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1. Introduction

Production scheduling of open-pit mining operations is a
challenging and critical issue for mining companies, a key
factor in determining returns on investments in the order of
hundreds of millions of dollars. In scheduling mine production,
the mineral deposit is represented as a three-dimensional array
of blocks. Each block has a weight and a metal content
estimated using information obtained from drilling. To recover
the metal, the block is first mined from the ground and then
processed in a mill. These operations are termed mining and
processing, respectively.
Blocks are classified as ore or waste according to their metal

content. Ore blocks are those that have a selling revenue greater
than their processing costs, while waste blocks have a total
metal content whose selling revenue is less than the processing
costs. Both ore and waste blocks must be mined in order to gain
access to all the ore blocks. Any block that must be mined in
order to reach another block is called the predecessor of the
second block.
Decisions on block scheduling are subject to various types

of constraints. The production schedule not only must respect
the limits on extraction capacity (mining constraints) and the
capacity of the processor (processing constraints) at each
period of the life of the mine, but also must take into
consideration the order in which blocks can be removed from

the orebody to ensure that a block is not mined before any
of its predecessors (slope constraints). In addition, any
block can be mined only once (reserve constraints). The
problem is to determine which blocks to extract and when
to extract them (mining sequence) in order to maximize the
net present value (NPV) of the mine while respecting the
various constraints.
A major complexity in the open-pit mine production sche-

duling problem (MPSP) is that the number of blocks is large, in
general in the order of tens to hundreds of thousands, yielding a
large-scale optimization problem. Another factor adding to the
complexity of the mine scheduling problem is metal uncer-
tainty, for the metal content of the blocks is not known precisely
at the time decisions are made but is inferred from limited
drilling information. Up to now, most methods developed to
solve the MPSP either ignore the metal uncertainty issue or are
not able to solve large-scale instances in which metal uncer-
tainty is accounted for.
Indeed, the MPSP has been frequently studied since the

1960s (Newman et al, 2010). Different methods have been
applied to solve the deterministic version of the problem, which
assumes that all the problem parameters are well known. These
methods can be classified into three categories: exact methods
(Dagdelen and Johnson, 1986; Caccetta and Hill, 2003;
Ramazan, 2007; Boland et al, 2009; Bley et al, 2010), heuristic
and metaheuristic methods (Gershon, 1987; Denby and
Schofield, 1994; Ferland et al, 2007; Chatterjee et al, 2010),
and hybrid methods (Tolwinski and Underwood, 1996; Sevim
and Lei, 1998; Moreno et al, 2010). However, the uncertain
nature of the problem is ignored in the deterministic version of
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the MPSP, resulting in misleading assessments (Ravenscroft,
1992; Dowd, 1994; Dimitrakopoulos et al, 2002; Godoy and
Dimitrakopoulos, 2004). Studies that compare stochastic to
deterministic approaches (Godoy and Dimitrakopoulos, 2004;
Menabde et al, 2007; Albor and Dimitrakopoulos, 2009, 2010;
Asad and Dimitrakopoulos, 2013) indicate that stochastic
approaches show major improvements in NPV, on the order of
20% to 30%, substantially reduce risk in meeting production
forecasts, and find pit limits larger than the ones found by
deterministic approaches, contributing to the sustainable utiliza-
tion of mineral resources.
In the stochastic versions of the problem, a scenario approach

is usually used to handle the metal uncertainty. The scenarios
are specified from estimates in the continuous space without
any underlying scenario tree structure. Consequently, the multi-
stage approach commonly used in stochastic programming
cannot be used. Three different approaches are used in the
literature. The first involves formulations maximizing the
expected NPV over the scenarios describing the metal uncer-
tainty while satisfying the production targets in an average
sense (Menabde et al, 2007). The second involves formulations
maximizing the expected NPV and minimizing deviations from
production targets for each individual scenario (Ramazan and
Dimitrakopoulos, 2007; Albor and Dimitrakopoulos, 2010;
Ramazan and Dimitrakopoulos, 2013). The third approach,
illustrated in Boland et al (2008), takes into account the metal
uncertainty via a multistage stochastic programming approach
where the missing interdependency between scenarios and the
decisions (ie, the missing tree structure) is simulated using
conditional non-anticipativity constraints.
While different stochastic models have been developed,

