : a ¼ 0N ; d ¼ 1N � b1K ¼ 0N :

We can write the null hypothesis as Y¼ [a
d]0 ¼O2�N¼AB�C,
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where

A ¼
1 00K

0 �10K


 �
and C ¼

00K

�10K


 �

The distribution of the null hypothesis is

vec(Ŷ)BN(vec(Y0), A(X0X)�1A0#S) . By

defining

Ĝ ¼TAðX 0XÞ � 1 A0

¼
1 þ m̂010V̂

�1

11 m̂10 m̂010V̂
�1

11 1K

m̂010V̂
�1

11 1K 10K V̂
�1

11 1K

2
4

3
5

and

Ĥ ¼ Ŷ
X̂�1

Ŷ ¼
â0
P̂�1â â0

P̂�1d̂

â0
P̂�1d̂ d̂0

P̂�1d̂

" #

we then denote the two eigenvalues of the

matrix, ĤĜ�1, by l1 and by l2.
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