solution methods have received relatively less attention.
Furthermore, most of the solution methods developed have
been able to deal only with instances of relatively small size
(typically, up to 20 000 blocks). The stochastic models pro-
posed in the studies by Menabde et al (2007), Ramazan and
Dimitrakopoulos (2007, 2013), and Boland et al (2008) are
solved using the mixed integer programming solver CPLEX.
The method used in Albor and Dimitrakopoulos (2010) consists
of generating a set of nested pits, grouping these pits into
pushbacks, and then generating a schedule based on the push-
back designs obtained, while the method used in Lamghari and
Dimitrakopoulos (2012) is based on Tabu search.
In this paper, we propose an efficient solution method to

deal with large instances of the MPSP with metal uncertainty,
where the uncertainty is addressed using a two-stage stochastic
programming approach. Specifically, we introduce a metaheur-
istic method based on a variable neighbourhood descent (VND)
procedure (Hansen and Mladenovic, 2001). To generate the
initial solution to be improved by this procedure, we consider
two different alternatives. Both are based on a decomposition
approach separating the problem into a series of sub-problems,
each associated with one period. They differ in the method
used to solve the sub-problems. In the first alternative, the
sub-problems are solved exactly, while in the second one, the

sub-problems are solved approximately with a greedy heuristic.
We evaluate and compare the performance of the two variants
of the proposed solution method on large-scale instances with
up to 97 307 blocks. The results indicate that both variants
generate very good solutions in reasonable computational
times. The first variant, where the sub-problems are solved
exactly, slightly outperforms the second one in terms of solution
quality, while the second variant, where the sub-problems are
solved with a heuristic, requires in general significantly less
computational time.
The remainder of the paper is organized as follows: In

Section 2, the approach used to deal with metal uncertainty is
outlined, and a mathematical formulation of the problem is
introduced. The following section briefly describes the methods
used to generate the initial solution. Section 4 summarizes the
variable neighbourhood procedure used to improve the initial
solution. Computational results on real-life data are reported
and discussed in Section 5. Finally, some conclusions are drawn
in Section 6.

2. Mathematical formulation

Referring to the description given in the previous section, the
problem can be formulated as a two-stage stochastic program-
ming model (Birge and Louveaux, 1997). In the first stage, one
determines a set of blocks to be mined at each period in order to
satisfy the reserve constraints, the slope constraints, and the
mining constraints. The metal content of each block, determin-
ing whether the block is ore or waste, is uncertain at this stage.
In the second stage, when the blocks are mined, the metal
content becomes known. In some periods, the ore blocks
available, requiring processing, may have a total weight
exceeding the mill capacity (ie, the processing constraints may
be violated). To deal with such a situation, some recourse
actions are available, but they induce a cost. The problem is
then to identify a schedule that maximizes the expected NPV of
the mining operation minus the expected recourse costs
incurred due to the violation of the processing constraints.
The following notation is used to formulate the mathematical

model:

● T: the number of periods over which blocks are being
scheduled (horizon).

● t: period index, t= 1,…, T.
● Wt: maximum amount of rock (ore and waste) that can be

mined during period t (mining capacity in tons).
● Θt: maximum amount of ore that can be processed in the mill

during period t (processing capacity in tons).
● N: the number of blocks considered for scheduling.
● i: block index, i= 1,…,N.
● Pi: the set of predecessors of block i; that is, blocks that have

to be mined to have access to block i.
● Pi: the set of direct predecessors of block i; that is,

Pi = fp 2 Pi : p is on the level immediately above ig:
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● Γi: the set of successors of block i; that is, γ∈Γi if i∈Pγ.
Figure 1 gives a two-dimensional illustration of the sets Pi,
Pi, and Γi.

● wi: the weight of block i (in tons).
● vi: the economic value of block i. It is a random variable

depending on the metal content of the block.
● vti = vi=ð1 + d1Þt: the discounted economic value of block i if

mined during period t (d1 being the discount rate per period).
Note that it is assumed that ore blocks are processed during
the same period when they are mined and that the profit is
also generated during that period.

● θi: a random variable indicating if block i is an ore or a waste
block

θi =
1 if block i is an ore block;

0 otherwise:

(

It is a random variable because the metal content of a block
determines whether the block is ore or waste.

● ct = c
ð1 + d2Þt: unit surplus cost incurred if the total weight of

ore blocks mined during period t exceeds the processing

capacity, Θt (c being the undiscounted surplus cost, and d2
represents the risk discount rate).

The variables used to formulate the problem are as follows:

● A binary variable is associated with each block i for each
period t:

xti =
1 if block i ismined by period t;

0 otherwise:

(

This means that if block i is mined in period τ, then xi
t= 0 for

all t−1,…, τ−1 and xi
t= 1 for all t= 1,…, T. If i is not mined

during the horizon, then xi
t= 0 for all t= 1,…, T.

● A random variable dt is associated with each period t.
It measures the surplus in ore mined during period t.

The mathematical model can be summarized as follows:

maxE
XN
i= 1

v1i x
1
i

" #
+E

XT
t= 2

XN
i= 1

v1i ðx ti - xt - 1i Þ
" #

-E
XT
t= 1

ctdt
" #

(1)

(M) Subject to

xt - 1i ⩽xti i= 1;¼;N; t= 2;¼; T (2)

xti⩽x
t
p i= 1;¼;N; p 2 Pi; t= 1;¼; T (3)

XN
i= 1

wix
1
i ⩽W

1 (4)

XN
i= 1

wiðxti - xt - 1i Þ⩽Wt t= 2;¼; T (5)

XN
i= 1

θiwix
1
i - d

1⩽Θ1 (6)

XN
i= 1

θiwiðxti - xt - 1i Þ - dt⩽Θt t= 2;¼; T (7)

xti = 0 or 1 i= 1;¼;N; t= 1;¼;T (8)

dt⩾0 t= 1;¼; T : (9)

The objective function (1) includes two terms to maximize
the expected NPV of the mining operation and to minimize the
expected recourse costs incurred whenever the processing
constraints are violated due to metal uncertainty. Constraints
(2) guarantee that each block i is mined at most once during
the horizon (reserve constraints). The mining precedence (slope
constraints) is enforced by constraints (3). Constraints (4) and
(5) impose an upper bound Wt on the amount of rock (ore
and waste) mined during each period t (mining constraints).
Constraints (6) and (7) are related to the requirements on the
processing levels (processing constraints). The target is to have
the total amount of ore mined during any period t be smaller
than Θt; otherwise, the surplus penalty cost is equal to ctdt.
The model is a two-stage stochastic programming model. The
variables xi

t specifying the mining sequence are the first-stage
decision variables, and the random variables dt measuring the
surplus in ore production are the second-stage decision vari-
ables. dt depend on both the realization of the metal content and
the first-stage decisions.
To transform this stochastic model into an equivalent deter-

ministic one, assume that S possible scenarios are available
where each scenario s specifies the metal content of each block.
Furthermore, assume that the probability of occurrence of
scenario s is πs, with

PS
s= 1 πs = 1. Let vis

t , θis, and ds
t denote

respectively a realization of the random variables vi
t, θi, and dt.

Figure 1 Illustration of the sets Pi, Γi, and Pi.
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Then, the original model (1)–(9) can be reformulated as follows:

max
XN
i= 1

XS
s= 1

πsv
1
isx

1
i +

XT
t= 2

XN
i= 1

XS
s= 1

πsv
t
isðxti - xt - 1i Þ -

XT
t= 1

XS
s= 1

πsc
tdts

(10)

(DE) Subject to
Constraints (2)–(5), (8), and

XN
i= 1

θiswix
1
i - d

1
s⩽Θ

1 s= 1;¼; S (11)

XN
i= 1

θiswiðxti - xt - 1i Þ - d t
s⩽Θ

t t= 2;¼; T ; s= 1;¼; S (12)

dts⩾0 t= 1;¼; T ; s= 1;¼; S: (13)

The model (DE) utilizes a limited number of scenarios,
each specifying the metal content of each block, which then
are used to calculate the corresponding economic value.
A natural question to address is how to choose the number of
scenarios to consider. This is a well-studied topic in stochastic
optimization (Dupacova et al, 2003) and other fields (Scheidt
and Caers, 2009). The case studies presented in this paper use
20 scenarios because past work, such as the work in Albor and
Dimitrakopoulos (2009), indicates that after about 15 simulated
representations of an orebody, stochastic schedules converge to
a stable final physical schedule as well as stable forecasts of
production performance. This behaviour is not surprising; while
simulated scenarios represent a mineral deposit at the support-
scale of mining blocks, each with a volume of a few cubic
meters, a mine’s production schedule represents a grouping of a
few thousand of these mining blocks in just one time (mining)
period under various constraints. Thus, as the support-scale of a
mine’s schedule is orders of magnitude larger than that of the
simulated representations of the mineral deposit being sched-
uled, the stochastic schedule becomes insensitive to additional
scenarios after a relatively small number of scenarios. In this
paper, the set of sufficient scenarios is provided, and the
objective is to design an efficient method to solve the proposed
mathematical model.
If the mining and the processing constraints are eliminated,

and if the scheduling horizon reduces to a single period, then
the model (DE) reduces to the classical maximum closure prob-
lem. This problem is reducible to the minimum-cut problem
(Picard, 1976), and thus it can be solved efficiently using any of
the known polynomial maximum-flow algorithms. However, as
Bienstock and Zuckerberg (2010) note on page 3, ‘it can be
shown by reduction from max clique that adding a single
cardinality constraint to a maximum closure problem is enough
to make it NP-hard’. Because the MPSP is more complex than
a constrained maximum closure problem, and as real-world
MPSP instances are very large, having typically tens to
hundreds of thousands blocks, it is most likely not appropriate

to solve these large-scale realistic instances using an exact
method. Instead, we propose a metaheuristic solution method
where an initial feasible solution is first obtained and then
improved with a VND procedure. The methods used to generate
the initial solution as well as the VND procedure are described
in the following sections.

3. Generating the initial solution

We propose to generate the initial solution using two different
heuristics based on a decomposition approach where the
global problem is divided into smaller sub-problems, each
associated with a period t (t= 1,…, T). The sub-problems are
solved sequentially in increasing order of t, and their solutions
are combined to generate the initial solution. The heuristics
differ in the method used to deal with the sub-problems. In the
first one, the sub-problems are solved exactly, while in the
second one, the sub-problems are solved approximately with
a greedy heuristic. Note that since the sub-problems are
smaller than the global problem, an exact method can be used
to solve them.

3.1. Sub-problem formulation

The sub-problem associated with period t consists of determin-
ing a set of blocks Bt to be mined in period t. Let us denote by
Rt= {block i: xi

t= 0} the set of blocks not mined yet (if t= 1,
then |Rt| =N; otherwise, jRtj=N - jSτ< t Bτj). In order to
satisfy the reserve constraints, the blocks to be included in Bt

should be selected from Rt. The sub-problem associated with
period t can then be summarized as follows:

max
X
i2Rt

XS
s= 1

πsv
t
isyi - c

t
XS
s= 1

πsds (14)

(SPt ) Subject to

yi⩽yp i 2 Rt; p 2 Pi\Rt (15)X
i2Rt

wiyi⩽Wt (16)

X
i2Rt

θiswiyi - ds⩽Θt s= 1;¼; S (17)

yi = 0 or 1 i 2 Rt (18)

ds⩾0 s= 1;¼; S (19)

where

yi =
1 if block i is included in the setBt ði:e:; is

mined in period tÞ;
0 otherwise:

8<
:

Recall that if block i is mined in period t, then xi
τ= 0 for all

τ= 1,…, t−1 and xi
τ= 1 for all τ= 1,…, T.
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Logical implications of the constraints are used to generate
valid inequalities to strengthen the formulation above and make
the sub-problems easier to solve. To be more specific, consider
any block i∈Rt. On the one hand, the slope constraints require
that to include i in Bt, we must also include all blocks j∈N i=
Pi∩Rt (the set of blocks that are predecessors of i and not
mined yet). On the other hand, i should not be included in Bt if
wi +

P
j2N i

wj >Wt because this would lead to violation of the

mining constraints. Hence, we add the following constraints to
the model (SPt):

yi⩽ei i 2 Rt (20)

where ei is a parameter equal to 1 if the extraction of block iwill
not lead to violation of the mining constraints and 0 otherwise;
that is,

ei =
1 if wi +

P
j2N i

wj⩽Wt;

0 otherwise:

8<
:

3.2. Sub-problem solution methods

Two different methods are introduced to solve the sub-pro-
blems. In the first method, the formulation (14)–(20) is solved
using the branch-and-cut algorithm (BC) implemented in the
mixed integer programming solver CPLEX.
The second method is a sequential greedy heuristic procedure

(GH) where at each iteration we try to include in the set Bt an
inverted cone formed by a ‘base’ block in Rt and all its
predecessors not mined yet. Let us analyse a typical iteration.
Let V t =Wt -

P
b2Bt wb andOt

s = maxfΘt -
P

b2Bt θbswb; 0g
be the residual mining capacity and the residual processing
capacity under scenario s, respectively. For each block i∈Rt,
we denote:

● Ωi= {i}∪{ j: j∈N i} the set formed by block i and all its
unmined predecessors (ie, the inverted cone whose base is i).

● αi =
P

k2Ωi
wk: the total weight of blocks in Ωi.

● βis =
P

k2Ωi
θkswk: the total weight of ore blocks in Ωi under

scenario s.
● γi =

P
k2Ωi

PS
s= 1 πsv

t
ks: the total expected discounted eco-

nomic value of blocks in Ωi.
● ξi = γi - ct

PS
s= 1 πs maxfβis -Ot

s; 0g: the total contribution

of blocks in Ωi to the objective function (14).

Consider the set A= {i∈Rt: αi⩽Vt} of blocks i∈Rt whose
weight plus the weight of their predecessors not mined yet does
not exceed the residual mining capacity. Clearly, only cones
having blocks in A as their base can be added to Bt while
satisfying the slope constraints and the mining constraints.
Select the block i*∈A maximizing the value of ξi. Ties are
broken up randomly. Remove all blocks k∈Ωi* from Rt, add
them to Bt, and update V t, Os

t for each s= 1,…, S, and the

set A. This process is repeated until the mining constraints are
approximately satisfied; that is, untilX

i2Bt

wi⩽δWt (21)

where δ is a random number in the interval [δ1, δ2], and δ1
and δ2 are parameters of the procedure in [0,1].
Note that choosing blocks along with their predecessors

(an inverted cone at each iteration) allows a look ahead feature
generating better solutions than the myopic approach of choos-
ing blocks one by one.

4. Improving the initial solution

As mentioned before, the initial solution x=
ST

t= 1 Bt is
improved by applying an adaptation of the VND method
proposed by Hansen and Mladenovic (2001). The basic idea of
VND is to combine different descent heuristics based on
different neighbourhood structures to escape from local optima.
In the following, we first describe the neighbourhood structures
used in our adaptation of the VNDmethod. Next, we outline the
procedure used to improve the solution x.

4.1. Neighbourhood structures

Three neighbourhood structures are used in our adaptation
of the VND method. The first structure tries to swap two
blocks scheduled in consecutive periods. For example, a waste
block scheduled to be mined in period 1 and having no
successors scheduled in period 1 could be left behind to be
mined in period 2. In its place, an ore block scheduled to
be mined in period 2 could be mined in period 1 provided that
its predecessors are scheduled in period 1. The mining capacity
should not be exceeded in either period as a result of the swap.
The second and third structures try to make room for new
blocks in a given period by scheduling some blocks to be mined
in that period backward or forward while satisfying the slope
and the mining constraints. A more formal description of the
three neighbourhood structures as well as an outline of the
strategy used to explore them is given below.

● N1 (Exchange or Swap): Let i and j be two blocks mined in
periods t and (t+1), respectively. An exchange consists of
replacing Bt and Bt+1 by (Bt−{i})+{ j} and (Bt+1−{ j})+{i},
respectively. The exchange of two blocks is feasible if the
resulting solution is feasible; that is, only if it satisfies the
slope and the mining constraints. Figure 2 gives a two-
dimensional illustration of an exchange move involving two
blocks, i and j, with T= 2.

● N2 (Shift-after): Let i be a block mined in period t, and
let I = {i}∪{block γ: γ∈Γi∩Bt} denote the set including i
and its successors mined in the same period. A shift-after
consists of replacing Bt and Bt+1 by Bt−I and Bt+1+I ,
respectively. Clearly, the slope constraints are satisfied in
the resulting solution since the blocks are moved along with
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their successors. However, the mining constraints must
be satisfied in period (t+1) in order to allow this shift-after.
Figure 3 illustrates the Shift-after move where block i and its
successors mined in period 1 are moved to period 2.

● N3 (Shift-before): Let i be a block mined in period t, and let
I = {i}∪{block p: p∈Pi∩Bt} denote the set including i and
its predecessors mined in the same period. A shift-before
consists of replacing Bt and Bt−1 by Bt−I and Bt−1+I ,
respectively. As for the Shift-after neighbourhood, the slope
constraints are necessarily satisfied, but the mining con-
straints in period (t−1) must be satisfied in order to allow this
shift-before. Figure 4 illustrates the Shift-before move where
block i and its predecessors mined in period 2 are moved to
period 1.

Note that the operators Shift-after and Shift-before motivate the
introduction of constraints (21) when applying the greedy
heuristic procedure (GH) to generate the initial solution. Indeed,
if the value of δ were fixed to 1 at each iteration, then it would
be more difficult to find a feasible neighbour solution when
applying these operators.
The strategy to explore the first neighbourhood N1 is as

follows: Periods t= 1,…, (T−1) are considered sequentially in
increasing order. Given a period t, all feasible exchanges
involving pairs of blocks mined in t and (t+1) are systematically
considered. The best exchange is selected. We apply the
selected exchange if it leads to a better solution or to a solution
of the same value as the current solution (in order to escape

from the current local optimum). The process is iterated
with the new solution. When no feasible exchange exists to
further improve the solution or to get a solution of equal
value, the next period (t+1) is considered; that is, exchanges
involving pairs of blocks mined in periods (t+1) and (t+2) are
evaluated.
A similar exploration strategy is used when considering the

Shift-after neighbourhood N2 except that periods t= 1,…,
(T−1) are considered in decreasing order. For the Shift-before
neighbourhood N3, periods t= 2,…, T are considered in
increasing order.

4.2. Variable neighbourhood descent procedure

The rules of a basic VND are applied. Start by exploring the
Exchange neighbourhood (N1). When the search of N1 is
completed (ie, for all t= 1,…, (T−1), no feasible exchange
between pairs of blocks mined in periods t and (t+1) exists to
further improve the solution or to get a solution of equal value),
restart a new search using the Shift-after neighbourhood (N2).
Once the search of N2 is completed, if the solution has been
improved, return to N1; otherwise, use the Shift-before neigh-
bourhood (N3). This process terminates when no move in any of
the three neighbourhoods improves the value of the objective
function. Note that the order in which the neighbourhoods are
explored follows from preliminary tests.

5. Numerical results

Numerical tests were completed on three different problems
based on actual instances from different mines. Problem P1 is
generated from an actual copper deposit where all blocks i are
20×20×10 meters in size and weigh wi= 10 800 tons each.
Problem P2 is from an actual gold deposit where all blocks i are
15×15×10 meters in size and weigh wi= 5625 tons each.
Finally, problem P3 is also from a gold deposit but where
blocks i are 10×10×5 meters in size and weigh wi= 1250 tons
each. The economic parameters used to compute the block
economic values and the recourse costs are also based on real-
life data, and they are summarized in Table 1.

Current solution x Neighbor solution x’ obtained by the 
Shift-after move

i and its succesors
mined in period 1

 
 

Figure 3 Shift-after move of block i and its successors mined in
the same period. The grey area represents the set of blocks to be
mined in the first period (B1), while the white area delimited by the
thick lines represents the set of blocks to be mined in period 2 (B2).

Current solution x Neighbor solution x’ obtained 
by the Shift-before move

i and its predecessors
mined in period 2

Figure 4 Shift-before move of block i and its predecessors mined
in the same period. The grey area represents the set of blocks to be
mined in the first period (B1), while the white area delimited by the
thick lines represents the set of blocks to be mined in period 2 (B2).

!

i
j

i
j

Current solution x Neighbor solution x’ obtained by the
exchange move

Figure 2 Exchange move between blocks i and j with T= 2. The
grey area represents the set of blocks to be mined in the first period
(B1), while the white area delimited by the thick lines represents the
set of blocks to be mined in period 2 (B2).
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Each problem is characterized by a number of blocks N and
a number of periods T, specified in Table 2. Note that N
corresponds to the number of blocks within the pit limits
obtained by solving the maximum closure problem (to maxi-
mize the expected profit from the mining operation but
accounting only for the slope constraints). Each period is one
year long, as this is the case in practice and in the literature
related to the MPSP. The number of periods is set to
T =

PN
i= 1 wi=22 300 000

� �
: The number of scenarios S is equal

to 20. The scenarios are equiprobable (ie, πs= 1/S ∀s= 1,…, S),
and they were generated from a limited amount of drilling
information using the geostatistical techniques of conditional
simulation (Goovaerts, 1997; Scheidt and Caers, 2009; Boucher
and Dimitrakopoulos, 2012). These techniques can be seen as
a complex Monte Carlo simulation framework. They reproduce
all available data and information as well as spatial statistics of
the data. Note that some authors use only 5–10 scenarios to
model metal uncertainty (Menabde et al, 2007; Boland et al,
2008).

Additional parameters to specify the problems are as
follows: For each problem, the production capacities are
identical in all periods and emulate those in real-world
problems. For each period t, the mining capacity Wt is set to
1:20

PN
i= 1 wi=T

� �e�
(ie, total amount of rock / number of

periods plus a margin of 20%). The processing capacityΘt is set

to 1:05
PN

i= 1

PS
s= 1 πswiθis=T

� �l m
(ie, total expected amount

of ore/number of periods plus a margin of 5%).
All the numerical experiments were performed on an Intel®

Xeon® CPU X7350 computer (2.93 GHz) with 64 GB of
RAM running under Linux. Version 12.2 of CPLEX was
used to solve the mathematical model (SPt) introduced in
Section 3.1. To fix the values of the parameters of the greedy
heuristic in Section 3.2, some preliminary numerical experi-
mentations were completed with problem P2 and a set of other
four smaller problems. We considered 15 values for the interval
[δ1, δ2] ([0.3, 0.35], [0.35, 0.4],…, [0.95, 1] and [1, 1]). The best
results are obtained with the interval [0.9, 0.95]. Hence, we
complete the rest of the numerical tests using these values for
δ1 and δ2.
The linear relaxation of the model (DE) in Section 2 was

solved using CPLEX 12.2 to obtain an upper bound ZLR on the
optimal value, which is used to assess the quality of the
solutions produced with the two variants of the proposed
solution method, denoted BC-VND and GH-VND.
Since GH and VND include random choices, each problem

was solved 10 times. The results are summarized in Table 3,
where

● %Min Gap=ZLR -Zbest=ZLR ´ 100: the value of the relative
gap between the value Zbest of the best solution obtained by
the variants in the 10 runs and the optimal value ZLR of the
linear relaxation.

● %Max Gap=ZLR - Zworst=ZLR ´ 100: the value of the rela-
tive gap between the value Zworst of the worst solution
obtained by the variants in the 10 runs and the optimal value
ZLR of the linear relaxation.

● %AveGap= ZLR -Zaverage=ZLR ´ 100: the value of the
relative gap between the average value Zaverage of the
10 solutions obtained by the variants and the optimal value
ZLR of the linear relaxation.

● Ave CPU: the average solution time in minutes.

The first three criteria do not apply to CPLEX as indicated by
‘–’. The last criterion indicates also the CPU time required by
CPLEX to solve the linear relaxation of the problems.
The following observations can be derived from Table 3:

● The two variants are very efficient in the sense that for each
problem the value of %Min Gap is less than 5% away from
the upper bound provided by CPLEX.

● The length of the interval [%MinGap, %MaxGap] indicates
the robustness of the variants. In all cases (considering the
three problems and the 10 runs of each variant) the gap
between the solution generated and the upper bound

Table 1 Economic parameters used to compute the objective
function coefficients

Parameters Copper (P1) Gold
(P2 and P3)

Mining cost $1/t $1/t
Processing cost $9/t $15/t
Metal price $2/lb $900/oz
Selling cost $0.3/lb $7/oz
Undiscounted surplus cost for ore (c) $15/t $17/t
Discount rate (d1) 10% 10%
Risk discount rate (d2) 10% 10%

Table 2 Characteristics of the problems used in the numerical
experiments

Problem Number of
blocks (N)

Number of
periods (T)

Number of
scenarios (S)

P1

Metal type: copper
Block size:
20×20×10m
Block weight:
wi= 10 800 tons

26 021 13 20

P2

Metal type: gold
Block size:
15×15×10m
Block weight:
wi= 5625 tons

40 762 11 20

P3

Metal type: gold
Block size:
10×10×5m
Block weight:
wi= 1250 tons

97 307 6 20
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provided by CPLEX is smaller than 6%, and in 96.66% of
cases, it is smaller than 5%.

● The computational time required by the variants is very
reasonable. For instance, CPLEXmay require almost 16 days
to solve the linear relaxation of problem P2, while very good
feasible solutions for this problem are obtained in 16min and
3.5 h by GH-VND and BC-VND, respectively.

● When comparing the two variants, we observe that BC-VND
provides the best gaps. GH-VND is, however, generally the
best in terms of computational time.

Next, the ability of the VND procedure to improve the initial
solutions provided by BC and GH is evaluated. Table 4
summarizes the value Ave IterVND of the average number of
VND major iterations performed (a major iteration is when the
three neighbourhoods have been explored), as well as the value
%Impr defined as follows:

% Impr:=
Zaverage -Zinit

Zinit
´ 100

where Zaverage is as defined above (the average value of the
solutions generated in the 10 runs) and Zinit is the average value
of the initial solutions generated using either BC orGH. The last
column Ave CPU shows the average solution time in minutes
(same values as in Table 3).

The results indicate that the BC procedure using the branch-
and-cut algorithm is very efficient at generating very good
solutions that VND fails to improve or improves very slightly.
However, BC requires significantly longer computational
times than the greedy heuristic, GH. Although the initial
solutions generated by GH are of low quality when compared
with those generated by BC, VND improves them to the point
that they are close to those generated by BC, and these
improved solutions are obtained in significantly less computa-
tional time, indicating the benefits of VND when the initial
solution is of low quality.
In summary, both variants outperform CPLEX. They offer an

excellent compromise between solution quality and computa-
tional effort. On the one hand, with respect to solution quality,
the results indicate that, for the tested problems, the variant
BC-VND is slightly better. On the other hand, solution times are
in general significantly reduced when using GH-VND.

6. Conclusions

Production scheduling is a challenging and critical issue for
mining companies exploiting open-pit mines. Determining the
block mining sequence is a crucial step in maximizing the NPV
of the mining operation. Decisions on block scheduling are
subject to various types of constraints, typically slope con-
straints, bounds on mining, and bounds on processing. Further-
more, the open-pit mine production scheduling is even more
difficult because the number of blocks is large and because the
metal content of the blocks is not known precisely at the time
decisions are made. This yields a large-scale stochastic optimi-
zation problem.
We have addressed metal uncertainty using a two-stage

stochastic programming approach and we have proposed a
metaheuristic approach to solve the problem. An initial feasible
solution is first generated using either an exact method or a

Table 3 Evaluating the efficiency of the two variants of the proposed solution method

Criterion Problem N T (years) BC-VND GH-VND CPLEX

% MinGap P1 26 021 13 0.74 3.73 —

P2 40 762 11 2.18 4.21 —

P3 97 307 6 1.18 3.67 —

%MaxGap P1 26 021 13 0.74 5.12 —

P2 40 762 11 2.18 4.98 —

P3 97 307 6 1.20 3.97 —

%AveGap P1 26 021 13 0.74 4.42 —

P2 40 762 11 2.18 4.64 —

P3 97 307 6 1.19 3.79 —

AveCPU (minutes) P1 26 021 13 21.62 4.83 9261.95
P2 40 762 11 215.17 15.99 23 353.00
P3 97 307 6 278.34 240.75 12 707.03

Table 4 Evaluating the ability of the VND procedure to improve
the initial solutions

Problem AveIterVND %Imp AveCPU (minutes)

BC-VND GH-VND BC-VND GH-VND BC-VND GH-VND

P1 1 15.4 0 235.13 21.62 4.83
P2 1 14.1 0 243.75 215.17 15.99
P3 4.4 10.0 0.25 139.60 278.34 240.75
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greedy heuristic to solve sequentially a sub-problem for each
period. A VND procedure is then applied to improve the
solution. Upper bounds provided by CPLEX were used to
evaluate the efficiency of the two variants of the proposed
solution method, specified according to the process used for
generating the initial solution. Tests were conducted on realistic
actual large-scale instances, and their results indicate that the
two variants generate solutions of very good quality, with an
average deviation of less than 3% from optimality, within a few
minutes up to a few hours. When comparing the two variants,
the results indicate that the variant based on an exact method
slightly outperforms the one based on a greedy heuristic as far
as the solution quality is concerned, but its average computa-
tional time is two times larger. The results also indicate that the
VND procedure can substantially improve initial solutions of
low quality.
Future research will be devoted to extending the proposed

approach to account for additional operational constraints and
to developing other efficient approaches for these more com-
plex versions of the problem. One approach we are investigat-
ing consists of solving the linear relaxation of the problem using
an efficient algorithm and then using an LP-rounding procedure
to generate an integer solution.
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